Industry Perspective on Application of Physiologically based Absorption Modeling in Generic Drug Research

> Amitava Mitra, PhD Clinical Development Sandoz Inc.

03-May-2017 Generic Drug Research Public Workshop FDA This presentation and the information herein are the opinions of the presenter, and not of the presenter's current and past employers

Use of PBPK Modeling in Drug Development

- Integration of all available in vitro and in vivo data to provide a more holistic view of formulation bioperformance
- Provides a more mechanistic understanding of in vitro formulation performance and bioperformance
- Allows exploration of multiple options in a much shorter timeframe and with fewer experiments

Application of Absorption Modeling in Development

Application of Absorption Modeling to Predict Bioequivalence	• Outcome of Two	
Batches of Etoricoxib Tablets BE Prediction Amitava Mitra, ^{1,3} Filippos Kesisoglou, ¹ and Peter Dogterom ²	Application of P Development of	hysiologically Based Absorption Modeling to Formulation a Low Solubility, Low Permeability Weak Base: Mechanistic
Mitra et al. AAPS PharmSci Tech. 16:76-84 (2015)	Hefei Zhang. ^{1,2} Binfeng	Food Effect Prediction
Physiologically Based Absorption Modelling to Predict the Properties on Pharmacokinetics of Bitopertin	Steven Novick, ¹ and A	Zhang et al. AAPS PharmSciTech. 15:400-406 (2014)
API Particle Size & Formulatic Neil Parrott, ^{1,4} Dominik Hainzl, ¹ Emmanuel Scheubel, ² Siegfried Krimmer, ² Chris Elena Guerini, ³ and Meret Martin-Facklam ³	on Effect	
Parrott et al. AAPS J. 16:1077-1084 (2014)	Utilizing Physi Inform Formu with pH-Dene	iologically Based Pharmacokinetic Modeling to lation and Clinical Development for a Compound undent Solubility
Application of Absorption Modeling in Rational Design of Dru Quality-by-Design Paradigm	JOHN CHUNG, ¹ MAURICE EMERY, ZHIGANG YU, ³ JAN WAHL	I with Stomach Acid Reducing Agents
GDG APPICATION Filippos Kesisoglou ^{1,2} and Amitava Mitra ^{1,2}		Chung et al. J Pharm Sci. 104:1522-1532 (2015)
Kesisoglou & Mitra. AAPS J. 17:1224-1236 (2015) Physi	ologically Bas	ed Absorption Modeling for Amorphous Solid
SIMULATION OF THE IN VIVO EX Disperimental D	Mitra,* Wei Zhu, ar	Amorphous Solid Dispersion
DANIELA ELEN. STĂNESCU ^{2*} , M Dissolution Changes BURCEA DRAGOMINOTO, DALIA SIMIONA MIRON, J	DREEA NDRU TLAVIAN	Mitra et al. Mol. Pharm. 13:3206-3215 (2016)

PBPK Models in Regulatory Submissions

The Utility of Modeling and Simulation in Drug Development and Regulatory Review

SHIEW-MEI HUANG, DARRELL R. ABERNETHY, YANING WANG, PING ZHAO, ISSAM ZINEH

Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland

Huang et al. J. Pharm Sci. 102(9):2912-23 (2013)

Best Practice in the Use of Physiologically Based Pharmacokinetic Modeling and Simulation to Address Clinical Pharmacology Regulatory Questions

P Zhao¹, M Rowland^{2,3} and S-M Huang¹

Zhao et al. Clin Pharm & Ther. 92:17-20 (2012)

Application of Physiologically Based Absorption Modeling for Amphetamine Salts Drug Products in Generic Drug Evaluation

ANDREW H. BABISKIN, XINYUAN ZHANG

Virtual Bioequivalence

- Use of physiological absorption model to predict the outcome of a BE study comparing test and reference formulations
 - Conduct "x" number of virtual trials in a model generated population in crossover manner to assess the outcome of a BE study
- Applications -
 - Predict outcome of formulation changes on BE outcome
 - Minimize the number of "pilot" PK studies
 - Provide more confidence in the outcome of a "pivotal" BE study

Possible Improvements in Current Absorption Models (not an exhaustive list...)

- Intra-individual variability in physiological parameters for accurate prediction of bioequivalence
- Better colonic absorption model (water volume & permeability) for accurate prediction of controlled release formulations
- Food effect ability to assess impact of high, medium, low fat/calorie meals
- Simultaneous input of 2 solubilities e.g. crystalline/amorphous, salt/free form, 2 polymorphs
- Apriori prediction of precipitation for weak bases and amorphous formulations
- Addition of UWL/mucus layer and impact on permeability
- Availability of models for specific populations (e.g. oncology)
- Etc...

Case Study 1: Virtual BE for Controlled Release Formulation

- BCS 1 compound
- Controlled Release formulation

USP-2, pH 6.8

Dissolution data fitted to double Weibull function

Single Simulations to Assess Formulation Performance

Fasted State

10⁻³

Simulation Time (h)

Ó

Simulation Time (h)

o

Simulation Time (h)

ó

Simulation Time (h)

Population Simulations to Assess <u>Fasted BE</u> Study between RLD and Test Tablets

- 10 population simulations were conducted in a cross-over manner with 25 subjects in each study
- The GMR & 90%CI were calculated separately

	AUC _{0-t} GMR (90% CI)	C _{max} GMR (90% CI)	AUC _{0-t} GMR (90% CI)	C _{max} GMR (90% CI)	
	Obse	erved	Predicted		
Test 1 vs. RLD	1.11 (0.99-1.23)	1.83 (1.67-1.98)	1.09 (0.91-1.18)	1.54 (1.23-1.77)	
Test 2 vs. RLD	0.86 (0.74-0.98)	1.02 (0.87-1.17)	0.95 (0.89-1.01)	1.10 (0.88-1.02)	
Test 3 vs. RLD	0.75 (0.63-0.87)	0.75 (0.59-0.91)	0.84 (0.77-0.99)	0.84 (0.70-0.95)	

Population Simulations to Assess <u>Fed BE</u> between RLD and the Test Tablets

	AUC _{0-t} GMR (90% CI)	C _{max} GMR (90% CI)	AUC _{0-t} GMR (90% CI)	C _{max} GMR (90% CI)	
	Obs	erved	Predicted		
Test 1 vs. RLD	1.29 (1.18-1.39)	2.07 (1.88-2.27)	1.20 (1.01-1.27)	1.85 (1.71-2.01)	
Test 2 vs. RLD	1.06 (0.95-1.17)	1.15 (0.96-1.35)	0.95 (0.89-1.19)	1.21 (1.05-1.41)	
Test 3 vs. RLD	0.82 (0.70-0.92)	0.72 (0.52-0.91)	0.88 (0.71-1.01)	0.92 (0.81-1.05)	

Projection of Pivotal BE Study in Fasted and Fed States

USP-2, pH 6.8

Outcome of 10 Virtual Trials for Each Formulation in Fasted State

		Trial 1	Trial 2	Trial 3	Trial 4	Trial 5	Trial 6	Trial 7	Trial 8	Trial 9	Trial 10	Average
	AUC											
PLD												
RED	C _{max}											
	AUC											
Test												
rest	C _{max}											

M&S Projections

	AUC _{0-t} GMR (90% CI)	Cmax GMR (90% CI)
Test vs. RLD (fasted)	0.86 (0.82-0.92)	0.88 (0.83-0.95)
Test vs. RLD (fed)	0.99 (0.95-1.04)	1.01 (0.97-1.06)

Observed BE Data

	AUC _{0-t} GMR (90% CI)	Cmax GMR (90% CI)
Test vs. RLD (fasted)	0.89 (0.85-0.99)	0.90 (0.86-0.95)
Test vs. RLD (fed)	1.00 (0.94-1.07)	0.99 (0.93-1.08)

Case Study 2: Dissolution Input for Prediction of BE for IR Product

Etoricoxib BCS II compound

pH 2.0 =25.1 mg/mL pH 3.07 = 2.01 mg/mL pH 4.01 = 0.3 mg/mL pH 5.03 = 0.09 mg/mL pH 6.9 = 0.05 mg/mL

Dissolution of etoricoxib tablets at three pH conditions

Assessment of the Model Performance against the Observed Clinical Data

Predicted Human PK & BE Study Outcome

M&S Projections

	AUC _{0-120 hr} (%CV)	C _{max} (%CV)	Relative AUC _{0-120 hr}	Relative C _{max}				
pH 2.0 dissolution								
120 mg (current site)	35.9 (15.8%)	1.81 (14.8%)						
120 mg (new site)	37.1 (15.3%)	1.85 (14.4%)	1.03	1.02				
pH 4.5 dissolution								
120 mg (current site)	34.4 (16.3%)	1.65 (18.6%)						
120 mg (new site)	35.8 (15.3%)	1.82 (14.4%)	1.04	1.10				
pH 6.8 dissolution								
120 mg (current site)	30.8 (17.2%)	1.50 (18.6%)						
120 mg (new site)	34.1 (15.1%)	1.71 (19.1%)	1.11	1.14				

Observed BE Results

	Treatment		Geometric Mean	90% Confidence	
PK Parameters	New Site	Current Site	(A vs. B)	(A vs. B)	
AUC _{0-∞} (μg*hr/mL)	$\textbf{32.3} \pm \textbf{13.1}$	32.1 ± 14.6	1.01	0.97, 1.06	
C _{max} (μg/mL)	1.94 ± 0.47	1.98 ± 0.41	0.97	0.89, 1.06	
T _{max} (hr)	1.25 (0.5-2.0)	1.00 (0.5-4.0)	_	_	

Dissolution at pH 2.0 is the most clinically relevant in this specific case

Conclusion

- Current industry experiences highlight the increasing value of PBPK modeling applications in drug development
- Use of PBPK modeling and simulation has been recommended and accepted by regulatory agencies
- There is tremendous potential for application of modeling tools in generic drug development
 - More publications are needed with examples of where it works & where it doesn't
 - An area to explore bioperformance of formulations that are not Q1/Q2 to RLD or get around formulations
 - Develop knowledge base of models that may be suitable for virtual BE trials
 - Complex dosage forms such as long acting injectables (suspension, implant)

Future Use of Virtual BE

- Expand BCS class waivers
- Do we do too many fed BE studies?
- Describe what happens in steady state BE study
- Describe what would happen in a steady state BE study in patients
- Conclude risk in patient population that are not studied

21

FDA

Slide courtesy of Rob Lionberger (FDA/CDER/OGD)

Presented at 2016 AAPS Annual Meeting (Role of PBPK based virtual trials modeling in generic product development and regulation)