Conducting Clinical Studies in Low Incidence/Rare Conditions:

Scientific Challenges and Study Design Considerations

William Irish, PhD, MSc CTI Clinical Trial & Consulting Services

Disclosure

 I am a full time employee of CTI Clinical Trial and Consulting Services, an international contract research organization that delivers a full spectrum of clinical trial and consulting services to the pharmaceutical and biotechnology industry.

Further Disclosure ...

"IN OTHER WORDS, STATISTICS PROVE THAT STATISTICIANS AREN'T ALWAYS RIGHT."

Scientific Challenges

- Very few epidemiologic studies have been performed describing the occurrence of AMR
- Reported incidence varies depending on:
 - Type of organ transplanted
 - Local practice
 - diagnostic criteria & clinical protocol
 - Period studied
 - Patient population/Geographic region
 - Clinical follow-up and management

Scientific Challenges (cont'd)

- Requires multi-center, multi-country participation
 - Inherently different healthcare systems, treatment options, and management approaches
- Study design and analysis complexity
- Prevention versus treatment
 - What defines success?
 - What defines enrollment criteria?

Regulatory Challenges

- No special methods for designing, carrying out or analyzing clinical trials in low incidence/rare conditions
 - Guidelines relating to common diseases are also applicable to rare conditions
- Choice of endpoints
 - Reliable & assessed consistently
 - Surrogate endpoints may be applicable but need to be fully justified
- Choice of comparator group
 - Ethics of randomization (Clinical equipoise/Uncertainty principle)
 - Historical controls
- Sufficient sample size
 - Minimize noise-to-effect ratio

Incidence of AMR

Author/Year	Location/setting	Number/Type of Patients	AMR Incidence
Marlo et al., 2011	Multicenter systematic review, 2000-2010 studies	725 patients in 21 studies	AMR 28% at 2-year median follow-up
Naesens et al., 2012	RCT Multicenter (US)	130 pediatric KTx	AMR 6.8% at 3-years post- transplant
Lefaucheur et al., 2013	Cohort (consecutive patients) Paris, FR 1998-2008	2,079 All ABOc and XM- Biopsies for indication in course of clinical care	Acute AMR 6.6%, occurring at median of 3.1 months post-transplant
Djamali et al., 2013	Cohort (consecutive patients) Madison, WI 2009-2011	146 "Moderately sensitized" (XM-, undergoing desensitization)	AMR 12% and mixed rejection 6% at mean follow-up 18 months
Malheiro et al., 2015	Cohort (consecutive patients) Single-center (Portugal)	462 (40 DSA+)	AMR 4% at 1-year post-transplant AMR in DSA+ KTx=35%
Vo et al., 2015	Cohort Single-center (US)	226 highly sensitized; desensitization with IVIG + rituximab	AMR 20% at mean follow-up 36 months
Burkhalter et al., 2016	RCT Single-center	35 patients DSA+, XM-	AMR (clinical/subclinical) 27% at 1-year post-transplant
Ferrandiz et al., 2016	Cohort Multicenter (France)	390 Non-HLA-sensitized, ABOc	AMR 4.4% at 1-year post- transplant
Calp-Inal et al., 2016	Cohort (consecutive patients) Single-center (US)	284, DSA-	AMR 45% at median follow-up of 2.5 years

Conventional Phase III Trial Fixed Design

Anticipated proportion of first occurrence of AMR at one-year post-KTx in Control: 9.0%; 95% CI=4.7%,16.5% Anticipated proportion of first occurrence of AMR at one-year post-KTx in Experimental: 1% to 8.0%

Power=80%

Type I error=0.05 (two-sided)

Test statistic: Chi-square

Key Considerations in Overcoming Challenges

- Goal: Design a trial with an acceptable compromise between (i) level of scientific evidence and (ii) feasibility in terms of trial size and duration
- Key considerations at the design stage:
 - Enrichment strategies
 - Adaptive Designs
 - Surrogate endpoints
 - Composite endpoints
 - Bayesian methods

Design Stage Enrichment Strategies

Antman, E. M. & Loscalzo, J. (2016) Precision medicine in cardiology *Nat. Rev. Cardiol.* doi:10.1038/nrcardio.2016.101

Design Stage Decrease Heterogeneity

- Include subjects that have certain characteristics that put them at risk
 - Example:
 - Class II HLA epitope mismatch
 - Patients likely to be medication compliant
- Characteristics need to be agreed to by the regulatory agency:
 - Example:
 - Quantitative measures of pre-transplant DSA levels
 - > pre-determined threshold value
- Limit the number of sites

Design Stage Prognostic Enrichment

- Select subjects with a greater likelihood of occurrence of AMR (event-driven study) or a substantial worsening of renal function (for continuous measurement endpoints e.g., change in estimated GFR)
- Characteristic or measurement process needs to be validated and agreed to by the regulatory agency

Risk of Antibody Mediated Rejection Highly Sensitized Patient

Positive Predictive Value (PPV) of RIS for ABMR Episodes

Vo et al., Transplantation 2015; 99: 1423-1430

Risk of Antibody Mediated Rejection Peak HLA DSA Risk Stratification

Lefaucheur et al., J Am Soc Nephrol 2010; 21: 1398-1406

Sample Size Under Prognostic Enrichment

Background Rate AMR	Relative Reduction in AMR with Treatment	Sample Size per Group ¹	Ratio
0.09	50%	487	1
0.20	50%	200	0.41
0.30	50%	121	0.25
0.40	50%	82	0.17
0.50	50%	58	0.12

1. Test statistic=Chi square; Power=80%; type I error=0.025 (one-sided significance)

Sample Size Under Prognostic Enrichment Peak Pre-transplant HLA-DSA¹

Relevant Event Rate Among Biomarker-Positive Patients

Input Name ²	Input Value
Background rate of any type of AMR	0.09
Percent reduction in AMR rate under treatment	50
Form of alternative hypothesis	one.sided
Type I error rate	0.025
Power	0.8
AUC	0.9

- 1. Lefaucheur et al., J Am Soc Nephrol 2010; 21: 1398-1406
- 2. Package 'BioPET' in R

Design Stage Predictive Enrichment

- Choosing people more likely to respond to treatment (probable responders)
- Based on:
 - patient characteristics related to a study drug's mechanism (pathophysiology, proteomic/genomic)
 - response of a biomarker
 - past response to the test drug (e.g., randomized withdrawal study)

	Response in Marker-negative Patients (0% of marker positive response)	
Prevalence of Marker Positive Patients	0%	50%
	Sample Size Ratio	Sample Size Ratio
100%	1.0	1.0
75%	1.8	1.3
50%	4	1.8
25%	16	2.6

Predictive Enrichment Adaptive population-enrichment

Bhatt DL, Mehta C. N Engl J Med 2016;375:65-74..

Design Stage Randomized Withdrawal Study

 Subjects receiving a test treatment for a specified time are randomly assigned to continued treatment or to placebo (i.e., withdrawal of active therapy)

Design Stage Three-stage Trial Design

Honkanen et al. Statist Med 2001; 20: 3009-3021

Biomarker/Surrogate Endpoints

- A biomarker intended to substitute for a clinical endpoint (patient and graft survival) and expected (is reasonably likely) to predict clinical benefit/outcome
- Easy to quantify and measure, reproducible, not subject to wide variation in the general population and unaffected by co-morbid factors
- Composite surrogate endpoints:

Biomarker/Surrogate Endpoints

Potential Surrogate Endpoints ¹	Issues	
Change in GFRGFR < 30 ml/min	 Timing? 1, month, 6 months or 1 year post-transplant Near term change may not be a good correlate with long-term allograft survival (5-,10-years?) 	
 Post-transplant DSA 	 Measurement - Reliability/Validity? Timing? Variable incidence Non-adherence potential confounder 	
Cd4 positive stain plus TG+Banff CG score	May not correlate with long-term allograft survivalPrognostic significance not clearly elucidated	

1. Archdeacon P et al., Am J Transpl 2011; 11:896-906.

What about a Composite Surrogate Endpoint?

Assumptions:

- Individual components of the composite are clinically meaningful and of similar importance to the patient
- The expected effects on each component are similar, based on biological plausibility
- The clinically more important components of composite endpoints should at least not be affected negatively

Advantages	Limitations	
 Statistical precision and efficiency 	 Individual components are not always clinically meaningful 	
 Trial are smaller and less costly 	 Problems of non-validated surrogate endpoints 	
 Results of promising therapies could be available earlier 	 Differential distribution of the individual components makes interpretation difficult 	
	 Including a component that is insensitive to treatment increases variability 	
	 Potential bias due to competing risks between endpoints 	

Kleist P. Applied Clinical Trials 2006

The Problem of Surrogate Endpoints

EXHIBIT 2

Additional Reasons For The Unreliability Of Proposed Surrogates: Disease Processes Having Multiple Causal Pathways And Interventions Having Mechanisms Of Action Independent Of The Disease Process

SOURCE: T.R. Fleming and D.L. DeMets, "Surrogate End Points in Clinical Trials: Are We Being Misled?" *Annals of Internal Medicine* 125, no. 7 (1996): 605–613.

Fleming TR. Health Affairs 2005; 24(1):67-78.

Summary

- Therapeutic development in AMR present many challenges:
 - Incomplete understanding of AMR to inform trial design
 - Need for alternatives to the traditional randomized controlled clinical trial
 - Requirement for more sensitive and creative outcome measures
 - Biomarkers/surrogate endpoints
 - Non-biologic measures such as time-off dialysis or Quality of Life
 - Difficulties of recruiting a small sample to participation:
 - Due to unpredictable occurrence of AMR
 - Recruiting a control group

Summary - cont'd

Solutions require:

- Multi-collaboration among stakeholders (Transplant community, Sponsors, Regulatory agency)
- Regulatory acceptance of biomarkers
- Creative or non-traditional endpoints
- Alternative trial designs e.g., adaptive, withdrawal, historical controls
- Leveraging existing resources (e.g., transplant registry, clinical trial data)

