

Foundations of in vitro comparisons of generic opioids to reference listed drugs (RDLs) with labeling describing abuse-deterrent properties

Public Meeting on Pre-Market Evaluation of Abuse-Deterrent Properties of Opioid Drug Products Sheraton, Silver Spring, MD

Stephen W. Hoag and Steve Byrn

University of Maryland, Baltimore; School of Pharmacy 20 N. Pine St.; Baltimore MD 21201
Phone 410-706-6865

Email: shoag@rx.umaryland.edu

Outline

- Introduction
- Material Science principles applied to Abuse Deterrent Formulation testing
- Testing of manipulated products
- Summary

Once-a-day Dosing of Opioids

Goals

- Goal of abuser
 - Manipulate product such that:
 - Absorb as much drug as possible in the shortest period of time possible
 - Rapid release or dose dumping creates
 - ightharpoonup ightharpoonup ightharpoonup ightharpoonup ightharpoonup
 - lacktriangle lacktriangle lacktriangle lacktriangle
 - Such that
 - → Pharmacokinetic change
 - → Pharmacodynamic response change
 - → Creates euphoria or abuser's "reward"
- Goal of Abuse Deterrent Formulation (ADF)
 - Create barriers to prevent dose dumping
 - Chemical
 - Physical
 - Create situation where it is undesirable for abusers to manipulate product

Modes of Abuse

- Snort
 - Reduce particle size
 - Absorption in nasal cavity
 - What is not absorbed nasally is absorbed via GI tract
- Smoke
 - Vaporize after reducing particle size
 - Absorption in lungs
- iv
 - Reduce particle & extract in solvent
 - No absorption direct iv injection
- Oral
 - Reduce particle size or exceed recommended dose
 - Absorption in GI tract

Abuse Deterrent Strategies

Approach	Example		
Physical/chemical barriers	_		
Physical resistance to crushing	Polyethylene oxide matrix oxymorphone ER		
Gel based or gel forming	Polymer matrix embedded oxycodone CR		
Agonist-antagonist combinations			
Sequestered antagonist with	Morphine/naltrexone		
Differential bioavailability	Buprenorphine/naloxone		
Aversive components			
Aversive oxycodone IR	Hydrocodone/acetaminophen		
Prodrugs			
	Lisdexamphetamine		
Combination of methods	In development		
Novel approaches	Yet to be developed		

Approved Abuse-Deterrent Opioid Products

NDA	API	Brand	Approval	Dosage Form	Possible controls
206627	Hydrocodone	Hysingla ER	11/20/14	ER Tablet	IR Hydrocodone combination tablet
208090	Oxycodone	Xtampza ER	04/26/16	ER Capsule	IR oxycodone capsule
022272	Oxycodone	OxyContin	04/05/10	ER Tablet	IR oxycodone tablet
206544	Morphine	MorphaBond	10/02/15	ER Tablet	IR morphine tablet; Non ADF ER tablet
207621	Oxycodone/ Naltrexone	Troxyca ER	08/19/16	ER Capsule	IR oxycodone capsule
205777	Oxycodone/ Naloxone	Targiniq ER	07/23/14	ER Tablet	IR oxycodone tablet
022321	Morphine/ Naltrexone	Embeda	08/13/09	ER Capsule	Non-ADF ER capsule

Spectrum of Abuse

Patient miss use

- Not trying to get high, but don't follow Rx directions
- Self management of pain
 - Poor pharmacist oversight of break through pain
- Self medication for depression or anxiety, etc.

Key points of intervention

Curious users

- See what it is like to get high
- Not a lot of experience in drug abuse

Recreational users

- Trying to get high
- May have experience with drug abuse

Addicts

- Trying to get high
- Can be highly motivated
- Disregard all directions
- Willing to take great risks
- Have lots of time

Can progresses to full fledge addiction

Abuse deterrent formulations are not abuse proof

Test Development for ADF

- A good in vitro test method should be:
 - Accurate, precise, robust, stable, etc.
 - Simple
 - Intra and inter lab reproducibility
 - Representative of abuser's actions
- Ideally a test method should:
 - Correlate with abuser's actions and product performance in the real world
 - In bioequivalence parlance IVIVC or IVIVR
 - Real world should include Category 4 studies, which are beyond the scope of this talk but is an area where research is needed

Testing of ADFs

Mode of abuse

- Mechanical
 - Crushing
 - Grinding/abrasion
 - Cutting/grating
- Thermal
 - Heating
 - Freezing
- Extraction
 - Solvent type
 - pH
 - Temperature
 - Hydrodynamics
- Separation
 - Differential extraction of antagonist and aversive agents

Routes of Administration

- Oral
- Inhalation
- Snorting
- Smoking
- Parenteral
- iv injection

Test Method Selection

- Particle size reduction
- Mechanical strength testing
- Extraction testing
- Viscosity & Syringeability
- Dissolution testing
- In vitro models for
 - Snorting
 - Smoking
- Differential extraction of antagonists or aversive agents

Typical Abuser's Toolbox

<u>Mechanical</u>

- Cutting
 - Razor
 - Knife
 - Grater
 - Pill crusher
 - Diagonal cutters
- Crushing
 - Two spoons
 - Mortar and pestle
 - Hammer
- Grinding
 - Abrasive grinding, Dremel[®] tool
 - Impact grinding, e.g., milling, coffee grinder, food processor

Thermal

- Oven
- Microwave
- Boiling water

Extraction

- Solvents
 - Water
 - Finger nail polish remover
 - Rubbing alcohol
- pH
 - Vinegar
 - Baking soda
 - Drano®
- Abuse conditions
 - Agitation rate
 - Extraction time and temp.
 - Etc.

Mimicking House Hold Tools

- House hold items are:
 - Highly variable and not designed for reproducible use
 - Often redesigned every few years for marketing reasons
- To test for a given mode of abuse
 - Need to capture principal forces that are used to destroy the barrier
- For testing
 - Need to use forces that are representative of what abusers actually use
 - Need to standardize application of these forces to product
 - Rate of force application is also important

Mechanical Manipulation

- Application of force to a body causes deformation & eventually fracture
- The type of force applied dictates how the body fails
 - For example a body can fail in shear or tension
 - Bodies have different strengths in shear and tension
- The application of any force can be resolved into
 - Dilation
 - Shear
- Much is known about failure and particle size reduction
 - Can use this research to develop reproducible test methods
 - Assess the forces used by a typical abuser so as to design representative tests for product manipulation

Application of Force: Cutting & Crushing

Cutting with razor blade creates

High Shear Force

Leads to failure in shear

Crushing with spoon creates **High Compressive Forces**

Leads to failure in tensile

Milling

- Key parameter
 - Energy / Momentum of impact
- Controlled by
 - Tip speed
 - Tip cross sectional area

Grinding

Key Parameters

- Normal force (N)
- Sliding velocity
- Surface Texture and Hardness

Grinding with abrasive

Tribology Interaction between surfaces

Can lead to particle attrition by abrasion

Failure Modes

- Each abuse deterrent technology has its own failure modes
 - E.g.: physical barriers
 - Key failure mode
 - Destruction of the barrier
 - Extraction of the drug
- Key scientific questions
 - What are the critical quality attributes that affect ruggedness of the barrier
 - What are the critical quality attributes of the abused product that affect administration and API uptake

Nasal Route of Abuse

Product Manipulation

Manipulation Technique

- Has big effect on particle size
- The more energy the finer the particle size
- Plastic materials are hard to mill
 - Require more energy to mill
 - i.e., have a higher milling limit
- Yield is an important factor
 - Plastic materials tend to have lower yield

Cut Sample

Ground Sample

Release Studies

- Vertical diffusions cell
 - Sampled placed on moist membrane
 - Formulation influences release rate, pure API faster than abused product
- Differences in particle size may not always influence release rate
- The correlation/relationship to in vivo performance needs to be better understood

Cumulative % Release Metoprolol Tartrate

Summary

- The field of abuse deterrent formulation is relatively new
 - Fast moving and rapidly evolving
 - New technologies are being developed almost daily
- How products are manipulated can affect results
 - Need to have standard methods of manipulation that are representative of abuser's action in the real world

Acknowledgments

- Heather Boyce
- Stephen R. Byrn
- Daniel Smith
- Ke Fang
- Bhawana Saluja
- Wen Qu
- Vadim J. Gurvich