Acute and Chronic AMR: A continuum or distinct diseases?

Robert B. Colvin, M.D. Massachusetts General Hospital Harvard Medical School Boston MA

FDA Workshop Antibody Mediated Rejection in Kidney Transplantation

> April 12, 2017 Silver Spring MD

Relevant Financial Disclosures

Consultant for Alexion, Shire (Leader of Central Pathology review)

My presentation does not include promotion of off-label use of drugs

Multiple Effects of Antibody

Hyperacute AMR

Acute AMR

Accommodation

Chronic AMR

"Smoldering" AMR

AMR = antibody mediated rejection

Banff Definitions

Acute AMR

Morphologic evidence of
 <u>acute</u> tissue injury, including at
 least one of the following:

 a. Microvascular inflammation
 (g>0 and/or ptc>0)
 b. Intimal or transmural arteritis
 (v > 0)
 c. Acute thrombotic
 microangiopathy
 d. Acute tubular injury

Chronic AMR

- 1. Morphologic evidence of <u>chronic</u> tissue injury, including at least one of the following:
 - a. Transplant glomerulopathy (cg >0 LM or EM)
 - b. Severe peritubular capillary basement membrane multilayering (EM)
 - c. Arterial intimal fibrosis of new onset

Endarteritis with neutrophils in acute AMR

Transplant glomerulopathy, glomerulitis GBM duplication, reactive endothelium

PTC Capillaritis, C4d+

Chronic AMR

Stages of Chronic Antibody Mediated Rejection

Wiebe et al AJT 2015

Differences

Acute AMR	Chronic AMR
Usually presensitized	Usually de novo DSA
	Association with TCMR
Rapid loss of function (days)	Insidious loss of function (months-years)
	Most cases not associated with acute AMR
Anti donor HLA class I or II	Anti-class II DSA common
Widespread C4d deposition common	Minimal C4d common
Capillaritis/glomerulitis neutrophils/mononuclears	Capillaritis/glomerulitis macrophages/NK

mRNA Differences

AMR: Presensitized DSA

Injury repair response

AMR:De Novo DSA

T cell transcripts NK transcripts IFNγ related transcripts

Aubert et al (Paris) JASN 2017

Why Different Effects of Antibody?

Hyperacute AMR

Acute AMR

Accommodation

Chronic AMR

* "Smoldering" AMR

AMR = antibody mediated rejection

Effector/Resistance Theory

Complement Fixation Theory

Graft survival worse with C1q fixing DSA <u>during first year</u> post-transplant (de novo or persistent)

DSA tested pretransplant, at time of graft dysfunction in first year or at one year protocol biopsy

Loupy NEJM 2013

Recipients with pre-existing DSA that fix complement (C4d) in vitro have higher risk of early AMR

Lawrence et al (Hammersmith) Transplantation 2013

Meta-analysis of 3485 indication and 868 surveillance biopsies

"Prognostically, the presence of C4d was associated with inferior allograft survival compared with DSA or histopathology alone."

Sapir-Pichhadze et al (Canada) Kidney Int 87: 182, 2015

doi: 10.1111/ajt.13434

Presentation and Outcomes of C4d-Negative Antibody-Mediated Rejection After Kidney Transplantation

B. J. Orandi¹, N. Alachkar², E. S. Kraus²,
F. Naqvi², B. E. Lonze¹, L. Lees³,
K. J. Van Arendonk¹, C. Wickliffe¹,
S. M. Bagnasco⁴, A. A. Zachary², D. L. Segev^{1,*}
and R. A. Montgomery¹

	C4d+	C4d-
Ν	156	51
Onset	14 d (8-32)	46 d (20-191)*
Graft dysfunction	85%	55%*
Graft loss at 1 yr	13.2%	6.6%
Risk of graft loss (vs no AMR)	3.7	2.56

*p<.001

C4d - = C4d 0 - 1 on IF, 0 on IHC

Mechanism Theory

Farkash and Colvin, Nat Rev Nephrol, 2012

AMR in Other Organs

AMR Common Features: Capillaritis, C4d+, Dilation

Common Features of AMR

	Kidney	Heart	Liver	Lung
Acute/Early				
Capillaritis	Peritubular, glomerular	Interstitial	Periportal	Alveolar
Capillary dilation	+	+	+	
C4d deposition	+/-	+/-	+/-	+/-
Endothelial activation	+	+	+	
Endarteritis	+ (also TCMR)	Not sampled	+	
Chronic/Late				
Capillary BM duplication	+			
Chronic arteriopathy	+	+	-	
Organ specific	Transplant glomerulopathy		Portal venopathy Portal tract fibrosis Sinusoidal fibrosis	

Summary

Acute AMR (early, type 1)

- usually due to presensitization, class I or class II
- rapid progression to renal failure (days)
- may be complement dependent (to be established)
- C1q fixing DSA and C4d deposition associated with more severe course

Chronic AMR (late, type 2)

- usually due to de novo DSA, related to class II antigens
- slow pace, subclinical
- progresses through stages over several years
- may be complement independent and related to NK/macrophage mediated mechanisms (to be established)

GENERAL HOSPITAL

Research Group Sandro Alessandrini R. Neal Smith Ivy Rosales Tricia Della Pelle Nicole Brousaides Catherine Adams Dorothy Ndishibandi Rebecca White Bernie Collins Chao Yang

Paul Russell

Clinical

Nina Tolkoff-Rubin Ben Cosimi Tatsuo Kawai Jim Markman Win Williams Elliot Heher Frank Delmonico Jay Fishman

Histocompatibility Susan Saidman Monkey Ben Cosimi Tatsuo Kawai **David Sachs** Gilles Benichou Joren Madsen Pig **David Sachs** Akira Shimizu Kazu Yamada **David Leonard**

Edmonton

Michael Mengel

Ben Adam

Grant Support: NIAID, NHBLI