

Innovative Antibacterials

Challenges with Clinical Trial Design for a Drug Targeting a Single Species of Bacteria: Acinetobacter baumannii

Robin Isaacs
Chief Medical Office
Entasis Therapeutics

Disclosure: Full time employee of Entasis Therapeutics

Infections caused by *Acinetobacter baumannii* are a significant unmet medical need

- One of the six ESKAPE pathogens
- 60 100,000 infections in the U.S. and ~130,000 in EU5 per year
- Common infection sites:
 - Blood stream, lung, urinary tract, and skin
- Causes infections among critically ill patients
 - Mortality rate ~40% with current therapies
- ~ 60% of *A. baumannii* isolates are multi-drug resistant

Region	Number of Isolates	% Resistant to imipenem
Asia Pacific	398	57.6%
Europe	1229	64.1%
Latin America	299	75.9%
Middle East/Africa	189	73.6%
North America	235	54.0%
All Regions	2350	64.2%

Sulbactam-ETX2514 (ETX2514SUL) is in clinical development as a pathogen-specific drug to treat *Acinetobacter baumannii* infections

Sulbactam

- A β-lactam that is widely used as a β-lactamase inhibitor in the combination product Unasyn™
- Has intrinsic antimicrobial activity against A. baumannii

ETX2514

- A novel, non-β-lactam, β-lactamase inhibitor
 - Broad potent inhibitor of Class A, Class C, and Class D β-lactamases
- ETX2514 restores the *in vitro* and *in vivo* activity of sulbactam against contemporary multi-drug resistant *A. baumannii*
 - Sulbactam $MIC_{90} = 64 \text{ mg/L}$
 - Sulbactam + ETX2514 $MIC_{90} = 4 \text{ mg/L}$
 - >99% of 2014 isolates (n=1,131) had MIC ≤ 4 mg/L

Sulbactam-ETX2514 is under development as a pathogen-specific drug The challenges!

- Identification of patients with A. baumannii infections
 - Represent ~2% of hospitalized Gram-negative infections
- Patients are "sick"
 - Usually hospitalized
 - Generally compromised health
 - Often in ICUs
 - Generally receiving broad spectrum coverage
 - Patients may have renal impairment
- ~40-50% of patients have pulmonary infections
- HOW DO WE TRANSLATE THIS INTO A DEVELOPMENT PROGRAM?

Identification of patients with *A. baumannii* infections How can we enrich for what is important?

- What is the target of a new therapy
 - The unmet need = multi-drug resistant pathogens
- Although A. baumannii infections are relatively uncommon
 - Multi-drug resistance is very common
 - Routine microbiology can identify A. baumannii within 48-hours
 - ➤ We can "enrich" for multi-drug resistance by allowing ≤48-hours of prior therapy
- Prior knowledge of A. baumannii is critical before enrollment
 - BUT prior knowledge of susceptibility is not
 - ~60% will be multi-drug resistant
- A rapid "bed-side" diagnostic to enrich enrollment and minimize prior antimicrobial therapy would be helpful but is not essential

Identification of patients with *A. baumannii* infections Where to find the patients?

- Focus on infections where A. baumannii is more common
 - Hospital acquired/ventilator acquired bacterial pneumonia
 - ~5-10% of cases in US
- Focus on geographies where A. baumannii is more common

Figure 1. Comparison of major microorganisms isolated from hospital-acquired pneumonia (HAP) and ventilator-associated pneumonia (VAP) in Asian countries.

Enrollment of "sick" patients with significant co-morbitities Understand pulmonary penetration and renal dose adjustment early

- Patients with A. baumannii infections have complex medical issues
- Need substantive preclinical efficacy data prior to clinical studies
 - Establish PK targets likely predictive of efficacy
 - Establish clinical dose using robust modelling of Phase 1 PK and preclinical PD targets
- While establishing Phase 3 readiness
 - Generate a limited amount of safety data in "relatively" healthy patients
 - Provides a baseline to review safety data in much sicker population

How do you establish efficacy?

- An event-driven study based on multidrug resistant pathogens
- Enrolling patients with proven A. baumannii infections
- Focusing on most common infections; i.e. lung and/or bloodstream
 - Allow patients with other infections into a parallel non-comparative arm to collect supportive data
- In a non-inferiority comparison against a standard-of-care regimen
 - Test superiority if non-inferiority met
- Utilizing a hard endpoint; e.g., 28-day mortality
 - Comparator regimen ~40% mortality
 - No treatment ~80% mortality
 - Proposed non-inferiority margin 20%
- Require ~200 patients to provide 118 patients with multi-drug resistant infections
 - 80% power with a two-sided 95% CI assuming 40% mortality in the comparator group and 35% mortality in the experimental group

What might a NDA package look like? Proposed key elements

- A strong microbiology package
- Strong evidence of in vivo efficacy in relevant animal models
- Robust demonstration of PK/PD parameters based on in vitro hollow fiber and in vivo animal models
- Establish dose for Phase 2 and Phase 3 based on high probability of target attainment using robust modelling of preclinical and clinical data
- A safety data base of ~300-400 patients/subjects
 - Consistent with FDA guidance documents
- Demonstrate efficacy compared to standard-of-care in a Phase 3 noninferiority study
 - Comprehensive justification of non-inferiority margin from published literature
- It's not easy but it is potentially achievable!

