











# The Next Generation of Product Performance Tools-**Combining Formulation Function with Effect**

Sid Bhoopathy, PhD **Chief Operating Officer** 



# **IDAS:** Biopharmaceutics Dissolution with Better *In Vivo* Correlation





- In Vitro Dissolution Absorption System combines traditional dissolution testing with a means to determine and quantify interactions with a bio-relevant membrane.
- Absorption, Biomarker Regulation, Metabolism

### Challenge

 Presenting a finished dosage form and maintaining reasonable SA/Volume ratio

### **Characterized and Validated System**

- Multiple Dissolution Media
- Over 20 compounds

### **Applications**

Formulations, Food Effects, Local GI



### **Application:** Formulation Comparison with Better *In Vivo* Correlation

#### Batch Release Data for Product A-Q value was similar for different manufacturers



#### **Dissolution for Compound B [BCS III]**



# Data using IDAS shows marked differences in AUC and % permeated for different manufacturers

| Product  | AUC<br>(0-2 hours) | % Permeation<br>(0-2 hours) |
|----------|--------------------|-----------------------------|
| FF15-025 | 7304.8 ± 407.1     | 2.33 ± 0.52                 |
| FF15-027 | 4001.3 ± 590.1*    | 0.25 ± 0.13*                |
| FF15-028 | 2166.1 ± 756.8*    | 0.51 ± 0.16*                |
| FF15-029 | 5043.8 ± 1157.7*   | 0.55 ± 0.35*                |
| FF15-030 | 6477.0 ± 1031.9    | 0.51 ± 0.16*                |

**IDAS Achieves Relevant Discrimination** 

- \*: *p* < 0.05
- The test product failed bioequivalence.
  The test product was below the 90% confidence interval for C<sub>max</sub> and AUC
- IDAS dual gated process



POTENTIAL

# **Application:** Food Effects with Better *In Vivo* Correlation

### **Effect of Food on Dissolution of Saquinavir Mesylate**[EXPECTED]



#### **Cause: Entrapment**

| Compound                                 | HBSS | FaSSIF  | FeSSIS  |
|------------------------------------------|------|---------|---------|
| Saquinavir<br>Mesylate<br>(BCS Class II) | 13%  | 80%     | 90%     |
| Minoxidil<br>(BCS Class I)               | N/B  | Minimal | Minimal |
| Atenolol<br>(BCS Class III)              | N/B  | Minimal | Minimal |
| Propranolol<br>(BCS Class I)             | 4%   | 44%     | 94%     |

### Effect of Food on Permeation of Saquinavir Mesylate [IDAS ADVANTAGE]



- Compound X, undergoes extensive first pass metabolism also demonstrates an increase in the AUC and a reduction in C<sub>max</sub> when administered orally with a high fat meal.
- Possibility of elucidating the interplay between food and first pass metabolism using a specialized bio-membrane.



# **Application:** PK & Local GI with Better *In Vivo* Correlation

#### **IDAS Achieves Relevant Discrimination**

Table 1. Comparison of in vitro IDAS results with in vivo human oral pharmacokinetics results

|                                                                           | Indomethacin | Submicron indomethacin | %Change |
|---------------------------------------------------------------------------|--------------|------------------------|---------|
| IDAS parameters                                                           |              |                        |         |
| k <sub>D</sub> (min <sup>-1</sup> )                                       | 0.330        | 1.371                  | 316     |
| k <sub>P</sub> (min <sup>-1</sup> ·cm <sup>-2</sup> , x10 <sup>-3</sup> ) | 2.282        | 2.967                  | 30.0    |
| D <sub>max</sub> (ng/mL)                                                  | 55325        | 64935                  | 17.4    |
| Human oral PK paramet                                                     | ters*        |                        |         |
| C <sub>max</sub> (ng·mL <sup>-1</sup> ·mg <sup>-1</sup> )                 | 47.39        | 59.22                  | 25.0    |
| AUC (ng·h·mL <sup>-1</sup> ·mg <sup>-1</sup> )                            | 155.2        | 152.8                  | -1.6    |

<sup>\*</sup> Adapted from literature reference (2) and dose normalized. 2016 AAPS AM; Poster #26W0130





