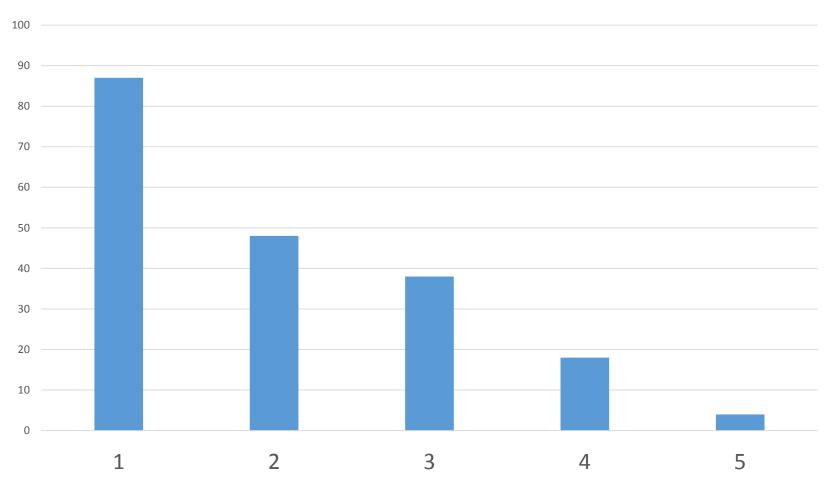
The Role of Clinical Trial Networks in Neonatal Studies

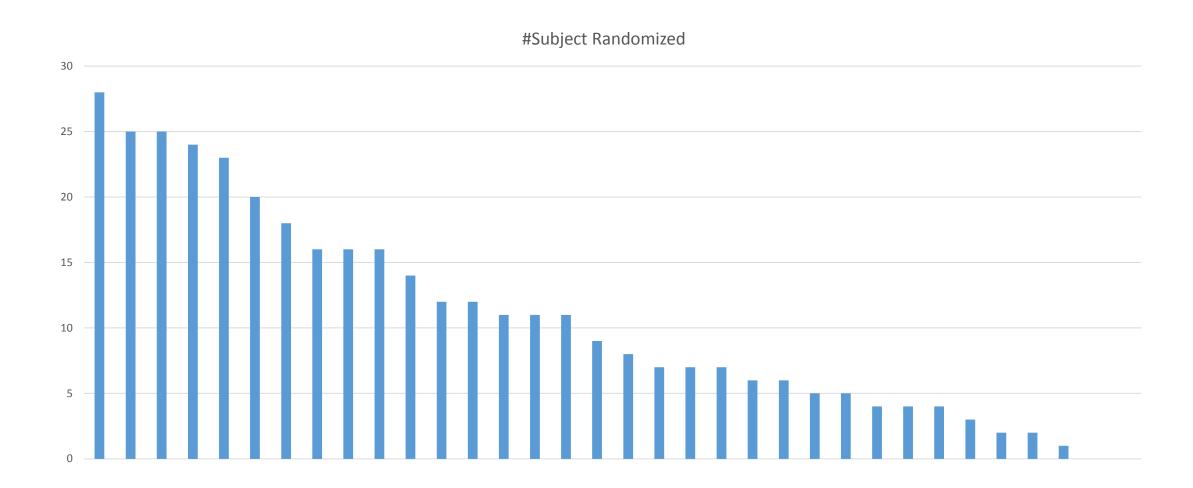
P. Brian Smith MD MPH MHS
Professor of Pediatrics, Duke University Medical Center
May 13, 2016

Disclosures

• Dr. Smith receives grant support from Cempra Pharmaceuticals and Shionogi Inc. Dr. Smith is a consultant for Astellas Pharma US, Inc. and Abbvie Inc.


Objectives

- Review barriers to antimicrobial trials in infants
- Describe potential solutions to these barriers


Roadblocks to Trials in Infants in the US

- Limited number of patients with the disease
- No "healthy baby volunteer"
- Low rates of parental informed consent
- Perceived study risks
- Limited blood volume
- Sick population increases variability
- Lack of clinical pharmacology expertise
- Timing of consent
- Contamination
- Long-term follow-up
- Variability in site enrollment
- Clinician concerns/beliefs about therapies and trials
- Variability in site outcomes
- Competing research priorities

Variability in site enrollment 200 patient study (quintiles)

Site enrollment - 360 patient study

Site characteristics affecting enrollment

- Involved PI/study coordinator
- Relationship with sponsor and/or coordinating center
- Time to activation (IRB, contracting)
- Competing studies
- 24/7 coverage
- Buy-in from neonatologists, nurses

Clinician beliefs/concerns about protocols

- Furosemide
 - Not labeled for infants
 - Little evidence of efficacy or safety
 - Used routinely in infants despite many sites claiming that it is never/rarely used

Most common drugs in the NICU - ELBW (<1000 g BW) infants				
	% exposed	FDA labeling for premature infants		
1. Gentamicin	90	Dosing		
2. Ampicillin	88	None <26 weeks		
3. Caffeine	70	None <28 weeks		
4. Vancomycin	56	Dosing		
5. Furosemide	50	No		

Well maybe we use it but not at "high doses" > 1 mg/kg/day

150 NICUs with >100 infants <32 weeks gestation and < 1500 g birth weight

Furosemide dose	% of NICUs dose in any infant
≥1 mg/kg/day IV or ≥2 mg/kg PO	97%
≥4 mg/kg/day IV or ≥8 mg/kg PO	57%
≥8 mg/kg/day IV or ≥16 mg/kg PO	24%
*any dose of bumetanide	35%

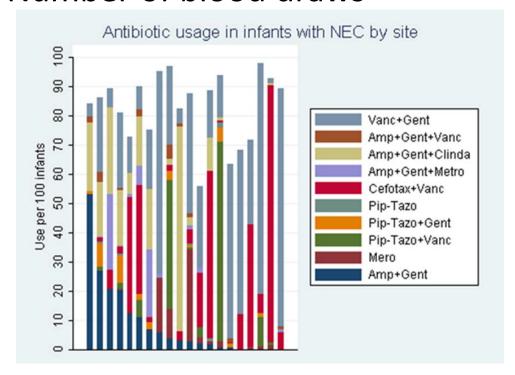
SCAMP – antibiotic safety trial

Drug	Phase I (PK and Dosing)	Phase II (Safety and Efficacy)
Ampicillin	PTN (N=28)	SCAMP
Clindamycin	PTN (N=28)	SCAMP
Metronidazole	PTN (N=24)	SCAMP
Piperacillin-tazobactam	CTSA supplement (N=32)	SCAMP

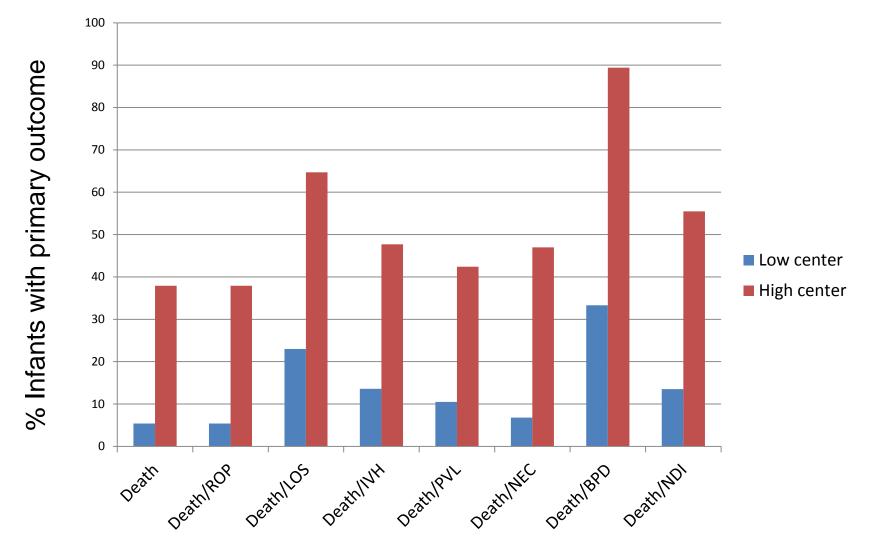
SCAMP - Study Population

- Phase 2/3 safety, open-label, randomized, multi-center
- 300 premature infants (≤32 weeks gestation at birth) randomized 1:1:1 to drug regimen Groups 1, 2, or 3
 - Group 1 (N=100): ampicillin, gentamicin, and metronidazole
 - Group 2 (N=100): ampicillin, gentamicin, and clindamycin
 - Group 3 (N=100): piperacillin-tazobactam and gentamicin
- 50 late preterm and term infants (≥34 weeks gestation at birth) will be assigned to Group 4
 - Group 4 (N=50): metronidazole in addition to the antibiotic regimens prescribed per standard of care

Study Drug Dosing Schemes


Drug	PNA days	GA wks	PMA wks	Weight kg	Loading dose mg/kg	Maintenance dose mg/kg	Dosing interval h
	≤28	≤29				50	12
Ampicillin	>28	≤29				50	8
	≤14	30–32				50	12
	>14	30–32				50	8
			<34		15	7.5	12
Metronidazole			34–40		15	7.5	8
			>40		15	7.5	6
	≤7			≤2		5	8
Clindamycin	≤7			>2		5	12
Cilildaniyeni	>7			≤1.2		5	8
	>7			1.2 - 2		5	12
	>7			>2		5	8
Piperacillin- tazobactam*			≤30			100	6
tazobactam*			>30			80	6

PNA = Postnatal Age, GA = Gestational Age, PMA = Postmenstrual Age; *Dosing based on piperacillin component

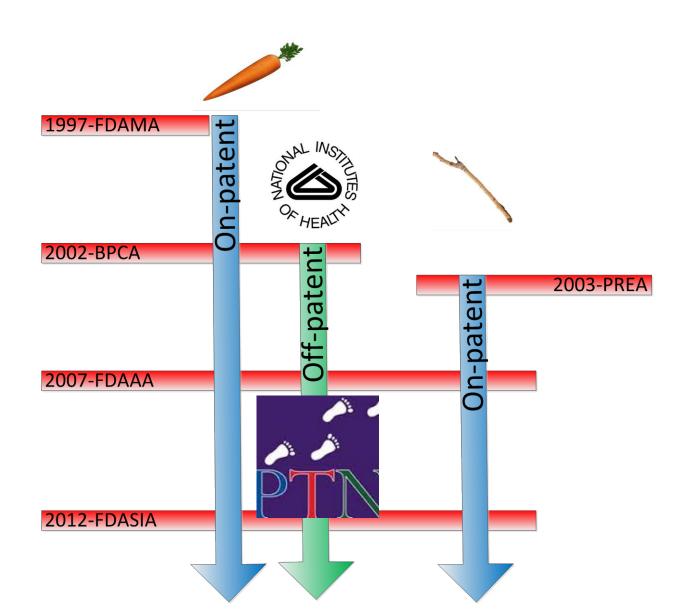

Clinician concerns

- Support drug dosing that is <50% different than protocol dose
- Support one arm over another for a particular infant
- Number of blood draws

Week of Life	Mean	Min	Max
1	39	7	100
2	32	2	122
3	28	1	110
4	20	1	115
5	14	1	61
6	12	1	60
7	9	1	66
8	9	1	70
9	8	1	67
10	7	1	44

Variability in Outcomes – 25-27 week infants, Neonatal Research Network, 2002-08

NICHD - Neonatal Research Network


- 15 center (~40 NICUs)
- Primary focus on premature infants
- Barriers to antimicrobial studies
 - Have never done one
 - 14 active trials
 - Number of studies in queue ahead of new studies
 - Co-enrollment is an issue

NICHD -Pediatric Trials Network (PTN)

"Create an infrastructure for investigators to conduct trials that improve pediatric labeling and child health."

- Study age-appropriate drug dosing, efficacy, safety, and device validation
- Success improve dosing, safety information, labeling, and ultimately child health
- PI Danny Benjamin, MD PhD MPH Duke Clinical Research Institute (DCRI)

PTN

PTN - Lessons Learned

- Have frequent discussions with FDA/NIH
- Keep protocol simple
- Make inclusion criteria "inclusive"
- Minimize exclusion criteria
- Minimize blood draws
- Use labs/procedures done per standard of care
- Work with experienced sites

PTN - Innovation

- Data access
- Federated IRB
- Master contracts
- Partnerships with funding, etc.
- Neonatal studies

- Master protocols
 - POPs
 - Multi-arm PK/PD studies
 - Multi-arm safety studies
 - Antipsychotics
 - Anesthesia

PTN – Progress Since 2010

Projects

- 30 total projects; 18 clinical trials
- Phase I-IV studies

Enrollment

- Over 100 sites enrolling
- > 5000 children enrolled

Therapeutic areas

- Cardiology, Neonatology, ID, Obesity, Neurology, Psychiatry, Critical Care, GI, Pulmonary, Hematology, Oncology
- Data for 9 products submitted to FDA
- >20 products with planned submission by 2017

Antimicrobials: PK trials

Rank	Medication	Exposures (/1000 infants)
1	Ampicillin	681
2	Gentamicin	676
4	Vancomycin	91
15	Cefotaxime	43
23	Tobramycin	24
27	Fluconazole	19
28	Clindamycin	17
30	Acyclovir	16
38	Ceftazidime	12
41	Pip/tazo	11
43	Amoxicillin	11
44	Metronidazole •	11
45	Oxacillin	10
46	Nafcillin	9
47	Amphotericin B	9
48	Amikacin	9

Hseih, A J Perin, 2014.

Enrollment – PTN SCAMP

- Goal –50 sites, 350 participants
- Eligible participants: 1.2 participants/site/month
- Enrollment: 0.2 participants/site/month = 17% of eligible participants

Enrollment – PTN Furosemide Safety Trial

- Goal 25 sites, 120 participants
- Eligible participants: 5 participants/site/month
- Enrollment: 0.2 participants/site/month = 4% of eligible participants