GRAS Notice (GRN) No. 720

https://www.fda.gov/Food/IngredientsPackagingLabeling/GRAS/NoticeInventory/default.htm

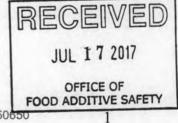
Innovative solutions Sound science

July 14, 2017

Dr. Susan Carlson Director, Division of Biotechnology and GRAS Notice Review Office of Food Additive Safety (HFS-200) Center for Food Safety and Applied Nutrition Food and Drug Administration 5100 Paint Branch Parkway College Park, MD 20740-3835

Subject: GRAS Notification - Rice Bran Wax

Dear Dr. Carlson:

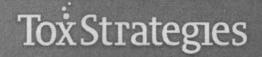

On behalf of The J.M. Smucker Co., ToxStrategies, Inc. (its agent) is submitting, for FDA review, a copy of the GRAS notification as required. The enclosed document provides notice of a claim that the food ingredient, rice bran wax, described in the enclosed notification is exempt from the premarket approval requirement of the Federal Food, Drug, and Cosmetic Act because it has been determined to be generally recognized as safe (GRAS), based on scientific procedures, for addition to select foods as a texturizer.

If you have any questions or require additional information, please do not hesitate to contact me at 630-352-0303, or <u>dschmitt@toxstrategies.com</u>.

Sincerely,

(b) (6)

Donald F. Schmitt, M.P.H. Senior Managing Scientist



ToxStrategies, Inc., 931 W. 75th St., Suite 137, PMB 263, Naperville, IL 50050 Office (630) 352-0303 • www.toxstrategies.com

GRAS Determination of Rice Bran Wax for Use in Specified Food Products

Ø 2008 ToxStrategies, Inc. All rights reserved.

JULY 14, 2017

Innovative solutions Sound science

GRAS Determination of Rice Bran Wax for Use in Specified Food Products

SUBMITTED BY:

The J.M. Smucker Co. 1 Strawberry Lane Orrville, OH 44667

SUBMITTED TO:

U.S. Food and Drug Administration Center for Food Safety and Applied Nutrition Office of Food Additive Safety HFS-200 5100 Paint Branch Parkway College Park MD 20740-3835

CONTACT FOR TECHNICAL OR OTHER INFORMATION

Donald F. Schmitt, MPH ToxStrategies, Inc. 931 W. 75th St., Suite 137, PMB 263 Naperville, IL 60565

JULY 14, 2017

Table of Contents

GRAS Determination of Rice Bran Wax for Use in Food	2
List of Acronyms	
§ 170.225 Part 1, GRAS Notice: Signed Statements and Certification	
(1) GRAS Notice Submission	
(2) Name and Address	
(3) Name of Notified Substance	
(4) Intended Use in Food	
(5) Statutory Basis for GRAS Determination	
(6) Premarket Approval Statement	
(7) Availability of Information	
(8) Data and Information Confidentiality Statement	
(9) GRAS Notice Certification	
(10) Name/Position of Notifier	
(11) FSIS Statement	
§ 170.230 Part 2, Identity, Method of Manufacture, Specifications, and Phys	
Technical Effect	
Identity	
Common or Chemical Names	
Manufacturing Process	
Product Specifications	12
Stability Data	
§ 170.235 Part 3, Dietary Exposure	
Purpose	
Food Uses	
Levels of Use	
Estimated Exposure	
§ 170.240 Part 4, Self-Limiting Levels of Use	21
§ 170.245 Part 5, Experience Based on Common Use in Food	
§ 170.250 Part 6, GRAS Narrative	
History of Use and Regulatory Approval of Rice Bran Wax	
Safety	
Introduction	
Absorption, Distribution, Metabolism, and Excretion (ADME)	
Animal Toxicological Studies on Rice Bran and Carnauba Waxes	
Allergy	
Other Safety Concerns	
Minor Components of Rice Bran Wax	
Basis for the GRAS Determination	
Introduction	
Safety Determination	
General Recognition of the Safety of Rice Bran Wax	

§ 170.250 Part 7, Supporting Data and Information
References

Appendix A Gas Chromatographs

Appendix B Analytical Results

Appendix C Stability Testing Results

Appendix D Intake Assessment Report

Exhibit I Report of the Expert Panel

List of Acronyms

ADI	Acceptable Daily Intake
ANS	Scientific Panel on Food Additives and Nutrient Sources (EFSA)
AOAC	Association of Official Agricultural Chemists
bw	body weight
С	Celsius
CAS	Chemical Abstracts Service
CFR	Code of Federal Regulations
cfu	colony-forming units
cGMP	current Good Manufacturing Practice
CIR	Cosmetic Ingredient Review
CONTAM	Panel on Contaminants in Food (EFSA)
EDI	estimated daily intake
EFSA	European Food Safety Authority
EPA	Environmental Protection Agency (US)
EC	European Commission
F	Fahrenheit
FAO	Food and Agriculture Organization of the United Nations
FCC	Food Chemicals Codex
FDA	Food and Drug Administration
FD&C	Federal Food, Drug, and Cosmetic Act
FDRL	Food and Drug Research Laboratory
FOIA	Freedom of Information Act
g	gram
GI	gastrointestinal
GMP	Good Manufacturing Practice
GRAS	Generally Recognized as Safe
GRN	GRAS Notification
INS	International Number System
JAOCA	Journal of Association of Official Agricultural Chemists
JECFA	Joint FAO/WHO Expert Committee on Food Additives
kg	kilogram
LD ₅₀	median lethal dose
LOQ	limit of quantification
max	maximum
meq	millequivalent
mg	milligram
ml	milliliter
μΜ	micromolar.
MOE	margin of exposure
ND	not detectable
NET-NID	National Eating Trends-Nutrient Intake Database
NHANES	National Health and Examination Survey

NLM	National Library of Medicine
NOAEL	no-observed-adverse-effect level
0	degrees
PCB	polychlorinated biphenyls
PCR	polymerase chain reaction
ppm	parts per million
REACH	Registration, Evaluation, and Authorisation of Chemicals
SCF	Scientific Committee on Food
TGA	Australian Therapeutic Goods Administration
US	United States
U.S.C	United States Code
USDA	U.S. Department of Agriculture
USP	U.S. Pharmacopeia
WWEIA	What We Eat in America
WHO	World Health Organization

§ 170.225 Part 1, GRAS Notice: Signed Statements and Certification

(1) GRAS Notice Submission

The J.M. Smucker Company (Smucker), through its agent ToxStrategies, Inc., hereby notifies the U.S. Food and Drug Administration (FDA) of the submission of a Generally Recognized as Safe (GRAS) notice for rice bran wax, and that the use of rice bran wax described below and which meets the specifications described herein is exempt from premarket approval requirements of the Federal Food, Drug, and Cosmetic Act, because Smucker has determined that such use is Generally Recognized as Safe (GRAS) through scientific procedures.

(2) Name and Address

The J.M. Smucker Co. 1 Strawberry Lane Orrville, OH 44667

(3) Name of Notified Substance

The name of the substance that is the subject of this GRAS determination is rice bran wax. Rice bran wax is a hard, crystalline vegetable wax obtained from rice husks. The rice bran wax is processed from rice bran oil obtained from rice husks, and is not hydrogenated. It primarily consists of high molecular weight monoesters ranging from C48 to C64.

(4) Intended Use in Food

Smucker proposes to use rice bran wax as a texturizing agent solely in peanut butter used in bar-form products. The intended use will allow peanut butter to be the primary ingredient in nutritional/snack bars with a similar form and texture to granola bars and nutritional/energy bars. The amount used will not exceed the amount reasonably required to accomplish its intended technical effect.

(5) Statutory Basis for GRAS Determination

The J.M. Smucker Company (Smucker), through its agent ToxStrategies, Inc., hereby notifies the FDA of the submission of a GRAS notice for rice bran wax, which meets the specifications described herein and has been determined to be GRAS through scientific procedures in accordance with § 170.30(a) and (b).

(6) Premarket Approval Statement

Smucker further asserts that the use of rice bran wax in food, as described below, is exempt from the pre-market approval requirements of the Federal Food, Drug, and

Cosmetic Act, based on a conclusion that the notified substance is GRAS under the conditions of its intended use.

(7) Availability of Information

The data and information that serve as the basis for this GRAS determination, as well any information that has become available since the GRAS determination, will be sent to the FDA on request, or are available for the FDA's review and copying during customary business hours from ToxStrategies, Inc., Naperville, IL.

(8) Data and Information Confidentiality Statement

None of the data and information in the GRAS notice is exempt from disclosure under the Freedom of Information Act, 5 U.S.C. 552.

(9) GRAS Notice Certification

To the best of our knowledge, the GRAS notice is a complete, representative, and balanced submission. Smucker is not aware of any information that would be inconsistent with a finding that the proposed use of rice bran wax in food that meets appropriate specifications and is used according to current Good Manufacturing Practices (cGMP), is GRAS. Recent reviews of the scientific literature revealed no potential adverse health concerns.

(10) Name/Position of Notifier

(b) (6)

Donald F. Schmitt, M.P.H. Senior Managing Scientist ToxStrategies, Inc. Agent for Smucker 07/14/2017

(11) FSIS Statement

Not applicable.

§ 170.230 Part 2, Identity, Method of Manufacture, Specifications, and Physical or Technical Effect

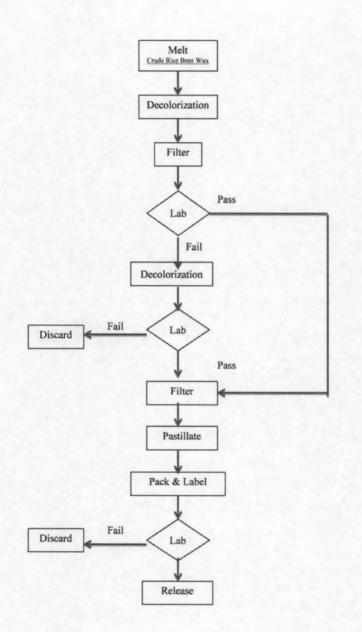
Identity

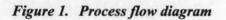
Rice bran wax is a hard, crystalline vegetable wax obtained from rice husks. It primarily consists of high molecular weight monoesters ranging from C48 to C64. See Appendix A for Gas Chromatographs identifying peaks for this ingredient. Rice bran wax is typically yellow to light brown in color with a melting point of 75 - 85.5°C. The rice bran wax under review is processed from rice bran oil obtained from rice husks, and is not hydrogenated.

Common or Chemical Names

The ingredient under consideration is referred to as *Oryza sativa* (rice) bran wax, rice bran wax, or rice bran wax beads. The Chemical Abstracts Service (CAS) number for rice bran wax is 8016-60-2. The International Numbering System (INS) or E number is 908.

Manufacturing Process


The rice bran wax that is the subject of this GRAS determination originates from rice husks. The rice bran wax is manufactured following current cGMP for food. The flow diagram of the manufacturing process presented in Figure 1 follows the narrative description below and results in an ingredient in compliance with the manufacturer's and Food Chemicals Codex (FCC) specifications.


The starting material, crude rice bran wax, is weighed and added to a clean melt tank and melted. During this process, settling separates out the non-rice bran wax solids. Next, the melted rice bran wax is transferred to a tank containing one or more safe and suitable decoloring agents, and the wax is mixed and recirculated in the tank. Prior to continuing on to the filter process, a filter medium consisting of common and approved processing aids used in food manufacturing processes (see Table 1) is added. Once the filtering medium is adequately incorporated, the mixture is sent through the filter press and then back into the tank until the wax becomes clear. Once the wax is clear, a sample is collected and sent to the laboratory for aesthetics (color and odor) testing. If the wax does not meet aesthetics specifications, it is pumped into another tank, and cooling water is turned on, a safe and suitable decoloring agent is added, and the temperature is raised in a controlled manner in order to remove the decoloring agent. A sample is again collected and tested for compliance with aesthetic (color/odor) specifications. If the wax meets the aesthetic specification (either with the first or second lab result), it is filtered through a cartridge filter and sent on to the pastillating step (i.e., process of pelleting into uniform half spheres). If the wax is tested twice and fails, it is discarded. Once pastillated, the wax is sampled for quality testing, packaged, and labeled. The finished ingredient that passes

all quality control measures is released for sale and placed into inventory. If a sample fails established quality parameters, the wax is discarded.

Processing Aid	CAS No.	CFR Reference
Activated Carbon	7440-44-0	21 CFR §173.25; 21 CFR §173.165
Silicon Dioxide	7631-86-9	21 CFR §172.480
Citric Acid	77-92-9	21 CFR §184.1033
Bentonite	1302-78-9	21 CFR §170.3
Diatomaceous Earth	68855-54-9, 91053-39-3, or 61790-53-2	21 CFR §172.820; 21 CFR §172.886

Table 1. Processing aids

Product Specifications

Food-grade specifications and the assays/methods used for the analysis of rice bran wax (wax #224P) are presented in Table 2 below. A comparison of three non-consecutive lots of rice bran wax to the specifications below can be found in Table 3. The specification for total arsenic in Table 2 is 0.2 ppm, and all analyzed lots were below the limit of quantitation for total arsenic of 10 ppb. Given a projected 90th percentile intake of rice bran wax of approximately 0.1-0.2 grams per day (see Table 6) and applying the limit of quantification (LOQ) of 10 ppb (10 µg/kg) as being present in rice bran wax, the estimated daily total arsenic intake is approximately $0.001-0.002 \mu g/person/day$, and the inorganic arsenic intake a small percentage of that estimate. Therefore, the intake of total and inorganic arsenic from the intended use of rice bran wax is negligible and would not be expected to contribute to the background dietary intake of arsenic. In addition, inorganic arsenic is water soluble, and thus, the manufacturing process of rice bran wax will remove most of the inorganic arsenic. It should be noted that numerous other analyses of the final ingredient are conducted but are not included in the ingredient specifications (e.g., other physical/chemical properties, trace component analyses including additional pesticides, mycotoxins, polychlorinated dibenzo-p-dioxins, polychlorinated dibenzofurans, and dioxin-like polychlorinated biphenyls [PCBs]). Additional tests for other quality measures and contaminants are included in Table 4. Analytical results for the three non-consecutive lots of rice bran wax are provided in Appendix B.

Parameter	Specification	Assay/Analytical Method	
Melting point	75.0 – 85.5 °C	USP 741, Class II	
Acid value	≤13	USP 401	
Saponification value	75 - 120	USP 401	
Peroxide value	$\leq 20 \text{ meq/kg}$	Koster Keunen 205	
Gas chromatography	Conforms to Standard	Koster Keunen 208	
Iodine value	≤ 20.0	USP 401	
Color	Yellow to Light Brown	Visual	
Total arsenic	0.2 ppm max	AOAC 984.27 Mod ¹ ., 2015.01 Mod ² , 993.14 Mod.	
Cadmium	0.4 ppm max	AOAC 984.27 Mod ¹ ., 2015.01 Mod ² , 993.14 Mod.	
Lead	0.2 ppm max	AOAC 984.27 Mod ¹ ., 2015.01 Mod ² , 993.14 Mod.	
Mercury	0.1 ppm max	AOAC 984.27 Mod ¹ ., 2015.01 Mod ² , 993.14 Mod.	
Hexane	1 ppm max	GC Headspace	

Table 2. Ingredient specification for rice bran wax

¹Modified method

²Analysis performed with an open vessel microwave system with a hot plate digestion process, followed by analysis on ICP-MS. A specific spike is incorporated for the heavy metal being analyzed (e.g., arsenic). In addition, one internal standard (rhodium 203) is incorporated. An arsenic spike is incorporated for every batch of wax and justifies the digestion efficiency; also a blank sample is used to show there is no contamination, and an internal standard incorporated to monitor for analytical errors.

		Result 1	Result 2	Result 3	
Parameter	Specification	Lot 18940	Lot 20033	Lot 20048	
Melting point	75.0 – 85.5 °C	82.0	82.0	82.0	
Acid value	≤ 13	1.8	0.6	0.6	
Saponification value	75 - 120	78	81	77	
Peroxide value	\leq 20 meq/kg	16	2	2	
Gas chromatography	Conforms to Standard	Pass	Pass	Pass	
Iodine value ^a	≤ 20.0	Pass	Pass	Pass	
Color	Yellow to Light Brown	Pass	Pass	Pass	
Total arsenic	0.2 ppm max	ND	ND	ND	
Cadmium	0.4 ppm max	ND	ND	ND	
Lead	0.2 ppm max	0.02	ND	0.01	
Mercury	0.1 ppm max	ND	ND	ND	
Hexane	1 ppm max	ND	ND	ND	

Table 3. Analytical results of three lots of rice bran wax compared to ingredient specification

ND=not detected

^aIodine value is measured prior to refining on incoming lots; refining will only lower the iodine value. The result is reported as passing since the final value may only be lower than the measured value and the specification for raw incoming wax is ≤ 20 .

	Result 1	Result 2	Result 3 Lot 20048	
Parameter	Lot 18940	Lot 20033		
Microbiological				
Aerobic plate count	10 cfu/g	<10 cfu/g	<10 cfu/g	
Coliform, plate count	<10 cfu/g	<10 cfu/g	<10 cfu/g	
E. Coli, plate count	<10 cfu/g	<10 cfu/g	<10 cfu/g	
Listeria genus (PCR)	Negative	Negative	Negative	
Mold	<10 cfu/g	<10 cfu/g	<10 cfu/g	
Salmonella (PCR)	Negative	e Negative		
Yeast	<10 cfu/g	<10 cfu/g	<10 cfu/g	
Mycotoxins				
Aflatoxin B ₁	ND	ND	ND	
Aflatoxin B ₂	ND	ND	ND	
Aflatoxin G ₁	ND	ND	ND	
Aflatoxin G ₂	ND	ND	ND	

Table 4. Quality control parameters or residual contaminants for non-consecutive lots of rice bran wax

ND = not detected

The rice bran wax under consideration is yellow to light brown colored pastillates with a melting point of 75.0–85.5 °C. The USP Food Chemicals Codex (FCC) and 21 CFR § 172.890 contain a specification for rice bran wax and a comparison of the proposed rice bran wax ingredient (wax #224P) and the FCC specification is provided in Table 5. The rice bran wax product under consideration meets FCC specifications, with the exception of melting-point range. Rice bran wax is obtained by winterization/ separation from rice bran oil, and the melting point of the wax is typically determined by the degree of separation between the rice bran oil and the wax. Since the establishment of the FCC specification, methods for separating rice bran wax from rice bran oil have been improved, such that less rice bran oil is now present in the crude rice bran wax. As a result, these improvements can produce slightly increased melting points for rice bran wax.

15

Parameter	Rice Bran Wax (#224P) Specification	FCC Specification	
Melting point	75.0 – 85.5 °C	75.0 – 80.0 °C	
Free fatty acids content	<9.2% (equivalent to \leq 13 acid value)	10% max	
Saponification value	75 - 120	75 - 120	
Iodine value	≤20	≤ 20.0	
Lead	0.2 ppm max	3 ppm max	

Table 5. Ingredient specifications compared to FCC specifications for rice bran wax

The specifications for rice bran wax also include a parameter for acid value as a substitute for the FCC measurement of percent free fatty acids. Acid value is an FCC-published method for fats and related substances and is appropriate for the indication of the free fatty acid content of rice bran wax. Specifically, acid value is reported to be the milligrams of potassium hydroxide (KOH) required to neutralize 1 gram of material (rice bran wax). Hence, an acid value of 13 (maximum) specifically means that it should require less than 13 mg of KOH to neutralize one gram of rice bran wax (see Appendix B for conversion formula).

The analytical (physical, chemical, and microbiological) results for rice bran wax summarized in the above tables and included in the certificate of analyses in Appendix B confirm that the ingredient meets the proposed analytical specifications and demonstrates the consistency of production. The analytical results also confirm the lack of impurities/contaminants (e.g., heavy metals, pesticides, mycotoxins, polychlorinated dibenzo-p-dioxins, polychlorinated dibenzofurans, and dioxin-like PCBs).

Stability Data

Rice bran wax is stable at normal storage and use temperatures. Stability tests, based on acid values, have shown that the rice bran wax ingredient has a shelf life of two years past the date of manufacture, if stored under proper conditions. Stability test data can be found in Appendix C.

§ 170.235 Part 3, Dietary Exposure

Purpose

Smucker is proposing to use rice bran wax as a texturizing agent in peanut butter used in bar products. The intended use will allow peanut butter to be the primary ingredient in nutritional/snack bars with a similar form and texture to granola bars and nutritional/energy bars.

Food Uses

The intended use of rice bran wax is solely in peanut butter used in bar products and results in bar-form products with a form and texture similar to granola and nutritional energy bars. There are no proposed uses of rice bran wax in food products under USDA jurisdiction.

Levels of Use

The proposed rice bran wax will be used at levels up to 3%.

Estimated Exposure

The proposed use of rice bran wax is as a texturizing agent solely in peanut butter in barform products, allowing peanut butter to be the primary ingredient in granola-based bar products that include cereal bars, breakfast bars, cookies and biscuits, nutritional bars, and energy snack bars with similar form and texture.

The US FDA's Office of Food Additive Safety, in the Center for Food Safety and Applied Nutrition, has performed a dietary exposure estimate of rice bran wax intake from nutritional and energy bars based on its new proposed use in foods using two different approaches (FDA, 2017). The outcome of this assessment was made available to ToxStrategies for review in response to a Freedom of Information Act request (FOI Request No. 2017-4008). While some of the data used in this assessment are proprietary, and therefore not available to the Expert Panel for review, they are appropriate for consideration as "other information available to FDA.¹"

The first intake estimate determined by FDA was based on two-day average intake data obtained from the What We Eat in America" (WWEIA) National Health and Nutrition Examination Survey (NHANES). The estimates prepared by FDA based on NHANES data for the EDI of rice bran wax were 0.01 and 0.03 g/kg-bw/day, respectively, for the mean and 90th percentile in the population aged 2+ years. However, as stated by FDA

Per the description provided in *Table 1. Categories of Letters Responding to a GRAS Notice During the Interim Pilot Program* and *Table 20. Categories of Letters Responding to a GRAS Notice under the Final Rule*, presented in the <u>Federal Register Notice of GRAS Final Rule</u>; Substances Generally Recognized as Safe (Implemented on October 17, 2016). 81 FR 54959, August 17, 2016.

(2017) in its memorandum, the available information suggests that the bars included in the assessment are eaten infrequently. As such, the two-day survey data "are likely to significantly overestimate the actual consumption."

In order to prepare a more appropriate estimate of intake, FDA conducted a second assessment using longer term survey data, which more accurately reflect intake of these bars. To do so, 10- to 14-day dietary recall data from the NPD Group, Inc.'s, National Eating Trends-Nutrient Intake Database (NET-NID) were used. Using the longer-term survey data, FDA estimated the daily average mean and 90th percentile dietary intakes of rice bran wax to be 0.003 and 0.005 g/kg-bw/day, respectively, for ages 2+ years. For the 2- to 5-year-old population, the EDIs of rice bran wax were determined to be 0.007 and 0.014 g/kg-bw/day, respectively (Table 6). Importantly, the analysis by FDA included any and all bars, and as such, is very conservative, and results in an overestimate of the actual consumption.

In addition, ToxStrategies, Inc. (ToxStrategies), has conducted an intake assessment incorporating an estimated market share to provide supplemental information related to the mean and 90th percentile daily intake of the ingredient rice bran wax. The results of this intake estimate were similar to that of the FDA described above. It was assumed for the purpose of the estimate that such unique bars would replace 10% of the bars currently consumed, reflecting a very high assumed future market share, in order to produce conservative (high) estimates of potential rice bran wax consumption. The approach and outcome of this supplemental intake assessment are provided in Appendix D. One potential limitation of the method used here for determining the EDI of rice bran wax is the impact of brand loyalty, or the tendency of an individual to repeat the purchase of a specific brand or product (Arcella and Leclerg, 2005; Leclercg et al., 2003). Leclercg and colleagues (2003) have conducted a study to investigate the impact of incorporating indicators of market share and brand loyalty into intake modeling, using intense sweeteners as an example. While the authors concluded that market share information should generally be included in the model, they found that both parameters-market share and brand loyalty-influenced the intake estimates at the 95th percentile. Without the availability of information regarding brand loyalty to incorporate into the analysis for rice bran wax, it is not possible to ascertain whether the EDI may have been over- or underestimated at the 90th percentile.

Table 6. Estimated daily intake for rice bran wax (g/day and g/kg BW/day) at a 3% use level as Reported by FDA (2017)

	EDI <i>per User</i> (g/day)		EDI per User (g/kg BW/day)	
Nutrition/Snack Bar	Mean	90th Percentile	Mean	90th Percentile
US Population, Ages 2+				
Rice bran wax consumption	0.1	0.2	0.003	0.005
US Population, Ages 2–5				
Rice bran wax consumption	0.1	0.2	0.007	0.014

Background Levels

As stated previously, rice bran wax is permitted as a direct human food additive when used in candy (maximum 50 ppm as a coating), fresh fruits and fresh vegetables (maximum 50 ppm as a coating), and chewing gum (maximum 2.5% as a plasticizing material in gum base) (21 CFR § 172.890).

The background exposure to rice bran wax from its approved uses in gum, candy, and fresh fruit and fresh vegetables is estimated to be approximately 0.1 g/day, about half of which is estimated to come from fresh fruit/vegetables and the other half from chewing gum. The estimate is based on reported consumption levels for chewing gum (approximately 30 mg/kg/day for a 60-kg individual or 1.8 g gum/day), candy (mean intake of approximately 40 g candy/day), and fresh fruit and fresh vegetables (approximately 900 g fruits and vegetables/day) (Revolymer Limited, 2011; Cook, 2011; Orlich et al., 2014; Shumow et al., 2012). Given the approved 2.5% maximum use level in chewing gum, the background exposure estimates for rice bran wax from its use in chewing gum would be higher for heavy users of chewing gum (estimated to be on the order of 2-3x) as compared to mean intake estimates. Therefore, the background exposure to rice bran wax from current approved uses is estimated to be as high as 0.2–0.3 g/day. The non-food use of rice bran wax in lipstick at a concentration of approximately 1% results in an extremely low level of oral consumption and does not add significantly to the background level of exposure to rice bran wax. Loretz et al. (2005) conducted a study of consumers and reported that the mean use of lipstick was 0.024 mg/day. Given a 1% concentration level and complete ingestion of the applied lipstick, the mean daily ingestion of rice bran wax from lipstick would be approximately 0.00024 g/day, or 240 µg/day, much lower than the daily intakes estimated for the current approved uses of rice bran wax. Of note, the 90th percentile estimated exposure from the rice bran wax bar is 0.1-0.2 g/day, similar to the calculated background exposure. Thus, the total contribution of rice bran wax would be insignificant for something as inert as rice bran wax.

We believe this background exposure estimate is extremely conservative given that other waxes are more commonly used as confectionery coatings (e.g., carnauba wax) and as a coating for fruits and vegetables and alternative waxes and plasticizers are approved and used in chewing gum base in the U.S. In addition, it is generally acknowledged that waxes and plasticizers in gum base remain with the gum cud during chewing and are not released and subsequently ingested.

§ 170.240 Part 4, Self-Limiting Levels of Use

The use of rice bran wax in foods is considered to be self-limiting for technological reasons, such as product texture and/or flavor profile, either of which could affect consumer acceptability.

§ 170.245 Part 5, Experience Based on Common Use in Food

The statutory basis for our conclusion of GRAS status in the notice is not based on common use in food.

§ 170.250 Part 6, GRAS Narrative

History of Use and Regulatory Approval of Rice Bran Wax

Rice, brown rice, and their derivatives have a long history of human consumption, with rice cultivation documented back to prehistoric times, starting in Asia and eventually spreading across Europe around the sixth century (Burlando and Cornara, 2014). Currently, rice is produced on most continents and serves as a dietary staple for many populations across the world (Burlando and Cornara, 2014). Once harvested, the rice is hulled and the resulting brown rice can be further processed to generate derivatives such as rice bran oil, rice bran extract, and hydrolyzed rice protein. As referenced in the manufacturing process outlined above, rice bran wax comes from the bran, which is the part between the husk and endosperm of rice, and is a byproduct of bran oil (Burlando and Cornara, 2014; Andersen, 2006; Sabale et al., 2007). Rice bran wax is used in food as a release agent, brightener, coatings for confectioneries, chocolates, cakes, and tablets, treatment of vegetables and fruits and as a plasticizing material for chewing gum base.

Rice bran wax (CAS No. 8016-60-2) has been approved for use in various food applications in the US. It is permitted as a direct human food additive (21 CFR §172.890) when used in candy (maximum 50 ppm as a coating), fresh fruits and fresh vegetables (maximum 50 ppm as a coating), and chewing gum (maximum 2.5% in gum when used as a plasticizing material in chewing gum base, 21CFR §172.615). It is also permitted as an indirect food additive as Type VIII in table 1of 176.170(c), at a maximum level of 1.0 percent by weight of the polymer. After reviewing the available safety data, the Cosmetic Ingredient Review (CIR) Expert Panel concluded that rice-derived ingredients, including rice bran wax, are safe as cosmetic ingredients (e.g., 1% in lipstick) in the practices of use and concentrations as described in their safety assessment (Andersen, 2006). In addition, rice bran wax is eligible for use as active ingredients or excipients in listed medicines in Australia, with no restrictions (Australian Government, 2007).

Safety

Introduction

The major components of most plant- and animal-derived waxes are esters of long-chain aliphatic alcohols and acids with carbon chain lengths spanning C16–C40 (Krendlinger et al., 2002; Vali et al., 2005). Rice bran wax is a hard, crystalline vegetable wax obtained from rice husks that primarily consists of high molecular weight monoesters ranging from C48 to C64 (Appendix A). As shown in Table 7, the majority (87%–98%) of the rice bran wax components are these monoesters; the remaining components (2-13% total) of the rice bran wax product consist of free long-chain fatty alcohols, free long-chain fatty acid, or triglycerides from rice bran oil (Table 7; Appendix A). The long-chain fatty acid esters present in plant-based waxes such as rice bran wax are generally thought to be poorly absorbed in the gastrointestinal (GI) tract (EFSA, 2012a,b) as uptake of wax esters decreases as chain length and hydrophobicity increase (Hargrove et al., 2004). While some species have adapted to the use of these esters as energy sources, humans are

thought to be inefficient at this process (Hargrove et al., 2004). When limited hydrolysis of the long-chain fatty monoesters in waxes such as rice bran wax does occur, the resulting long-chain fatty acid and fatty alcohol products have been shown to be incorporated into normal cellular metabolic pathways (Hargrove et al., 2004; Place, 1992).

While some toxicological data are available for rice bran wax, information on its main constituents and other plant-based waxes with similar chemical structures, and thus similar potential for absorption, were also evaluated as part of the GRAS assessment. These oils and waxes are composed of the same primary monoester constituents as rice bran wax, and have been shown to have the same absorption, metabolism, and excretion properties (Table 7). A similar approach has been taken for the evaluation of other plantbased waxes. In 2007, the European Food Safety Authority (EFSA, 2007) applied a similar approach for beeswax, bridging safety data from main constituents and other similar waxes. In this assessment, the EFSA Panel "noted that experimental biochemical and toxicological studies carried out specifically on beeswax were still lacking and considered that the data on beeswax itself were insufficient to establish an Acceptable Daily Intake (ADI). However, the Panel concluded that the safety of beeswax could be assessed, based on the available scientific literature on the main constituents of beeswax and plant waxes showing chemical structural similarities to beeswax, published since the last SCF evaluation." The Panel concluded that "the use of beeswax as an additive for the existing food uses and the proposed new food use is not of safety concern." EFSA also applied a similar approach to candelilla wax in their 2012 assessment (EFSA, 2012c).

Therefore, toxicity studies conducted on carnauba wax, candelilla wax, beeswax, lanolin wax, and jojoba wax (also known as jojoba oil, see Table 7) were identified and deemed suitable for inclusion in the safety assessment of rice bran wax and considered by the Expert Panel in its evaluation. An overview of the composition of the waxes considered in this assessment, including their respective fatty alcohol and fatty acid carbon chain lengths, is presented in Table 7. Jojoba wax consists almost entirely of long-chain monoesters (97%), and is therefore directly comparable to the primary component of rice bran wax (87%-98% monoesters), providing toxicological data specific to this fraction. Carnauba wax, candelilla wax, beeswax, and lanolin wax also have a large fraction of these monoesters and so provide additional safety information related to these components. Importantly, minor components present in rice bran wax (e.g., free fatty alcohols, free fatty acids) are present in one or more of these waxes at higher concentrations, thus providing additional safety information on these constituents. However, these waxes also contain various other constituents not relevant to rice bran wax that may impart toxicities of their own or may be of unknown toxicity. As such, these other waxes are considered appropriate and conservative comparators to rice bran wax, which is purer and consists almost exclusively of esters or their fatty acid and alcohol components, as demonstrated in Table 7.

In addition, chain length and saturation have been shown to predict physio-chemical behavior of waxes and oils, including their potential for toxicity (EFSA, 2007; Maru et al., 2012; Smith et al., 1996). As demonstrated by Smith et al. (1996), the potential for toxicity of waxes decreases with increasing chain length. This paper reports on

subchronic 90-day feeding studies conducted on a variety of waxes (paraffinic in origin) (Smith et al., 1996). In this study, seven white oils and five waxes were administered to male and female Fischer-344 rats in the diet at doses up to 20,000 ppm (equivalent to 1,850 mg/kg-bw/day). The results of these studies demonstrated a decrease in incidence and severity of adverse effects as molecular weight of the various waxes increased. While systemic exposure to lower weight waxes resulted in effects such as increased organ weights and inflammatory changes of the liver and mesenteric lymph nodes. These effects were reduced in severity for other waxes as chain length increased, and no adverse or biological effects were observed following exposure to the highest molecular weight waxes. Of the waxes evaluated in this GRAS assessment, rice bran wax contains the longest alcohol and acid chain lengths and has one of the largest monoester fraction (comparable to jojoba) and thus would be the least bioavailable, positioning it to have the least potential for toxicity. Thus, any negative findings in safety studies conducted with carnauba wax, candelilla wax, beeswax, lanolin wax, or jojoba wax can be confidently extended to the more inert rice bran wax.

Taken together, the available data on these various waxes provides sufficient information to assess the safety of rice bran wax and its constituents for its intended use.

Wax	Alcohol and Acid Chain Length Distribution (C-number)	Monoesters (%)	Other (%)	Reference(s)
Rice bran wax ^A	16-40	87-98	Free alcohols (0-13) Free acids (0-13) Triglycerides from rice bran oil (0-13)	Andersen, 2006; Appendix A; Vali et al., 2005; Warth, 1956
Carnauba wax	16-36	38-85	Free alcohols (2-33) Free acids (3-7) Diesters of 4-hydroxycinnamic acid (20-23) Esters of ω -hydroxycarboxylic acids (12-14) Diesters of 4-methoxycinnamic acid (5-7) Free aromatic acids (1) Hydrocarbons (paraffins) (0.3-1) Free ω -hydroxycarboxylic acids (0.5) Triterpene diols (0.4-0.5) Lactides (2-3) Aromatics and/or resins (4.4)	Appendix A; Bagby, 1988; EFSA 2012b; Krendlinger et al., 2002; Warth, 1956
Candelilla wax	22-34	39	Free alcohols (5) Free acids (8) Hydrocarbons (42-50) Lactones (6) Free wax resin acids (8)	Bagby, 1988; EFSA, 2012c; Krendlinger et al., 2002
Beeswax	16-36	40-80	Free alcohols (<0.3-0.6) Free acids (1-18) Paraffins (10–20) Diesters (7-16) Hydroxydiesters (3.9) Hydrocarbons (11-28) Other (4-8)	Bagby, 1988; EFSA, 2007; Krendlinger et al., 2002; JECFA, 2006
Lanolin wax	14-34	48	Free acids (3.5) Sterol esters (33) Free sterols (6) Lactones (3.5) Hydrocarbons (1-2)	Krendlinger et al., 2002; Sengupta and Behera, 2014
Jojoba wax ^B	16-26	97	Free alcohols (1-1.1) Free acids (1) Sterols (<0.5-0.9) Tocopherols (0.05)	Bagby, 1988; Becker, 2008; EPA, 1995; Krendlinger et al., 2002; Miwa, 1971

 Table 7.
 Typical composition of the waxes considered in this assessment, including their respective fatty alcohol and fatty acid chain length distributions

^AAs rice bran wax is a natural product, its composition can vary. As an example, and as shown in Appendix A, batch #3906 contains 11.68% fatty alcohols and acids, 86.73% monoesters, and 1.29% rice bran oil.

^BJojoba oil is typically defined as a "liquid wax" or "liquid wax ester" due to its chemical composition (EPA, 1995; Krendlinger et al., 2002). Composition and chemistry information are combined from references listed in the table for each respective wax. Test materials listed in the Safety Section are as defined by each study author.

Absorption, Distribution, Metabolism, and Excretion (ADME)

Overview

As described above, wax esters are defined as long-chain fatty alcohols esterified to longchain fatty acids (Krendlinger et al., 2002; Place, 1992). The bioavailability of wax esters and their constituents in the GI tract depends primarily on the rate of intestinal hydrolysis, and less so on potential re-synthesis of esters from free fatty acids or alcohols (Hargrove et al., 2004). Hydrolysis of wax esters requires a pancreatic lipase or other carboxyl esterase; however, this process is slower in mammals compared to other species, rendering it the rate-limiting factor (Place, 1992). This limitation is partially due to the hydrophobic nature of the wax surface, which makes it a poor substrate for the enzymes. As with physical properties of waxes such as melting point, melt viscosity, and hardness, the rate of uptake is thought to decrease as chain length and hydrophobicity increase (Hargrove et al., 2004; Krendlinger et al., 2002). As such, the long-chain fatty acid esters present in plant-based waxes such as rice bran wax and other waxes included here are generally thought to be poorly absorbed in the GI tract (Hargrove et al., 2004; Place, 1992). Any limited hydrolysis of the long-chain fatty monoesters in rice bran wax and other plant-based waxes would result in the corresponding long-chain fatty acid and fatty alcohol products.

Once released from the wax esters, long-chain free fatty acids and alcohols are absorbed by passive membrane permeation; more recent evidence suggests that uptake may also occur via a fatty acid carrier (Hargrove et al., 2004). The resulting free fatty alcohols are then oxidized into the corresponding fatty acids or incorporated into the synthesis of phospholipids; the fatty acids have been shown to be incorporated into normal cellular metabolic pathways (Hargrove et al., 2004). In addition to limited efficiency in hydrolyzing the wax esters, the ability to oxidize to fatty alcohols is also limited in mammals (Place, 1992).

Available Studies

2

The objective of Hamm (1984) was to determine whether jojoba oil could act as a replacement for conventional edible fats and oils, to reduce the calories in food. To determine the caloric availability, young male Sprague Dawley rats were randomized into groups of 10 animals and fed either a 5-g basal diet or a 5-g basal diet supplemented with either 0.5, 1.0, 2.0, or 3.0 g (equivalent to 10,000, 20,000, 40,000, or 60,000 mg/kg-bw/day, respectively²) jojoba oil, corn oil, or trialkoxytricarballylate. The lower dose groups (0.5 and 1.0 g) were tested for 7 days, while the higher dose groups were tested for 4 days. The jojoba oil was reported to be poorly absorbed due to observed excretion of oils; the authors suggested it was resistant to digestion *in vivo*. Additional findings of this study are described in the Repeated Exposure Toxicity section below.

Equivalent doses calculated based on assuming an animal weight of 0.1 kg and food consumption of 10 g per day per animal (EFSA, 2007, 2012c).

In another study, rats were given oleyl palmitate (C-34 ester) in the diet to investigate effects such as seborrhea; however, information on the digestibility and absorption of the wax esters was also generated (Hansen and Mead, 1965). In two experiments, weanling male rats were fed *ad libitum* for either four weeks or 10 days³; control animals were given a standard diet. EFSA (2007, 2012c) has estimated this intake to be 40 or 150 g/kg diet, equivalent to 2,000 mg/kg-bw-day or 7,500 mg/kg-bw/day, respectively. The oleyl palmitate appeared to be poorly absorbed, as evidenced by excretion of intact monoesters, free fatty acids, and free fatty alcohols. Additional findings of this study are described in the Repeated Toxicity section below.

In a digestibility study conducted by Heise et al. (1982), weanling rats were given dietary (1) jojoba wax (12%), (2) corn oil, (3) medium-chain triglycerides (control), (4) 1:1 jojoba wax and corn oil, or (5) 1:1 jojoba wax and triglycerides *ad libitum* for 30 days. The total food intake for the jojoba-wax-only diet was reported to be 517 g/30 days, equivalent to approximately 2.1 g jojoba wax/day. Evaluation at 2 and 4 weeks demonstrated that weight gain of animals on the jojoba-only diet was reduced by ~50% compared to controls; this effect was not seen in other diet groups. The authors suggested that reduced weight gain was due to the poorer digestibility of jojoba wax (41% versus 98% in controls). This was further evident in the amount of fat found in feces as a percent (%) of fecal dry matter (51% for jojoba wax versus 6% in controls).

Vershuren and Nugteren (1989) evaluated the effects of jojoba oil on digestion parameters. Eight-week-old male SPF Wistar rats were divided into two groups of 20 animals that were administered different diets. One group received a dietary mixture of lard/sunflower oil that represented 18% of the total fat content, while the experimental group received a mixture of 9% lard/sunflower oil + 9% jojoba oil. Both groups followed two equal ad libitum feeding periods per day-morning and evening. This protocol was modified for the last three days, and after 4 weeks, the rats were given a radioactive retinol marker to measure intestinal transit time and stomach emptying. In a separate group, 10 rats were fed a dietary mixture of 9% lard/sunflower oil + 9% jojoba oil, to study the digestibility and absorption of the oil. Compared to animals on the control diet, the animals decreased their consumption of jojoba oil-supplemented food, resulting in retarded growth in the experimental animals. This was possibly due to reduced palatability of the jojoba oil. Although jojoba oil did not influence intestinal transit time of retinol, retinol absorption appeared to be decreased in the experimental group. The rate of stomach emptying was not affected by the addition of jojoba oil in the diet. Some jojoba oil appeared to be absorbed, with 35% excreted in the feces. Based on the analysis of free fatty acids in the feces, hydrolysis of jojoba oil likely took place after the small intestine. Furthermore, the mucosal cells of the intestine contained jojoba oil, indicating that wax esters were absorbed.

Other summary documents describe this as 2 weeks; however, according to the publication, rats were giving the standard diet only for the first 4 days of the 2-week period.

The absorption and distribution of jojoba wax was studied in two experiments by Yaron and colleagues (1982a,b). In the first experiment in the first study, ~90 mg ¹⁴C-jojoba wax was injected subcutaneously into male mice (n=24); triolein was used as a control (Yaron et al., 1982a). Mice from each group were sacrificed after 1, 8, 15, or 23 days, and the distribution of labeled wax was determined. In the second experiment, two groups of male and female mice (n=5 per sex, per group) were treated as in experiment 1, and were sacrificed after 90 days. The results of this study demonstrated that only a small amount of the injected wax was absorbed initially, but was not detected at 23 days. The majority of ¹⁴C was determined to remain in lipid form, with the remainder incorporated primarily into triglycerides and fatty acids.

In another study by the same group (Yaron et al., 1982b), male albino mice were orally administered 0.1 mL of a 25% solution of ¹⁴C-labeled jojoba wax in peanut oil and were sacrificed either 1 day (n=10) or 8 days later (n=10). Of the 500,000 dpm administered per mouse, a small amount (ranging from not detected to 7,760 dpm) was found distributed in each of the internal organs evaluated (liver, heart, lungs, spleen, testes, kidneys, muscle, and epididymal fat) and decreased between 1 and 8 days. Thin-layer chromatography showed that the labeled material was incorporated into the body lipids, including triglycerides and phospholipids

Taguchi and Kunimoto (1977) evaluated the acute oral toxicity of jojoba oil in 5-weekold Y-S mice. Four groups of 10 male and 10 female, fasted mice were administered jojoba oil 0.5, 0.75, 1.13, or 1.69 mL/10 g body weight via oral gavage. In this study, the test material was said to be excreted via feces, suggesting it was poorly absorbed.

Animal Toxicological Studies on Rice Bran and Similar Waxes

Acute Oral Toxicity

Eighteen acute oral toxicity studies were identified that reported the LD_{50} value of rice bran wax, similar waxes, or its constituents (Table 8); additional studies or assessments relevant to this endpoint are also listed. The LD_{50} in all cases was found to be greater than the highest dose tested, which in most cases, was >5,000 mg/kg-bw. While not published, a complete summary of the studies of Polar modified rice bran wax and distilled lanolin fatty acids is available for public access; these studies report LD_{50} values in rats of >2,000 and >5,000 mg/kg-bw/day, respectively. Taken together, these studies demonstrate a lack of potential acute oral toxicity of rice bran wax.

Test Material	Species (strain)	LD ₅₀ ^A (mg/kg-bw)	Reference	Access Information
Polar modified rice bran wax	Rat (Crl:WI (Han))	>2,000	Unnamed, 2016, as cited in REACH Registration for Polar Modified Rice Bran Wax	https://echa.europa.eu/regist ration-dossier/-/registered- dossier/18316/7/3/2
Rice bran wax	Mouse	>2,400	Nippon Bio-Test Laboratories, Inc., 1972, as cited in Anderson, 2006	Reviewed by Andersen, 2006
Hydrogenated rice bran wax	Rat (white)	>5,000	Leberco Testing, Inc., 1991a, as cited in Andersen, 2006	Reviewed by Andersen, 2006
Rice bran wax	Rat (albino)	>5,000	Consumer Product Testing Co., 1998f, as cited in Andersen, 2006	Reviewed by Andersen, 2006
Carnauba wax	Not reported	>1100	Liebert, 1984, as cited in EFSA, 2012b	Reviewed by EFSA, 2012b
Carnauba wax (5.6% in a lipstick product)	Rat	>1,120	Anonymous, 1984	Reviewed by EFSA, 2012b
Beeswax	Rat	>5,000	McGee Laboratories, 1974, cited in American College of Toxicology, 1984, as cited in JECFA, 2006	Reviewed by JECFA, 2006
Candelilla wax	Rat	>5,000	JECFA, 1993b, as cited in EFSA, 2012c	Reviewed by EFSA, 2012c
Candelilla wax	Not specified	Not specified ("none of the studies reported any adverse treatment- related toxicological findings")	SCF, 1992, as cited by EFSA, 2012c	Reviewed by EFSA, 2012c

 Table 8.
 Available acute oral toxicity studies on rice bran wax, similar waxes, or its constituents

Test Material	Species (strain)	LD ₅₀ ^A (mg/kg-bw)	Reference	Access Information
Candelilla wax (as a cosmetic ingredient and in cosmetic formula- tions)	Rat (SD, Long Evans, and unde- fined)	Not reported	Liebert, 1984, as cited in EFSA 2012c	Reviewed by EFSA, 2012c
Lanolin wax	Rat	48-64 cc/kg	CFTA: Mamstrom Chemicals, as cited in Elder, 1980	Reviewed by Andersen, 2006
Lanolin wax	Rat	>42,700 mg/kg		
Lanolin wax	Rat	>32,000 mg/kg	CTFA: Robinson-Wagner Co., Section D. Lanolin Acid, as cited in Elder, 1980	
Distilled lanolin fatty acids	Rat (Wistar)	>5,000	Unnamed, 1977, as provided in REACH Registration for Fatty Acids, Lanolin	https://echa.europa.eu/regist ration-dossier/-/registered- dossier/13395/7/3/2
Jojoba oil	Rat	>21.5 mL/kg- bw	Wisniak, J., 1977, as cited in EPA, 1995	Reviewed by EPA, 1995
Jojoba oil	Mouse (Y-S)	>169 mL/kg- bw	Taguchi and Kunimoto, 1977	http://agris.fao.org/agris- search/search.do?recordID= US19780274740
Jojoba oil	Weanling mouse	$LD_{20} = 10\%$ dietary (unclear if single dose)	Locke, R.K. to L.J. Lin, FDA memo, 3/22/1978, as cited in EPA, 1995	Reviewed by EPA, 1995
DETUR (97.5% jojoba oil)	Rat (HSD:SD)	>4,924	Data submitted to EPA, 1995 (no further details provided)	Reviewed by EPA, 1995
Jojoba seed wax	Rat (albino SD)	>5,000	Reinhardt and Brown, 1990, as cited in Becker, 2008	Reviewed by Becker, 2008
Jojoba esters	Rat (white)	>5,000		

Test Material	Species (strain)	LD ₅₀ ^A (mg/kg-bw)	Reference	Access Information
Jojoba esters 15	Rat (white)	>5,000	Leberco Testing, Inc., 1988a, as cited in Becker, 2008	Reviewed by Becker, 2008
Jojoba esters 30	Rat (white)	>5,000	Leberco Testing, Inc., 1988b, as cited in Becker, 2008	
Jojoba esters 60	Rat (white)	>5,000	Leberco Testing, Inc., 1988c, as cited in Becker, 2008	
Jojoba esters 70	Rat (SD)	>5,000	Leberco Testing, Inc., 1988d, as cited in Becker, 2008	

^AUnless otherwise noted unites are mg/kg-bw

Repeated Exposure Toxicity

A summary of available repeated exposure studies is provided in Table 9.

Carnauba Wax

Rowland et al. (1982) evaluated the subchronic oral toxicity of carnauba wax in rats in a 13-week study. Carnauba wax (0, 1, 5, or 10%, corresponding to 0, 800, 4200, or 8800 mg/kg-bw/day for males and 0, 900, 4600, 10200 mg/kg-bw/day for females, respectively) in the diet resulted in no treatment-related effects including changes in body weight, hematology, serum-enzyme activities, organ weights, or histology. In rats given carnauba wax, some significant but non-treatment-related changes were reported: increased mean food consumption, higher erythrocyte count at week 2 in male rats, changes in urine specific gravity, and changes in organ and relative organ weights. The authors concluded the no-effect level to be 10% in the diet, equivalent to 8,800 and 10,200 mg/kg-bw/day in males and females, respectively. Similarly, EFSA (2012a,b) identified a no-observed-adverse-effect level (NOAEL) of 8,800 mg/kg-bw/day for carnauba wax based on the highest dose tested in males in this study.

No toxicity was observed in beagle dogs administered carnauba wax in the diet (0, 0.1, 0.3, or 1% carnauba wax, equivalent to 25, 75, and 250 mg/kg-bw/day, respectively) for 28 weeks (Parent et al., 1983a). The only significant finding was an increased free fatty acid level in male dogs in all treated groups compared to control animals at 26 weeks. The levels were determined to be within the normal historical range for beagle dogs in the breeding colony, and the authors noted the control dog values were comparatively lower than these historical levels, which likely accounted for the observed difference, as opposed to abnormally increased levels in treated dogs. No other changes were noted in food consumption, body weight, behavior, blood and urine samples, organ weights, examined tissues (gross and microscopic), or biochemical analysis at the end of the study. The EFSA ANS Panel derived a NOAEL of 250 mg/kg-bw/day for carnauba wax based on the highest dose tested in this study.

The EFSA ANS Panel (EFSA, 2012b; also in JECFA, 1993a) also reviewed an unpublished report by Edwards (1998). In this study, rats were administered carnauba wax in the diet at levels of 0, 15, 150, or 1500 mg/kg-bw/day continuously for 90 days; 5 males and 5 females were also placed back on the control diet for another 90 days as a reversibility test. In some carnauba wax-treated animals, non-treatment-related changes included: significant increase in feed intake in the main study; lower chloride or protein concentration, higher albumin/globulin ratio, higher alanine aminotransferase and lactate dehydrogenase activities in 15 and 150 mg/kg-bw/day groups (few differences in reversibility groups); reduction in mean relative thymus weight of male rats (15 and 1500 mg/kg-bw/day groups); increase in mean absolute brain weight of the male rats fed 15 mg/kg-bw/day; higher incidence of liver necrosis in male rats (15 and 150 mg/kg-bw/day groups); and significantly higher incidence of liver vacuolization in the 150 mg/kgbw/day group (not observed in the 1500 mg/kg-bw/day group). One female in the highest dose group died of a brain hemorrhage on day 52. The EFSA ANS Panel (EFSA, 2012b) determined the NOAEL to be 1500 mg/kg-bw/day for carnauba wax based on the highest dose tested in this study.

Candelilla Wax

Two 8-week studies were reported by Harrisson (1946, 1948, as cited in EFSA, 2012c) in which groups of 12 weanling Wistar rats were administered dietary candelilla wax; no treatment-related effects were observed in either study, including survival, body-weight gains, food and water intake, urinalysis, hematology, and gross pathology. In the first study, female rats received candelilla wax in a gum base mixture at 0, 3%, and 5% (equivalent to 0, 590, and 980 mg/kg bw/day); however, the concentration of the candelilla wax was not provided. In the later study, male and female rats were given a mixture of candelilla wax and a butadiene-styrene polymer; the daily intake of candelilla wax was calculated to be 0, 370, or 1,800 mg/kg-bw/day. The NOAELs were determined by EFSA to be the highest doses tested.

In a separate study by the same author (Harrisson, 1949, as cited in EFSA, 2012c), a different 50/50 candelilla wax and butadiene-styrene polymer mixture was given to male and female Wistar rats for 27 weeks. The 0, 1%, and 5% dietary levels were determined to be equivalent to approximately 0, 370, and 1,800 mg candelilla wax/kg-bw/day, respectively. No significant differences were reported in survival, food and water intake, urinalysis, hematology, or pathology (heart, lung, spleen, kidney, pancreas, small and large intestines, uterus, ovary, prostate, testicle, and seminal vesicle tissue). A decreased body weight gain (described as "slight") was reported for both treatment groups; however, EFSA (2012c) concluded the NOAEL to be the highest dose of 1,800 mg/kg-bw/day.

The daily intake of candelilla wax in a 180-day study conducted in male and female albino rats (n=12 per sex; strain not reported) was calculated to be approximately 2,400 mg/kg-bw/day (Hodge, 1973, as cited in EFSA, 2012c). In this study, candelilla wax, present at 4.1%-6.1% in a gum base, was administered in dietary concentrations

ranging from 10% to 25% for 180 days. No significant differences were reported in survival, body weight gain, food and water intake, urinalysis, or histopathology.

Hodge (1973, as cited in EFSA, 2012c) also conducted a longer term oral study in C57 mice (n=15/sex/group) using a mixture of 25% candelilla wax in a gum base. Mice were administered 0, 0.8%, or 5.0% of the test material for 12–13 months, equivalent to approximately 0, 300, or, 1,900 mg candelilla wax/kg-bw/day, respectively. The only finding reported was an increase in mortality in the highest dose group relative to lower and control groups; however, the cause of death was not identified. EFSA (2012c) concluded the NOAEL to be the highest dose of 1,900 mg/kg-bw/day.

The final rodent study identified with candelilla wax was conducted by Harrisson (1953, as cited in EFSA, 2012c). In this study, male and female Sprague-Dawley rats received dietary candelilla wax (25% in a gum base mixture) for either 19 months or 2 years. No significant differences were reported in food intake, urinalysis, hematology, or histopathology at the highest dose tested of 750 mg candelilla wax/kg-bw/day. Doses administered in the diet were 0.8, 2.0%, or 5%, equivalent to 0, 125, 300, and 750 mg candelilla wax/kg bw/day, respectively. EFSA determined the NOAEL to be 750 mg/kg-gw/day.

A repeated-dose oral toxicity study was also identified in male and female dogs (strain not reported), where candelilla wax (25% in a gum base) was administered for 6 months (Harrisson, 1953, as cited in EFSA, 2012c). Dose levels were reported as 0, 1%, or 10%, equivalent to 0, 60, and 600 mg candelilla wax/kg bw/day, respectively. No significant differences were reported in survival, body-weight gain, urinalysis, hematology, or histopathology.

Lanolin Wax

The repeated oral toxicity of lanolin fatty acids was tested in a GLP-compliant study using OECD Guideline 408 and submitted for the REACH registration dossier for Fatty Acids, Lanolin (Unnamed, 2013). In this study, lanolin fatty acids (CAS # 68424-43-1) were administered to Wistar rats at doses of 100, 300, and 1,000 mg/kg-bw/day for 91 (females) or 92 (males) days. Parameters evaluated included cage side and clinical observations, neurobehavioral examination, body weight, hematology, clinical chemistry, urinalysis, ophthalmoscopic examination, gross necropsy, histopathology, and organ weights. No treatment-related effects were reported, and the NOAEL was determined to be the highest dose tested of 1,000 mg/kg-bw/day.

Jojoba Wax

As described in the ADME section above, a digestibility study was conducted by Heise et al. (1982). The only observed effect in weanling rats given 2,100 mg/kg-bw/day of jojoba wax in the diet for 30 days was decreased weight gain, which the authors attributed to differences in digestibility related to the jojoba wax. This effect was not seen in groups receiving 1:1 jojoba wax and corn oil or 1:1 jojoba wax and triglycerides. The authors

also noted that the inclusion rates of jojoba wax were "purposefully high, yet no detrimental effects other than those related to lower energy availability were apparent."

Jojoba wax was administered to male and female rats via the diet at levels of 2.5, 5.0, or 10.0% (no additional information provided) for 3 months (Stalder et al., 1985). While no pathological abnormalities were found in the liver, increased serum transaminase and alkaline phosphatase activities were reported in both sexes. Decreased weight gain was reported in females only. No other information was provided in this conference abstract.

In the study by Hamm (1984) described in the ADME section above, male rats received the equivalent of 10,000, 20,000, 40,000, or 60,000 mg/kg-bw/day of jojoba oil, corn oil, or trialkoxytricarballylate in the diet for 4 or 7 days. Weight gain in animals supplemented with 0.5 g jojoba oil in 5 g basal diet (equivalent to10,000 mg/kg-bw/day) was not significantly different from those receiving the basal diet, with a mean reduction of 2.2 g observed over 7 days. Rough coats were observed in some animals of the jojoba oil groups; however, similar findings in the control group suggest that this effect was a result of poor nutrition prior to the study. Weakness or depression (no definition provided) was seen in jojoba oil treatment groups higher than 10,000 mg/kg-bw/day. There was also a 10% mortality rate in these three higher jojoba oil dose groups (20,000, 40,000, and 60,000 mg/kg-bw/day); the cause of death was not discussed by the authors. These effects were not observed in the lowest dose group. Oily coats were observed in some animals, which appeared to be a result of anal leakage from undigested oil. Diarrhea was not observed in animals receiving 10,000 mg/kg-bw/day jojoba oil supplementation, but feces were soft, suggesting that the oil did interfere with some digestive process. The low tolerance of the jojoba oil seen in the higher dose groups was suggested to be related to "metabolic disturbances" (related to malabsorption of nutrients) and laxative effects, rather than direct toxicity. This same effect was also noted in this study for trialkoxytricarballylate, another non-digestible, non-absorbable oil. The authors note that the results of this study may indicate the threshold or physiological limit for non-digestible, non-absorbable oils is above 10,000 mg/kg-bw/day.

The Verschuren (1989) study evaluated jojoba oil as a replacement for other conventional dietary fats. Young male and female SPF Wistar rats were divided into eight groups in which their diets had varying amounts of jojoba oil supplement (w/w) as follows: controls, 0% jojoba oil (12 animals each, males and females); 2.2% jojoba oil (10 animals each, males and females); 4.5% (10 animals each, males and females); or 9% (12 animals each, males and females). The total fat in the diet was up to 18%, with a mixture of lard and sunflower-seed oil. Over the 4-week ad libitum feeding protocol, all animals appeared in good health, and there were no deaths. Dietary jojoba oil supplementation resulted in dose-dependent increases in feces production and growth retardation in both sexes in the 9% dosing group. Analysis of the feces showed a dose-dependent increase in wax esters, fatty alcohols, and free fatty acids. Absolute weights of organs evaluated, except for the spleen in females, were also decreased, particularly in the higher dose groups. In both sexes, the white blood cell count was significantly increased in the highest treatment group; no other hematological parameters changed significantly. Jojoba oil supplementation resulted in increased activities of certain serum enzyme activities and urea concentration, and was associated negatively with creatine and triacylglycerols.

Low-dose and control groups appeared to have fatty infiltration in the liver; however, no major treatment-related changes were observed in the liver or liver enzymes. No adverse histological effects were observed in the hearts of animals sacrificed after 6 days of the feeding protocol. Following the entire feeding protocol (at 5 weeks), examination of the stomach contents showed that stomachs of rats fed jojoba oil were fuller than controls (no additional description provided). In animals fed 9% jojoba oil, effects typically associated with malabsorption of nutrients and diarrhea were noted (e.g., the enterocytes in the jejenum and ileum had massive vacuolization, the lamina propria was distended, and the number of mitoses in the mucosal layer increased).

Weanling CD-1 mice (10 male, 10 female) received 1% or 2% dietary jojoba oil *ad libitum* for 3 weeks in a study by Verbiscar et al. (1980). Results are also presented for weanling (3 weeks) and adult mice (1 week) receiving 10% dietary jojoba oil; however, details on the methods for these two groups are not provided. Decreased weight gain was observed, starting with the 2% group (statistical analysis not provided). Animals receiving 10% oil were reported to have done "poorly," with 30% mortality reported in the weanling mice (no other mortality reported). The authors suggest that the observed deaths were due to malnutrition due to the inability to absorb nutrients, as opposed to a direct toxicological effect.

Oleyl Palmitate

As discussed in the ADME section above, rats were given 2,000 mg/kg-bw-day or 7,500 mg/kg-bw/day oleyl palmitate in the diet for either 4 weeks or 10 days⁴ (Hansen and Mead, 1965). Weight gain was decreased in the oleyl palmitate groups, which was attributed by the authors primarily to issues with palatability. In addition, animals in the highest dose group were reported to have oily skin and fur and/or to exhibit diarrhea.

Other summary documents describe this as 2 weeks; however, according to the publication, rats were giving the standard diet only for the first 4 days of the 2-week period.

Test Material	Species (Sex ^A)	Duration	Doses Tested (mg/kg-bw/day ^B)	NOAEL (mg/kg-bw/day ^B)	Reference	Publication and Access Information
Carnauba wax	Rat (M, F)	13 weeks	0, 800, 4200, or 8,800 (M); 0, 900, 4600, 10,200 (F)	8,800 (M); 10,200 (F)	Rowland et al., 1982	https://www.ncbi.nlm.nih.gov/pu bmed/6890026
Carnauba wax	Rat (M, F)	90 days	0, 15, 150, or 1,500	1,500	Edwards, 1998	Reviewed by EFSA, 2013b, and JECFA, 1993a
Carnauba wax	Dog	28 weeks	25, 75, or 250	250	Parent et al., 1983a	https://www.ncbi.nlm.nih.gov/pu bmed/6681797
Candelilla wax and gum base (composition not given)	Rat (F)	8 weeks	Not available	980 mg mixture/kg-bw/day	Harrisson, 1946	Reviewed by EFSA, 2012c
Candelilla wax (1:1 mixture of candelilla wax and a butadiene-styrene polymer)	Rat (M, F)	8 weeks	0, 370 or 1,800	1,800	Harrisson, 1948	Reviewed by EFSA, 2012c
Candelilla wax (1:1 mixture of candelilla wax and a butadiene-styrene polymer)	Rat (M, F)	27 weeks	0, 370 or 1,800	1,800	Harrisson, 1949	Reviewed by EFSA, 2012c

T-LL O	Annilable new anded dags an	al toriaite stardia	a an aire hans and	almillan manage	an ita aanatituanta
Table 9.	Available repeated dose or	ai toxiciiv stuaie:	s on rice bran wax.	similar waxes.	, or us constituents

37

Test Material	Species (Sex ^A)	Duration	Doses Tested (mg/kg-bw/day ^B)	NOAEL (mg/kg-bw/day ^B)	Reference	Publication and Access Information
Candelilla wax (4.1-6.1% in a gum base)	Rat (M, F)	180 days	2,400	2,400	Hodge, 1973	Reviewed by EFSA, 2012c
Candelilla wax (25% in a gum base)	Mouse (M, F)	12-13 months	0, 300, or 1,900	1,900	Hodge, 1973	Reviewed by EFSA, 2012c
Candelilla wax (25% in a gum base)	Rat (M, F)	19 months or 2 years	0, 125, 300, or 750	750	Harrisson, 1953	Reviewed by EFSA, 2012c
Candelilla wax (25% in a gum base)	Dog (M, F)	6 months	0, 60, or 600	600	Harrisson, 1953	Reviewed by EFSA, 2012c
Lanolin fatty acids	Rat (M, F)	90 days	100, 300, or 1,000	1,000	Unnamed, 2013 as provided in REACH Registration for Fatty Acids, Lanolin	Detailed report summary available online; https://echa.europa.eu/registration -dossier/-/registered- dossier/13395/7/6/2
Jojoba wax	Rat (not reported)	30 days	2,100 mg/day	2,100 mg/day	Heise et al., 1982	Publication purchased and reviewed; not available online despite journal being indexed in Medline
Jojoba oil	Rat (M, F)	3 months	2.5, 5, or 10% dietary	Not identified ^D	Stalder et al., 1985 ^C	Conference abstract purchased and reviewed; not available online
Jojoba oil	Rat	7 days	10,000, 20,000,	10,000 ^E	Hamm, 1984	http://onlinelibrary.wiley.com/doi /10.1111/j.1365-

Test Material	Species (Sex ^A)	Duration	Doses Tested (mg/kg-bw/day ^B)	NOAEL (mg/kg-bw/day ^B)	Reference	Publication and Access Information
			40,000, or 60,000			2621.1984.tb12436.x/abstract
Jojoba oil	Rat	4 weeks	2.2, 4.5, or 9% dietary	Not identified ^F	Vershuren, 1989	https://www.ncbi.nlm.nih.gov/pu bmed/?term=PMID%3A+270319 2
Jojoba oil	Mouse (M, F)	3 weeks	1 or 2% dietary	Not identified ^F	Verbiscar et al., 1980	https://www.ncbi.nlm.nih.gov/pu bmed/?term=PMID%3A+739140 2
Oleyl palmitate	Rat (M)	10 days or 4 weeks ^G	7,500	7,500 ^H	Hansen and Mead, 1965	http://journals.sagepub.com/doi/a bs/10.3181/00379727-120-30581

^AM, male; F, female

^BUnless otherwise noted, units are mg test material/kg-bw/day; weight-based equivalents for dietary studies reported.

^CAppears also to be Nestle Product Technical Assistance—Orbe, Switzerland (n.d.), as cited by EPA (1995).

^DWhile no pathological abnormalities were found in the liver, increased transaminase and alkaline phosphatase activities were reported in both sexes. Dose levels at which these effects were observed were not specified.

^EObserved effects in the higher dose groups are described as secondary physiological effects.

^FThe authors suggest that the observed deaths were due to malnutrition, as opposed to a direct toxicological effect.

^GOther summary documents describe this as 2 weeks; however, according to the publication, rats were giving the standard diet only for the first 4 days of the 2-week period.

^HEFSA (2007, 2012c) and JECFA (2006) have estimated this intake to be 40 g/diet, equivalent to 2,000 mg/kg-bw-day (EFSA, 2007; 2012c) or 15,000 mg/kg-bw/day (JECFA, 2006).

Reproductive and Developmental Toxicity

A summary of available repeated exposure studies is provided in Table 10.

Carnauba Wax

Parent et al. (1983b) evaluated the potential reproductive effects of carnauba wax (0, 0.1, 0.3, or 1%) given in the diet of male rats (equivalent to 0, 80, 250, and 810 mg/kgbw/day) and female rats (equivalent to 0, 90, 270, and 670 mg/kg-bw/day). Following four weeks of the carnauba wax diet, rats were paired and diets continued through mating, gestation, and lactation. F_1 generation rats were randomly selected and given the same diet for an additional 13 weeks. All animals were sacrificed after weaning. The number of pups born (dead or alive) was decreased, though not significantly, for treatment groups compared to controls (228-230 pups compared to 269 pups); no differences were noted in fertility, gestation, viability, or lactation indices. Some significant differences in food consumption were mentioned but concluded to be intermittent. In carnauba wax-treated animals, statistically significant effects included: increased hematocrit (females in 0.1% and 1% groups); increased nitrogen urea levels (males in 1% group); increased chloride levels (males in 0.3% and 1% groups); decreased serum glutamatepyruvate transaminase and free fatty acid levels (males in all treatment groups); and decreased free fatty acids (females in 0.3% and 1% groups). The EFSA ANS Panel determined the NOAEL to be 670 mg/kg-bw/day based on the highest dose given to female rats (EFSA, 2012b).

In addition to the study summarized above, the EFSA ANS Panel (EFSA, 2012b⁵; originally reviewed by JECFA, 1993a) also reviewed an unpublished report by FDRL (1977).⁶ In this study, the potential for developmental toxicity of carnauba wax was studied in rats. Carnauba wax (0, 0.1, 0.3, or 1%; equivalent to 0, 50, 150, and 500 mg/kg-bw/day) given in the diet of females for 2 weeks prior to mating and for the duration of gestation did not cause any treatment-related adverse developmental effects on maternal weight, reproductive parameters, or skeletal or soft tissue development of fetuses. Maternal body weight, gross pathology, number of corpora lutea, implantation sites, resorption sites, number of live and dead fetuses, weights of live fetuses, visceral pathology, and skeletal changes were evaluated.

Candelilla Wax

A reproductive toxicity study was conducted by Harrisson (1949, as cited in EFSA, 2012a), which was limited to three male and three female rats in each dose group. Following dietary exposure to 0, 340, or 1,710 mg/kg-bw/day candelilla wax (in a 50/50 mixture with styrene-butadiene polymer) for five months prior to mating, two of the three

⁵ Note that the study, as reviewed in EFSA (2012b), was not made available to the Panel for review at that time.

⁶ A thorough search was performed; however, unpublished laboratory reports were not located or accessible for this review.

females were reported to have conceived and produced "normal" litters. No additional information was provided.

Test Material	Species (Sex ^A)	Study Type/ Duration	Doses Tested (mg/kg- bw/day)	NOAEL (mg/kg- bw/day)	Reference	Publication and Access Information
Carnauba wax	Rat (M, F)	2-Generation Reproductive Toxicity	0, 80, 250, or 810 (M); 0, 90, 270, or 670 (F)	670	Parent et al., 1983b	https://www.ncbi.n lm.nih.gov/pubmed /6681798
Carnauba wax	Rat (F)	Reproductive/ 2 weeks prior to mating and duration of gestation	0, 50, 150, or 500	500	FDRL, 1977	Reviewed by EFSA, 2012b; JECFA, 1993a
Candelilla wax (1:1 mixture of candelilla wax and a butadiene- styrene polymer)	Rat (M, F)	5 months prior to mating	0, 340, or 1,710	1,710 ^A (reproduc- tive)	Harrisson, 1949	Reviewed by EFSA, 2012c

 Table 10. Available reproductive and developmental toxicity studies on rice bran wax, similar waxes, or its constituents

^ASmall sample size and limited parameters measured (two of three females of each dose group conceived and produced normal litters)

Genotoxicity/Mutagenicity

A summary of available mutagenicity and genotoxicity studies is provided in Table 11.

Rice Bran Wax

In a recent GLP-compliant study, a rice bran wax product (Licocare RBW 106) was found to be non-mutagenic *in vitro* (Unnamed, 2015⁷). The rice bran wax was tested according to OECD Guideline 471 (Bacterial Reverse Mutation Assay) in *S. typhimurium* strains TA1535, TA1537, TA98, and TA100 and *E. coli* WP2uvrA with and without metabolic activation with rat liver S9-mix induced by Aroclor 1254. Following a preliminary test, the doses selected for the main study were 17, 52, 164, 512, or

As cited in REACH Registration for Polar Modified Rice Bran Wax; full study summary available online at <u>https://echa.europa.eu/registration-dossier/-/registered-dossier/18316/7/7/2</u>. Study information from this dossier is publicly available but may be subject to copyright laws; the authors of this GRAS assessment are in the process of attempting to obtain permission for its use.

1,600 μ g/plate⁸; positive control substances included methylmethanesulfonate, 2nitrofluorene, 4-nitroquinoline-N-oxide, sodium azide, and 2-aminoanthracene. Exposures were conducted in triplicate for 48 hours. Cytotoxicity was observed in all strains, except TA1535, TA1537, and TA98 in the presence of S9-mix and WP2uvrA with and without metabolic activation. Rice bran wax was negative over the entire dose range in *S. typhimurium* and *E. coli* reverse mutation assays. No significant dose-related increases in the number of revertants were observed, and all control values were within laboratory historical control ranges.

Rice bran wax ("Rice Wax") did not show any mutagenic effect up to concentrations of 5,000 µg/mL in a histidine-dependent auxotroph of *Salmonella typhimurium* strain TA100 (Environmental Technical Laboratory, Ltd., 1998, as cited in Andersen, 2006). No increases in revertant colony numbers compared to control counts were observed with or without metabolic activation (S9 mixture); positive and negative controls were used in this study.

Carnauba Wax

Carnauba wax (0.031, 0.063, 0.125 0.25, or 0.5 mg/mL of 10% soybean oil) was evaluated in *in vitro* chromosomal aberration tests using human lymphocytes with and without S-9 metabolic activation (Edwards, 1996; 1997, as cited by EFSA, 2012b). No statistically significant increases in aberrant metaphases were reported in the first chromosomal aberration test (without metabolic activation for 3 hours) with or without gaps; however, there was a statistically significant linear trend for both the untreated control and treatment groups (without gaps). No statistically significant increases in aberrant metaphases or linear trend were observed in the second test, with and without metabolic activation. However, due to a low response elicited by the positive control, cyclophosphamide, in this study (with metabolic activation), a third test was conducted using the same conditions. In this study, statistically significant increases in aberrant metaphases were measured for the positive control while no statistically significant effects were noted for the test article. The Panel concluded that "carnauba wax is not regarded to cause structural chromosomal aberrations *in vitro* under the reported experimental conditions."

EFSA (2012a,b; as well as SCF, 2001; JEFCA, 1993a; and Bassan et al., 2012) reviewed several unpublished laboratory reports in its assessment. The EFSA CONTAM Panel determined there is no concern for genotoxicity for carnauba wax based on the available data and the lack of structural alerts (EFSA, 2012a). In addition, the ANS Panel concluded in its scientific opinion re-evaluating the safety of carnauba wax that "there is no concern for genotoxicity for carnauba wax," although they do note that there are limitations in testing insoluble compounds *in vitro* (EFSA, 2012b). The study summaries provided in EFSA (2012a,b) on carnauba wax, as well as for other waxes, are described below. Joint FAO/WHO Expert Committee on Food Additives (JECFA, 1993a) also

⁸ Testing at 5,000 µg/plate was not feasible due to precipitation of the test article at this concentration.

reviewed studies evaluating the mutagenicity of carnauba wax; while complete study information was not available, the EFSA ANS Panel also considered these as part of its evaluation (EFSA, 2012b). The available information on these studies is summarized in Table 11 below.

Candelilla Wax

Candelilla wax (CAS 8006-44-8) was negative in all *S. typhimurium* strains tested (TA98, TA100, TA1535, TA1537, and TA1538) up to 10 mg/plate using an Ames mutagenicity assay with and without metabolic activation (Prival et al., 1991).

In addition, EFSA (2012c) summarized two studies with candelilla wax also previously summarized by JECFA (1993b); candelilla wax was found to be negative for reverse mutation and gene conversion. The available information on this study is summarized in Table 11 below.

Beeswax

Beeswax (yellow domestic; CAS 8012-89-3) was negative in all *S. typhimurium* strains tested (TA98, TA100, TA1535, TA1537, and TA1538) up to 10 mg/plate using an Ames mutagenicity assay with and without metabolic activation (Prival et al., 1991).

In addition, JECFA (2006) summarized a study with white beeswax reported by the Federation of American Societies for Experimental Biology (1975); beeswax was found to be negative for reverse mutation in *S. typhimurium* and *S. cerevisiae* D4. The available information on this study is summarized in Table 11 below.

Lanolin Wax

Three recent GLP-compliant studies evaluating the mutagenic potential of lanolin fatty acids have been reported as part of the REACH Registration for Fatty Acids, Lanolin.⁹

In the first, lanolin fatty acids were tested according to OECD Guideline 471 (Bacterial Reverse Mutation Assay) in *S. typhimurium* strains TA1535, TA1537, TA98, and TA100 and *E. coli* WP2uvrA with and without metabolic activation with phenobarbitone/ betanaphthoflavone (Unnamed, 2010a). Following a preliminary test, the doses selected for the main study were 50, 150, 500, 1,500, or 5,000 µg/plate; positive control substances included N-ethyl-N-nitro-N-nitrosoguanidine, 9-aminoacridine, 4- nitroquinoline-N-oxide, benzo(a)pyrene, and 2-aminoanthracene. Exposures were conducted in triplicate for 48 hours. Cytotoxicity was observed in all strains, except

As cited in REACH Registration for Fatty Acids, Lanolin; full study summary available online at https://echa.europa.eu/registration-dossier/-/registered-

dossier/13395/7/7/2/?documentUUID=d72c357f-4328-4df0-9809-57d83c1adaae. Study information from this dossier is publicly available but may be subject to copyright laws; the authors of this GRAS assessment are in the process of attempting to obtain permission for its use.

TA1535, TA1537, and TA98 in the presence of S9-mix and WP2uvrA with and without metabolic activation. No significant increases in the number of revertants were observed; lanolin fatty acids were negative over the entire dose range in *S. typhimurium* and *E. coli* reverse mutation assays with and without metabolic activation.

In an *in vitro* mammalian chromosome aberration test, lanolin fatty acids were determined to be non-clastogenic to human lymphocyte (Unnamed, 2010b). This study was carried out according to OECD Guideline 473 with and without metabolic activation with phenobarbitone/betanaphthoflavone. Three treatment conditions were used for the study: (1) 4-hour exposure in the absence of metabolic activation (S9) with a 20-hour expression period; (2) 4-hour exposure in the presence of an induced rat liver homogenate metabolizing system (S9), at a 2% final concentration, with cell harvest after a 20-hour expression period; and (3) a 24-hour continuous exposure in the absence of metabolic activation. Following a preliminary test, the concentrations selected for the chromosome aberration test were 0, 78.13, 156.25, 312.5, 625, 1,250, or 2,500 µg/mL for the 4-hour exposures, and 0, 78.13, 156.25, 312.5, 625, or 1,250 µg/mL for the 24-hour exposure. Positive control substances included mitomycin C and cyclophosphamide and were within historical ranges. No statistically significant increases in frequency of cells with aberrations or polyploid cells were observed with the test material at any concentration, with or without metabolic activation.

In a companion study, lanolin fatty acids were evaluated according to OECD Guideline 476 for gene mutation on the thymidine kinase, TK +/-, locus of the L5178Y mouse lymphoma cell line with and without metabolic activation with phenobarbitone/ betanaphthoflavone (Unnamed, 2010c). Positive control substances included ethylmethanesulphonate and cyclophosphamide and were within historical ranges. As in the study above, three treatment conditions were used for the study: (1) 4-hour exposure in the absence of metabolic activation (concentrations 18.75–600 µg/mL), (2) 4-hour exposure in the presence of metabolic activation (concentrations 75–400 µg/mL), and (3) a 24-hour continuous exposure (concentrations 20–320 µg/mL). In the main experiment, L5178Y TK +/- 3.7.2c mouse lymphoma cells (heterozygous at the thymidine kinase locus) were treated with the test material at eight dose levels; no statistically significant dose-related increases in mutant frequency occurred with the test material at any concentration, with or without metabolic activation.

Jojoba Wax

Jojoba esters were negative for mutagenicity as 30% in a mixture of isopropyl jojobate, jojoba alcohol, jojoba esters, and tocopherol (Celsis Laboratory Group, 1999). This Ames assay was conducted in *S. typhimurium* strains TA98, TA100, TA1535, TA1537, and TA1538 and *E. coli* WP2 with and without S9 metabolic activation from rat liver. Positive control substances included 2-aminoanthracine, 2-nitrofluorene, sodium azide, 9-aminoacridene, and methyl methone sulfate. Exposures to 1, 3, 10, 30, or 100 mg/plate were conducted in triplicate for 48–72 hours. The test material was concluded not to be mutagenic by the authors in this study.

44

Test Material	Endpoint	Test System	Doses Tested	Results	Reference	Publication and Access Information	
Licocare RBW 106	Reverse mutation	<i>S. typhimurium</i> TA1535, TA1537, TA908, TA100; <i>E. coli</i> WP2 uvr A	17, 52, 164, 512 or 1,600 μg/plate	Negative	Unnamed, 2015, as provided in REACH Registration for Polar Modified Rice Bran Wax	Detailed report summary available online; https://echa.europa.eu/regis tration-dossier/-/registered- dossier/18316/7/7/2	
Rice bran wax	Reverse mutation	S. typhimurium TA100	Range of concentrations up to 5,000 µg/ml	Negative	Environmental Technical Laboratory, Ltd., 1998	As cited in Andersen, 2006	
Carnauba wax	In vitro chromosomal aberration	Human lymphocytes	0.031, 0.063, 0.125 0.25, or 0.5 mg/ml	Negative ^A	Edwards, 1996; 1997	Reviewed and summarized cited by EFSA, 2012b	
Carnauba wax	Reverse mutation ^a	<i>S. typhimurium</i> TA1537, TA1538, TA98	3.3-1000 µg in plate tests	Negative	Mortelmans and Griffin, 1981	Reviewed by JECFA, 1993a, and further summarized by EFSA,	
Carnauba wax	Reverse mutation ^a	<i>S. typhimurium</i> TA1537, TA1538, TA98	0.01-0.5% in suspension tests	Negative	Mortelmans and Griffin, 1981	- 2012b	
Carnauba wax	Reverse mutation ^a	<i>S. typhimurium</i> TA1537, TA1538, TA98	0.1-2.5% in suspension tests	Negative	Mortelmans and Griffin, 1981		
Carnauba wax	Reverse Mutation ^b	<i>S. typhimurium</i> TA1535, TA1537, TA1538	0.01% in plate tests	Negative	Litton Bionetics, Inc., 1975		

Table 11. Available mutagenicity and genotoxicity studies on rice bran wax, similar waxes, or its constituents

Test Material	Endpoint	Test System	Doses Tested	Results	Reference	Publication and Access Information
Carnauba wax	Reverse Mutation ^b	<i>S. typhimurium</i> TA1535, TA1537, TA1538	0.00 5or 0.01% in suspension tests	Inconsistent changes ^c	Litton Bionetics, Inc., 1975	
Carnauba wax	Gene Conversion ^b	S. cerevisiae D4	0.3 or 1.75% in suspension tests	Negative	Litton Bionetics, Inc., 1975	
Candelilla wax	Reverse mutation ^d	<i>S. typhimurium</i> TA1535, TA1537, TA1538	1.25, 2.5, or 5 (units not given)	Negative	Brusick, 1976	Reviewed by JECFA, 1993b and further summarized by EFSA, 2012c
Candelilla wax	Gene conversion ^d	S. cerevisiae D4	1.25, 2.5, or 5 (units not given)	Negative		
Candelilla wax	Reverse mutation ^e	<i>S. typhimurium</i> TA1535, TA1537, TA1538, TA98, TA100; <i>E. coli</i> WP2	10-10,000 µg/plate	Negative	Mortelmans and Eckford, 1979	Reviewed by JECFA, 1993b and further summarized by EFSA, 2012c

Test Material	Endpoint	Test System	Doses Tested	Results	Reference	Publication and Access Information
Candelilla wax	Reverse mutation	<i>S. typhimurium</i> TA98, TA100, TA1535, TA1537 and TA1538	Up to 10mg/plate	Negative	Prival et al. 1991	https://www.ncbi.nlm.nih.g ov/pubmed/1870621
Beeswax	Reverse mutation	<i>S. typhimurium</i> TA98, TA100, TA1535, TA1537 and TA1538	Up to 10mg/plate	Negative		
Beeswax	Reverse mutation ^d	S. typhimurium TA1535, TA1537, TA1538; S. cerevisiae D4	0.5 or 1 mg/plate	Negative	Federation of American Societies for Experimental Biology, 1975	Reviewed by JECFA, 2006
Lanolin fatty acids	Reverse mutation	S. typhimurium TA1535, TA1537, TA98, TA100; E. coli WP2	50, 150, 500, 1,500, or 5,000 μg/plate	Negative	Unnamed, 2010a, as provided in REACH Registration for Fatty Acids, Lanolin	Detailed report summary available online; https://echa.europa.eu/regis tration-dossier/-/registered- dossier/13395/7/7/2/?docu mentUUID=d72c357f- 4328-4df0-9809- 57d83c1adaae

Test Material	Endpoint	Test System	Doses Tested	Results	Reference	Publication and Access Information
Lanolin fatty acids	Chromosomal aberration	Human lymphocytes	0, 78.13, 156.25, 312.5, 625, 1,250, or 2,500 μg/mL	Non- clastogenic	Unnamed, 2010b as provided in REACH Registration for Fatty Acids, Lanolin	Detailed report summary available online; https://echa.europa.eu/regis tration-dossier/-/registered- dossier/13395/7/7/2/?docu mentUUID=9e9d3f31- 321d-4f32-886c- 5a3b174ef573
Lanolin fatty acids	Gene mutation	Mouse lymphoma cells	18.75–400 μg/mL	Negative	Unnamed, 2010c, as provided in REACH Registration for Fatty Acids, Lanolin	Detailed report summary available online; <u>https://echa.europa.eu/regis</u> tration-dossier/-/registered- dossier/13395/7/7/2
Mixture of isopropyl jojobate, jojoba alcohol, jojoba esters, and tocopherol (jojoba esters 30 wt%)	Reverse mutation	<i>S. typhimurium</i> TA1538, TA1535, TA1537, TA98, TA100; <i>E. coli</i> WP2	1, 3, 10, 30, or 100 mg/plate	Negative	Celsis Laboratory Group, 1999	Obtained from CIR and reviewed ^f

Note: Study information with carnauba wax is adapted from EFSA (2012b).^a The Ames/Salmonella assays in the presence and absence of an Aroclor 1254stimulated, rat-liver homogenate metabolic activation system, were used in this study.^b A series of *in vitro* microbial assays with and without metabolic activation were used. In the activation assays, the tissue homogenate of liver, lung, and testes were prepared from mouse, rat, or monkey.

^c The results from non-activation suspension tests were negative. The results from activation suspension tests showed scattered increased mutation responses in the presence of rat-liver or testes homogenate with strain TA1537, and in the presence of monkey-lung homogenate with TA1538.

^d Assays carried out with and without the S9 fraction of rat, mouse, and monkey liver.^e Assays carried out with and without the S9 fraction of rat liver.

^f A copy of this study can be provided by submitter, if desired.

Carcinogenicity

In its discussion of carcinogenic potential, EFSA noted that, in the candelilla wax study conducted by Harrisson (1953, as cited in EFSA, 2012c, and described above in the repeated-dose toxicity section), no histological changes were observed up to the highest dose tested (750 mg/kg-bw/day) for 19 months or 2 years.

Allergy

There are some reports in the literature of allergic responses to rice. However, rice bran wax and rice are two different foods given that rice bran wax contains little to no protein (<0.10g/100g as reported) and that waxes, oils, and other lipids are considered to have chemical structures that are nonallergenic. Therefore, rice bran wax is not likely to pose an allergenic risk due to its vanishingly small protein content. In its report, the CIR Panel provides a review of available animal and human data regarding the potential for sensitization and allergic reaction to rice (Oryza sativa) and its derived ingredients, including rice bran wax (Andersen, 2006). While tests in guinea pigs and rabbits were negative for dermal sensitization, the Expert Panel noted that some isolated cases of allergy to rice or its derivatives have been reported. Such reports include contact urticaria (raw rice), Quincke's edema (rice cereal), erythema of the hands, edema of the eyelids, and cough (raw rice); it is worth noting that in some cases, sensitivity to grains other than rice were also confirmed. Burlando and Cornara (2014) also reviewed cases including reactions such as rhinitis, asthma, pollinosis, rhinoconjunctivitis, and dermatitis (raw rice, boiled rice, rice pollen, rice flour). Following its review, the CIR Panel concluded that rice and its derivatives were not allergens of concern notwithstanding a few reported instances of hypersensitivity to rice (Andersen, 2006). Similarly, while Chowdury (2002) reports one case of contact dermatitis in reaction to carnauba wax, the EFSA CONTAM Panel (2012a) concluded it is not likely to be a "significant sensitizer." In addition, the EFSA ANS Panel (2012b) reported that no information on allergic potential following exposure via the oral route was identified for carnauba wax.

Other Safety Concerns

Excessive Wax Intake

As with any wax product, general warnings exist indicating that excessive intake of wax, e.g., candles or crayons, could result in GI obstruction (NLM, 2016). An extensive search for available data regarding intake levels that produce GI obstruction or injury did not identify any such information. In fact, personal communication (Brock, 2016) with the Principal Toxicologist for the Art and Creative Materials Institute, Inc. (<u>https://acmiart.org/</u>), which certifies art materials according to ASTM D 4236 and the U.S. Labeling of Hazardous Art Materials Act (LHAMA), confirmed that their safety evaluation of crayons does not consider GI obstruction to be of concern for human exposure as no reliable exposure data have indicated that such concern is warranted. Nevertheless, the potential that an individual may consume multiple rice bran waxcontaining bars in a day or over consecutive days was considered in this safety assessment.

Comparable granola, fiber, and cereal-type bars have a typical weight of 37–40 g (e.g., Kashi[®], Nutri-Grain[®], and Fiber OneTM bars); therefore, J.M. Smucker intends for their bar-form product to be similar, weighing 40 g or less. At the 3% inclusion rate, a person would have to consume more than four bars to ingest the same amount of wax in one standard 5-g crayon (the amount of rice bran wax in four bars would be 4.8 g). For a 60-kg adult, consuming four bars would result in an exposure of 80 mg/kg-bw—more than 62-fold lower than the highest dose tested in most of the acute oral toxicity studies identified (5,000 mg/kg-bw). Using a range of 14–20 kg estimated body weight for children, consuming four bars would result in an exposure of 342–240 mg/kg-bw, or more than 14- to 20-fold lower than the highest acute oral dose tested of 5,000 mg/kg-bw.

Available short-term toxicity studies with very high exposures to the monoesters from jojoba oil also provide perspective regarding excess wax intake from the rice bran wax in the bar. The results of Hamm (1984) suggest that there may be a physiological limit for these types of waxes and oils between 10,000 and 20,000 mg/kg-bw/day. In this study, dietary exposure to 20,000, 40,000, or 60,000 mg/kg-bw/day for 4-7 days resulted in clinical changes (e.g., weakness), diarrhea, and 10% mortality; these adverse effects were attributed to metabolic disturbances related to nutrient malabsorption (due to the presence of the wax in the GI system) and not direct toxicity of the jojoba (see Repeated Exposure Toxicity section for additional details). None of the observed effects were seen in the 10,000-mg/kg-bw/day group, and no incidences of GI obstruction were reported for any group. In this and several other higher dose studies with jojoba wax and oleyl palmitate, leakage of oil and/or diarrhea as a consequence of the oil/wax passing through the digestive system and acting as a lubricant were reported. This same effect has also been observed in a human population consuming Lepidocybium flavobrunneum, or "butterfish," a fish containing 23% wax esters, according to Berman et al. (1981). In this study, the wax esters in the meat of the fish act as a lubricant, leading to frequent stools in this population; the authors note that high intake of this fish is otherwise "harmless."

Even at very high intake levels of comparable monoesters in animal models, physical obstruction of the GI tract has not been observed. In fact, only at doses above 10,000 mg/kg-bw/day for up to a week were physiological effects observed, such as diarrhea, which were related to the presence of intact wax in the digestive system (Hamm, 1984). In addition, an individual would need to consume more than four bar products containing rice bran wax at 3% to ingest the same amount of wax as contained in a single crayon, which is not sufficient to lead to an obstructive effect. Because the intended use of rice bran wax is solely in peanut butter used in bar products, and results in bar-form products similar to granola and nutritional energy bars, it is not expected to result in consumption amounts that would cause such an obstructive effect.

Minor Components of Rice Bran Wax

As shown in Table 7, the majority (87%–98%) of the rice bran wax components are longchain aliphatic monoesters. The remaining components of the rice bran wax product consist of free long-chain fatty alcohols, free long-chain fatty acids, triglycerides from rice bran oil. In addition, as previously discussed, when limited hydrolysis of wax esters

50

occurs, the corresponding long-chain fatty acids and alcohols may be available for cellular uptake. Therefore, consideration has been given to the presence of these constituents with regard to safety.

Rice bran oil has a long history of use in human consumption as a cooking oil in Asian cultures (Andersen, 2006). In addition, Andersen (2006) summarized the available safety data on rice bran oil, which included several acute oral toxicity studies, a genotoxicity study, and a multi-generation reproductive toxicity study in rats, and found it to be safe for consumption. Triglycerides are common components of animal and vegetable fats, and have been determined to be GRAS for human consumption in food (GRN 355, Eicosapentaenoic acid (EPA)-rich triglyceride oil from *Yarrowia lipolytica*; GRN 200, Tailored triglycerides enriched in omega-3 fatty acids from fish oil) and in cooking oils (GRN 217, Tailored triglycerides containing approximately 12 percent medium-chain fatty acids).

In addition to demonstrating the safety of the fatty alcohols and acids by way of their higher concentrations in the other waxes already evaluated here (carnauba wax, candelilla wax, and beeswax) and safety studies on lanolin fatty acids, extensive toxicological testing has been published in recent years on these components isolated from beeswax. D-002 and D-003 correspond to mixtures of very long-chain aliphatic alcohols and acids isolated from beeswax, respectively, and have been evaluated for their therapeutic effect on a number of health issues. Extensive preclinical tests have been performed on these mixtures, all demonstrating a lack of toxic potential. D-002 was reported to have no treatment-related toxicity in a one-year oral study in dogs, a developmental toxicity study in rats and rabbits, and oral subacute, subchronic, and chronic studies in rats (Alemán et al., 2001; Rodríquez et al., 1998; Rodeiro et al., 1998). D-003 lacked treatment-related effects in the following: toxicity in an acute oral study in rats, subchronic studies in rats and dogs, chronic studies in rats and mice, perinatal/postnatal study in rats, and reproductive and developmental studies in rats and rabbits; genotoxicity in rats, carcinogenic potential in rats and mice; and oestrogenic potential in rats (Gámez et al., 2000, 2001, 2002, 2004, 2007; Noa et al., 2007, 2008; Rodríquez et al., 2004, 2006). In addition, D-003 has been evaluated in a number of human clinical trials and found to be well-tolerated at doses up to 20 mg/day (Arruzazabala et al., 2008).

Finally, were a small amount of rice bran wax to be absorbed and metabolized to some degree into ethyl alcohol (ethanol), exposure to ethanol would be low in contrast to exposure from the daily diet. Consumers are routinely exposed to incidental amounts of ethanol from consumption of food items such as orange juice, soft drinks, and breads. GRN 151 (FDA, 2004) received a "no questions letter" for the use of ethyl alcohol as a preservative in the filling used in shelf-stable croissants at a concentration of 3,000 ppm. In addition, GRN 151 reported ethanol levels in ripening fruit and fruit juice ranging from 117 to 1,900 ppm, and Logan and Distefano (1998) reported levels of ethanol in various baked goods ranging from 0 to 1.66 %. It is reasonable to conclude that any absorption of rice bran wax via the oral route of exposure would be negligible and does not present any safety concern related to ethanol exposure.

Basis for the GRAS Determination

Introduction

The regulatory framework for determining whether a substance can be considered GRAS in accordance with section 201(s) (21 U.S.C. § 321(s)) of FD&C Act (21 U.S.C. § 301 et. Seq.) ("the Act"), is set forth at 21 CFR 170.30, which states:

General recognition of safety may be based only on the view of experts qualified by scientific training and experience to evaluate the safety of substances directly or indirectly added to food. The basis of such views may be either (1) scientific procedures or (2) in the case of a substance used in food prior to January 1, 1958, through experience based on common use in food. General recognition of safety requires common knowledge about the substance throughout the scientific community knowledgeable about the safety of substances directly or indirectly added to food.

General recognition of safety based upon scientific procedures shall require the same quantity and quality of scientific evidence as is required to obtain approval of a food additive regulation for the ingredient. General recognition of safety through scientific procedures shall ordinarily be based upon published studies, which may be corroborated by unpublished studies and other data and information.

These criteria are applied in the analysis below to determine whether the use of rice bran wax for use in food for human consumption is GRAS based upon scientific procedures. All data used in this GRAS determination are publicly available and generally known, and therefore meet the "general recognition" standard under the FD&C Act.

Safety Determination

The subject of this GRAS determination is the use of rice bran wax as a texturizer in peanut butter used in granola-based bar products that include cereal bars, breakfast bars, cookies and biscuits, nutritional bars, and energy snack bars with similar form and texture. There is common knowledge of a long history of human consumption of rice and rice bran wax.

The safety section describes preclinical safety studies of rice bran wax and other compositionally similar waxes and constituents of these waxes. Rice bran wax consists primarily of high-molecular-weight monoesters ranging from C48 to C64 (87%–98%; Appendix A); the remaining components of the rice bran wax product consist of free long-chain fatty alcohols, free long-chain fatty acids, and triglycerides. While some toxicological data are available for rice bran wax, information on its main constituents and other plant-based waxes with similar chemical structures, and thus similar potential for absorption, was also evaluated as part of the GRAS assessment. Studies conducted on

carnauba wax, candelilla wax, beeswax, lanolin wax, and jojoba wax were identified and deemed suitable for inclusion in the safety assessment of rice bran wax and considered by the Expert Panel in its evaluation.

Taken together, the available data presented here allow for sufficient evaluation of the safety of rice bran wax, based on the following:

- Up to 98% of rice bran wax consists of long-chain aliphatic monoesters. Jojoba
 wax also consists almost entirely of long-chain aliphatic monoesters (97%).
 Therefore, studies evaluating the safety of jojoba wax provide data specific to
 monoesters and can be bridged to provide insight on the safety of the respective
 monoester fraction of rice bran wax. In addition, although present to a lesser
 extent, carnauba wax, candelilla wax, beeswax, and lanolin wax also have a large
 fraction of these monoesters and so provide additional safety data for this fraction.
- 2. The monoesters in rice bran and other waxes are generally not absorbed; when absorption does occur, the esters are hydrolyzed into their corresponding fatty acids and fatty alcohols. In addition, the rice bran wax is estimated to contain up to 13% free fatty acids and free fatty alcohols. The safety of these minor components and potential by-products can be demonstrated by extensive preclinical studies conducted on D-002 and D-003, mixtures of very long-chain aliphatic alcohols and acids isolated from beeswax, respectively. Studies conducted with lanolin fatty acids, as presented in this assessment, also support these findings. Finally, free fatty acids and alcohols are present in one or more of the waxes evaluated in this assessment at higher concentrations, thus providing additional safety information on these constituents.
- 3. The other minor components of the rice bran wax product can include up to 13% triglycerides from rice bran oil. Rice bran oil has a long history of use in human consumption as a cooking oil in Asian cultures (Andersen, 2006). In addition, Andersen (2006) summarized the available safety data on rice bran oil, which included several acute oral toxicity studies, a genotoxicity study, and a multigeneration reproductive toxicity study in rats, and concluded it to be safe for consumption. Triglycerides are common components of animal and vegetable fats, and have been determined to be GRAS for human consumption in food (GRN 355, Eicosapentaenoic acid (EPA)-rich triglyceride oil from Yarrowia lipolytica; GRN 200, Tailored triglycerides enriched in omega-3 fatty acids from fish oil) and in cooking oils (GRN 217, Tailored triglycerides containing approximately 12 percent medium-chain fatty acids).
- 4. The available data on carnauba wax, candelilla wax, beeswax, lanolin wax, and jojoba wax show a lack of potential for toxicity for any of them. Available studies demonstrate that the potential for toxicity of a wax is inversely associated with its chain length and molecular weight. As demonstrated by Smith et al. (1996), the incidence and severity of adverse effects associated with wax exposure decrease as molecular weight of waxes increase. Of the waxes evaluated in the present GRAS assessment, rice bran wax, with its large monoester fraction, has the

53

53

longest chain length distribution, which suggests that it would be the least bioavailable and therefore would have the lowest potential for toxicity. Thus, the lack of toxicity observed in safety studies conducted with carnauba wax, candelilla wax, beeswax, lanolin wax, or jojoba wax can be confidently extended to the more inert rice bran wax.

5. The above approaches relying on information from chemically similar waxes sufficiently address the safety of rice bran wax and its components: monoesters, free long-chain fatty alcohols, free long-chain fatty acids, and triglycerides from rice bran oil. Further supporting the safety of rice bran wax is that the other waxes considered in this assessment contain additional constituents that are not relevant to rice bran wax. These impurities can impart toxicities of their own (or are of unknown toxicity), increasing any potential of toxicity of these more complex waxes relative to rice bran wax or jojoba wax. These waxes provide conservative comparisons to rice bran wax, which is considered purer and consists almost exclusively of esters or their fatty acid and alcohol components, providing further support for the safety of its intended use.

Taken together, the available published and unpublished safety data suggest that rice bran wax has little potential for toxicity when used in foods for human consumption. There is also nothing in the chemical structure of rice bran wax, available genotoxicity data, or regulatory reviews of rice bran wax or related waxes to suggest a carcinogenic potential.

Diarrhea was observed in three studies conducted with very high doses (>10,000 mg/kgbw/day) of monoesters (Hamm, 1984; Hansen and Mead, 1965; Verschuren, 1989). In addition, as with any wax product, general warnings exist to indicate that excessive intake of wax (e.g., candles or crayons), could result in GI obstruction (NLM, 2016). While this potential risk is a logical concern given the nature of waxes, an extensive search for available data regarding intake levels that produced this outcome did not identify any such information. Nevertheless, the potential that an individual may consume multiple rice bran wax-containing bars in a day or over consecutive days was considered in this safety assessment. Even at very high intake levels of comparable monoesters in animal models, physical obstruction of the GI tract has not been observed. In fact, only at doses above 10,000 mg/kg-bw/day for up to a week were physiological effects observed (diarrhea, nutrient malabsorption, and weakness), which were related to the presence of intact wax in the digestive system. In addition, an individual would need to consume more than four bar products containing rice bran wax at 3% to ingest the same amount of wax as in one crayon, and over eight bars to ingest the same amount of wax as in two crayons. Because the intended use of rice bran wax is solely in peanut butter used in granola-based bar products that include cereal bars, breakfast bars, cookies and biscuits, nutritional bars, and energy snack bars with similar form and texture, it is not expected to result in consumption amounts that would cause such an obstructive effect or lead to diarrhea.

Rice is not listed among the major food allergens by FDA as noted by its absence in the Food Allergen Labeling and Consumer Protection Act of 2004. Given that rice bran wax

contains little to no protein, the component responsible for imparting allergic potential, rice bran wax is not likely to pose an allergenic risk.

Subchronic toxicity and/or reproductive/developmental toxicity studies were identified for carnauba wax, candelilla wax, and jojoba oil. In each of the studies, the NOAEL was the highest dose level administered and ranged from 250 to 10,800 mg/kg/day, the highest of which was a concentration of 10% carnauba wax (equivalent to 8,800 and 10,200 mg/kg-bw/day in males and females, respectively) administered in the diet of rats for 90 days. Chronic studies with candelilla wax were also identified, and the NOAELs in these studies were also the highest dose tested, up to 2,400 mg/kg-bw-day. An overview of these studies is presented in Table 12.

The history of use in foods of other vegetable-based waxes, in particular carnauba wax, provides additional information relevant to the safety assessment of rice bran wax. Hargrove et al. (2004) reviewed the intake of wax worldwide and noted that the intake in some populations can average as high as 4 g/day. Rice bran wax has been approved for use in various food applications in the US. It is permitted as a direct human food additive (21 CFR §172.890) when used in candy (maximum 50 ppm as a coating), fresh fruits and fresh vegetables (maximum 50 ppm as a coating), and chewing gum (maximum 2.5% in gum when used as a plasticizing material in chewing gum base, 21CFR §172.615). It is also permitted as an indirect food additive as Type VIII in table 1of 176.170(c), at a maximum level of 1.0 percent by weight of the polymer. Carnauba wax is similarly permitted as a GRAS direct human food ingredient, with no limitation other than cGMP, in baked goods and baking mixes, chewing gum, confections and frostings, fresh fruits and fruit juices, gravies and sauces, processed fruits and fruit juices, and soft candy (21 CFR § 184.1978). The FDA has listed carnauba wax, beeswax, and candelilla wax as GRAS as a direct food substances for human consumption with no specific limitation other than good manufacturing practice (21 CFR § 184.1978; 1973; and 1976, respectively). Candelilla wax is also considered GRAS by the Flavor & Extract Manufacturer's Association (GRAS No. 3479; Oser and Ford, 1977). From the data presented above, it is reasonable to conclude that the use of rice bran wax, which is structurally a much less complex wax compared to the other waxes evaluated here, could be similarly approved.

As described in the Dietary Exposure section, FDA has conducted an intake assessment of rice bran wax using 2-day survey data from NHANES (FDA, 2017). However, because the available information suggested that these 2-day surveys significantly overestimated the intake of rice bran wax, FDA conducted a second assessment using data from a 10- to 14-day survey to more accurately reflect intake frequency. Notably, the analysis by FDA included any and all bars, and as such, is very conservative, and results in an overestimate of the actual consumption. FDA reported an approximately 10-fold lower average daily intake for the population 2+ years using these data; the EDI for the 2to 5-year-old age group was found to be approximately 5-fold lower than the FDA calculations based on 2-day data. The lower EDIs prepared by FDA using the NET-NID 14-day data reflect a more accurate estimation of the long-term consumption of the bar products intended to contain the rice bran wax product, compared to the 2-day data. Survey duration has been shown to affect the estimated percent of consumers, as well as the classification of individuals as high or low consumers of a given food (Lambe and

Wax	Species (Sex)	Duration	NOAEL and Highest Dose Tested (mg/kg- bw/day)	Reference
Carnauba	Rat (M, F)	13 weeks	8,800 (M); 10,200 (F)	Rowland et al., 1982; https://www.ncbi.nlm.nih.gov/p ubmed/6890026
Carnauba	Rat (M, F)	90 days	1,500	Edwards, 1998, as cited in EFSA, 2012b
Carnauba	Dog	28 weeks	250	Parent et al., 1983a; https://www.ncbi.nlm.nih.gov/p ubmed/6681797
Candelilla	Rat (M, F)	27 weeks	1,800	Harrisson, 1949, as cited in EFSA, 2012c
Candelilla	Rat (M, F)	180 days	2,400	Hodge, 1973, as cited in EFSA, 2012c
Candelilla	Mouse (M, F)	12-13 months	1,900	Hodge, 1973, as cited in EFSA, 2012c
Candelilla	Rat (M, F)	19 months or 2 years	750	Harrisson, 1953, as cited in EFSA, 2012c
Candelilla	Dog (M, F)	6 months	600	Harrisson, 1953, as cited in EFSA, 2012c
Carnauba	Rat (M, F)	2-Generations	670	Parent et al., 1983b; https://www.ncbi.nlm.nih.gov/p ubmed/6681798
Carnauba wax	Rat (F)	2 weeks prior to mating and duration of gestation	500	FDRL, 1977, as cited in EFSA, 2012b
Candelilla wax	Rat (M, F)	5 months prior to mating	1,710	Harrisson, 1949, as cited in EFSA, 2012c

 Table 12.
 Long-term oral toxicity studies, adapted from Tables 9 and 10

Kearney, 1999; Lambe et al., 2000). As reviewed by Lambe and colleagues (1999, 2000), shorter surveys are associated with misclassification of individuals, inaccurate correlation coefficients, reduced power, and overestimation of percentage of high and low intakes. These effects of survey duration are thought to be due to the within-person and day-to-day variation for a given self-selected diet. The percentage of respondents who consume a food increases as the survey duration increases; the longer duration begins to incorporate days with no consumption, thus decreasing the mean intakes among consumers over time. This phenomenon has been demonstrated in studies, such as in Lambe and Kearney (1999), which showed that 7-day consumer intakes were ~33% of 1-day intakes for the same foods (apples, carbonated beverages). Similarly, in the study by Lambe et al. (2000), mean consumer intakes based on 3- and 14-day survey data were 53% and 32% of the day 1 estimates, respectively. The results of this study also demonstrate that ~50% of the slopes were significantly different from zero, suggesting that intakes were not the same for all survey time periods, with a slight downward trend as survey duration increased.

While no ADI was established, EFSA (2007) estimated the average intake of beeswax for an adult (60 kg) to be ~22 mg/kg-bw/day. The Panel found the margins of exposure (MOEs) of 10–50×, based on animal studies, to be adequate. Similarly, EFSA (2012c) did not establish an ADI for candelilla wax but concluded that the margins of exposure of 74–1,600×, based on their intake assessment and animal studies, was sufficient. Of note, EFSA (2012b) conducted an exposure assessment as part of their evaluation of carnauba wax. Based on the highest exposure estimates, EFSA calculated margins of exposure ranging from $31 \times to 5,867 \times$ and determined these to be adequate. While EFSA did not calculate an ADI for carnauba wax, JECFA (1993) previously determined an ADI of 0– 7 mg/kg-bw/day. Importantly, the intakes of carnauba wax, beeswax, and candelilla wax estimated by EFSA were each very similar to that of rice bran wax, and all spanned ranges higher than the JECFA ADI of 0–7 mg/kg bw/day (0.7–8.1, 5.8–22, 0.7–8.1).

MOEs for rice bran wax for its intended use in bars were calculated based on the EDIs determined by FDA. As presented in the Dietary Exposure section, estimated mean and 90th percentile intakes of rice bran wax of 0.003 g/kg-bw/day and 0.005 g/kg-bw/day, respectively, were calculated (assuming a 3% use level) for the U.S. population ages 2 and over. This provides margins of exposure of approximately $223 \times$ and $134 \times$, respectively, for mean and 90th percentile intakes when compared to the lowest NOAEL reported from the 2-generation study with carnauba wax (Parent et al., 1983b). When considering the population with the highest EDI, ages 2–5 years, the estimated mean and 90th percentile intakes of rice bran wax were 0.007 g/kg/day and 0.014 g/kg/day, respectively. This provides margins of exposure of approximately 96× and 48×, respectively, for the mean and 90th percentile. Therefore, all calculated MOEs were determined to be at or greater than 100x, with the exception of the 90th percentile in the 2-5-year age group.

More importantly, all EDIs calculated by FDA are at or near the JECFA ADI for carnauba wax of 0-7 mg/kg-bw/day. Only the 90th percentile in the 2-5-year age group had an EDI marginally above the JECFA ADI. As stated by Lambe et al. (2002), the overestimations of shorter-term surveys may be of more significance when comparing to standards, such as ADIs. It is possible that utilization of longer term survey data, e.g., 30 days, would further reduce the within-person variability and result in even lower EDIs relative to the ADI. Regardless, an EDI marginally above the ADI for the 90th percentile of only one age group - 2-5 year olds - is of limited concern given the inherent overconservatism in both the EDI calculations (i.e., inclusion of any all bar types) and the basis of the ADI determination. An ADI, as determined by JECFA, is "an estimate of the amount of the additive, expressed on a body weight basis, that can be ingested daily over a lifetime without appreciable health risk (notionally "zero" risk). JECFA does not make a quantitative estimate of risk at an intake corresponding to the ADI, but concludes that the risk is so small as to be negligible from a public health point of view"¹⁰. JECFA goes on to state that this evaluation "can be considered to be mainly the hazard characterization step". In other words, the ADI is not a threshold above which the risk of health effects will suddenly be of concern. In addition, the ADI for carnauba wax was developed assuming ingestion over a lifetime. The EDI for the age group in question, 2-5 years, is a transient time period that has limited relevance to a lifetime exposure.

The analysis as presented in this GRAS assessment demonstrates that all EDIs for rice bran wax are at or near the most relevant ADI. Together with the supporting safety data, the available information demonstrates the rice bran wax product to be safe for the intended use described herein.

General Recognition of the Safety of Rice Bran Wax

The intended use of rice bran wax has been determined to be safe through scientific procedures as set forth in 21 CFR § 170.3(b), thus satisfying the so-called "technical" element of the GRAS determination and is based on the following:

- The rice bran wax that is the subject of this notification is a high melting point vegetable wax obtained from rice husks. The rice bran wax product is manufactured consistent with current cGMP for food (21 CFR Part 110). The raw materials and processing aids used in the manufacturing process are food grade and/or approved for use as in food.
- Brown rice, and their derivatives have a long history of human consumption with rice cultivation documented back to prehistoric times. Importantly, the known history of use of rice bran wax in food such as candy, chewing gum, and fresh fruit and vegetables (21 CFR § 172.890 and 21 CFR § 172.615) is supportive of its safe use in food.

¹⁰ http://www.fao.org/docrep/008/ae922e/ae922e05.htm

- Rice bran wax consists primarily of high-molecular-weight monoesters ranging from C48 to C64 (87%–98%; Appendix A); the remaining components of the rice bran wax product consist of free long-chain fatty alcohols, free long-chain fatty acids, or triglycerides from rice bran oil. While some toxicological data are available for rice bran wax, information on its main constituents and other plant-based waxes with similar chemical structures, and thus similar potential for absorption, was also evaluated as part of the GRAS assessment. Studies conducted on carnauba wax, candelilla wax, beeswax, lanolin wax, and jojoba wax were identified and deemed suitable for inclusion in the safety assessment of rice bran wax and its constituents, and were considered by the Expert Panel in its evaluation. Safety studies on these materials have been conducted and are publicly available and/or have been previously reviewed and reported in summary form by an authoritative regulatory body.
- Subchronic toxicity and/or reproductive/developmental toxicity studies were identified for carnauba wax, candelilla wax, and jojoba oil. In each of the published studies on carnauba wax, the NOAEL was the highest dose level administered and ranged from 250 to 10,800 mg/kg/day, the highest of which was a concentration of 10% (equivalent to 8,800 and 10,200 mg/kg-bw/day in males and females, respectively) administered in the diet of rats for 90 days. Chronic studies with candelilla wax were also identified, and the NOAELs in these studies were also the highest dose tested, up to 2,400 mg/kg-bw-day.
- The intake analysis conducted by FDA resulted in EDIs below the JECFA ADI for carnauba wax of 0–7 mg/kg-bw/day, apart from the 90th percentile of the 2- to 5-year-old age group. Regardless, an EDI marginally above the ADI for the 90th percentile of only one age group—2- to 5-year–olds—is of limited concern given the inherent over-conservatism in both the EDI calculations (i.e., incorporates any and all bar types) and the basis of the JECFA ADI determination developed for a lifetime exposure.
- Given that rice bran wax contains little to no protein, the component responsible for imparting allergic potential, rice bran wax is not likely to pose an allergenic risk.
- The intake of total and inorganic arsenic from the intended use of rice bran wax is negligible and would not be expected to contribute to the background dietary intake of arsenic. In addition, inorganic arsenic is water soluble, and thus, the manufacturing process of rice bran wax will remove most of the inorganic arsenic.
- The publicly available scientific literature on the consumption and safety of rice bran wax and similar waxes is sufficient to support the safety and GRAS status of the proposed rice bran wax product.

59

59

Because this safety evaluation was based on generally available and widely accepted data and information, it also satisfies the so-called "common knowledge" element of a GRAS determination.

Determination of the safety and GRAS status of rice bran wax that is the subject of this self-determination has been made through the deliberations of an Expert Panel convened by Smucker and composed of Michael Carakostas, DVM, Ph.D.; Stanley M. Tarka, Jr., Ph.D.; and Thomas Vollmuth, Ph.D. These individuals are qualified by scientific training and experience to evaluate the safety of substances intended to be added to foods. They have critically reviewed and evaluated the publicly available information summarized in this document and have individually and collectively concluded that rice bran wax, produced in a manner consistent with GMP and meeting the specifications described herein, is safe under its intended conditions of use. The Panel further unanimously concludes that the use of rice bran wax is GRAS based on scientific procedures, and that other experts qualified to assess the safety of foods and food additives would concur with these conclusions. The Panel's GRAS opinion is included as Exhibit 1 to this document.

It is also Smucker's opinion that other qualified scientists reviewing the same publicly available toxicological and safety information would reach the same conclusion. Smucker has concluded that rice bran wax is GRAS under the intended conditions of use on the basis of scientific procedures, and therefore, it is excluded from the definition of a food additive and may be marketed and sold for its intended purpose in the U.S. without the promulgation of a food additive regulation under Title 21 of the CFR.

Smucker is not aware of any information that would be inconsistent with a finding that the proposed use of rice bran wax in food for human consumption meeting appropriate specifications, and used according to GMP, is GRAS. Recent reviews of the scientific literature revealed no potential adverse health concerns.

§ 170.250 Part 7, Supporting Data and Information

The following references are all generally available, unless otherwise noted. Appendix A and Exhibit 1 (analytical COAs for rice bran wax, signed Expert Panel report) are not generally available but are attached for reference.

References

Alemán, C, Rodeiro, I, Noa, M, Menéndez, R, Gaméz, R, Hernandez, C, Más, R. 2001. One-year dog toxicity study of D-002, a mixture of aliphatic alcohols. J Appl Toxicol. 21(3):179-84.

Andersen, FA. 2006. Amended final report on the safety assessment of oryza sativa (rice) bran oil, oryza sativa (rice) germ oil, rice bran acid, oryza sativa (rice) bran wax, hydrogenated rice bran wax, oryza sativa (rice) bran extract, oryza sativa (rice) extract, oryza sativa (rice) germ powder, oryza sativa (rice) starch, oryza sativa (rice) bran, hydrolyzed rice bran extract, hydrolyzed rice bran protein, hydrolyzed rice extract, and hydrolyzed rice protein. International Journal of Toxicology, 25(Suppl 2), 91-120.

Anonymous. 1984. Final report on the safety assessment of candelilla wax, carnauba wax, japan wax, and beeswax. Journal of the American College of Toxicology 3:1-41 Liebert MA. Inc. Publishers. *Report not available; as cited in EFSA (2012b)*.

Arcella, D, Leclercq, C. 2005. Assessment of dietary intake of flavouring substances within the procedure for their safety evaluation: advantages and limitations of estimates obtained by means of a per capita method. Food Chem Toxicol. 43(1):105-16.

Arruzazabala, Mde L, Molina, V, López, E, Castaño, G, Fernández, L, Carbajal, D, Mas, R, Ferrer, JI, Mendoza, S, Ramírez, Y. 2008. Effects of D-003, a mixture of sugarcane wax acids, on platelet aggregation in hypercholesterolemic patients. A dose-titration, randomised, placebo-controlled trial. Arzneimittelforschung. 2008;58(8):376-84.

Australian Government. 2007. Australian Therapeutic Goods Administration (TGA). Substances that may be used in Listed medicines in Australia.

Bassan, A, Fioravanzo, E, Pavan, M, Conto, A. 2012. European Food Safety Authority External Scientific Report: Reports on toxicokinetics, toxicity and allergenicity data on substances to be evaluated as acceptable previous cargoes for edible fats and oils (NP/EFSA/CONTAM/2011/01) – Batches n. 1, 2 and 3. EFSA Supporting Publications 2012:EN-274.

Bagby, MO. 1988. Comparison of Properties and function of jojoba oil and its substitutes. Proc. 7th Int. Conf. on Jojoba and Its Uses. Editor A. R. Baldwin. Available from: <u>https://naldc.nal.usda.gov/download/24088/PDF.</u>

Becker, L. 2008. Safety assessment of Simmondsia Chinensis (jojoba) seed oil, simmondsia chinensis (jojoba) seed wax, hydrogenated jojoba oil, hydrolyzed jojoba esters, isomerized jojoba oil, jojoba esters, Simmondsia Chinensis (jojoba) butter, jojoba alcohol, and synthetic jojoba oil. Available from: <u>http://www.cir-</u> safety.org/sites/default/files/115_buff3f_suppl.pdf.

Berman, P, Harley, EH, Spark, AA. 1981. Keriorrhoea—The passage of oil per rectum— After ingestion of marine wax esters. S Afr Med J. 59(22):791–792. Brock, T. 2016. Personal communication with ToxStrategies on March 27, 2016. Duke University Toxicology Program (Principal Toxicologist).

Brusick, D. 1976. Mutagenic evaluation of compound FDA 75-43, MX8006-44-8 candelilla wax, L.F. refined. Project No. 2468, Litton Bionetics, Inc. *Report not available; as cited in EFSA (2012c).*

Burlando, B, Cornara, L. 2014. Therapeutic properties of rice constituents and derivatives (Oryza sativa L.): a review update. Trends in Food Science & Technology, 40(1), 82-98.

Celsis Laboratory Group. 1999. Evaluation of mutagenicity potential for Fluoaesters IPJ by the Ames mutagenicity assay. Unpublished data submitted by CTFA, September 17, 2007. Report made available for this GRAS assessment by CIR, can be provided if requested.

Chowdhury, MM. 2002. Allergic contact dermatitis from prime yellow carnauba wax and coathylene in mascara. Contact Dermatitis 46(4): 244.

Cook, R. 2011. Tracking demographics and US fruit and vegetable consumption patterns. Department of Agricultural and Resource Economics, University of California, Davis. Available from:

https://arefiles.ucdavis.edu/uploads/filer_public/2014/05/19/blueprintseoeconsumptionco okfinaljan2012figures.pdf.

Consumer Product Testing Co. 1998f. Acute oral toxicity test in rats, rice bran wax S-100, Lot No. W90305. Unpublished data submitted by CTFA. 12 pages. *Report not available; as cited in Andersen (2006).*

Elder, RL ed. 1980. Final Report of the Safety Assessment for Acetylated Lanolin Alcohol and Related Compounds. J Environment Pathol Toxicol 4(4):63-92.

Edwards, AJ. 1996. A chromosome aberration study using human lymphocytes treated in vitro with carnauba wax. Study report from BIBRA International testing laboratory. Project No. 3066/1.Unpublished report. *Report not available; as cited in EFSA (2012b)*.

Edwards, AJ. 1997. Addendum to A chromosome aberration study using human lymphocytes treated *in vitro* with carnauba wax. Study report from BIBRA International testing laboratory. Addendum to Project No. 3066/1. Unpublished report. *Report not available; as cited in EFSA (2012b)*.

Edwards, AJ. 1998. A modified 90-day feeding study to investigate the potential for bioaccumulation of carnauba wax in the Fisher 344 rat, Study report from BIBRA International testing laboratory. Project No. 3180/1. Unpublished report. *Report not available; as cited in EFSA (2012b)*.

Environmental Protection Agency (EPA). 1995. Jojoba oil exemption from tolerance requirement 10/95. Federal Register. Vol. 60, Number 207, pp 54,839-54,840.

Environmental Technical Laboratory, Ltd. 1998. Rice bran wax S-100: Bacterial mutation assay. Unpublished data submitted by CTFA. 5 pages). *Report not available; as cited in Andersen (2006).*

European Commission Scientific Committee for Food (SCF). 2001. Opinion of the Scientific Committee on Food on carnauba wax. SCF/CS/ADD/MsAd/194.

European Food Safety Authority (EFSA). 2007. Beeswax (E 901) as a glazing agent and as carrier for flavours. Scientific Opinion of the Panel on Food additives, Flavourings, Processing aids and Materials in Contact with Food (AFC). The EFSA Journal (2007) 615, 1-28.

European Food Safety Authority (EFSA). 2012a. Scientific Opinion on the evaluation of the substances currently on the list in the Annex to Commission Directive 96/3/EC as acceptable previous cargoes for edible fats and oils – Part III of III. EFSA Journal 2012;10(12):2984.

European Food Safety Authority (EFSA). 2012b. Scientific opinion on the re-evaluation of carnauba wax (E 903) as a food additive. EFSA Journal 10(10):2880.

European Food Safety Authority (EFSA). 2012c. Scientific opinion on the re-evaluation of candelilla wax (E 902) as a food additive. EFSA Journal 10(11):2946.

Federal Register. 2016. 81 FR 54959. Docket No. FDA-1997-N-0020 (formerly 97N-0103).

Federation of American Societies for Experimental Biology. 1975. Evaluation of the health aspects of beeswax (yellow or white) as a food ingredient. Unpublished report, Contract No. FDA 223-75-2004. Submitted to Food and Drug Administration. Cited by WHO (1993). *Report not available; as cited in JECFA (2006)*.

Food and Agriculture Organization of the United Nations (FAO). 2013. Carnauba wax.

Food and Drug Administration (US FDA). 2004. GRN No. 151. GRAS Notification for Ethanol (Ethyl Alcohol). Prepared by Frito-Lay, Inc.

Food and Drug Administration (US FDA). 2017. Memorandum: Dietary exposure estimate to rice bran wax. To: Administrative File, GRN 000655 in response to FOI Request No. 2017-4008.

Food and Drug Research Laboratory (FDRL). 1977. Evaluation of the effects of carnauba wax in FDRL/Wistar derived rats after dietary exposure through one full generation. Unpublished report of July 8, 1977 submitted to Brazilian Embassy, Washington, D.C. *Report not available; as cited in EFSA (2012b)*.

Gámez, R, Mas, R, Noa, M, Menéndez, R, Alemán, C, Acosta, P, García, H, Hernández, C, Amor, A, Pérez, J, Goicochea, E. 2000. Toxicol Lett. 118(1-2):31-41.

Gámez, R, González, JE, Rodeiro, I, Fernández, I, Alemán, C, Rodríguez, MD, Acosta, PC, García, H. 2001. J Med Food. 4(2):85–91.

Gámez, R, Más, R, Noa, M, Menéndez, R, Garcia, H, González, J, Pérez, Y, Goicochea, E. 2002. Drugs R D. 3(6):375–386

Gámez, R, Más, R, Noa, M, Menéndez, R, García, H, González, J, Perez, Y, Goicochea, E. 2004. Effects of chronic administration of D-003, a mixture of sugar cane wax high molecular acids, in beagle dogs. Drugs Exp Clin Res. 30(2):75–88.

Gámez, R, Noa, M, Mas, R, Mendoza, N, Pardo, B, Menéndez, R, Pérez, Y, González, RM, Gutiérrez, A, Marrero, G, Goicochea, E, García, H, Curveco, D. 2007. Long-term carcinogenicity of D-003, a mixture of high molecular weight acids from sugarcane wax, in Sprague Dawley rats: a 24 months study. Food Chem Toxicol. 45(12):2352–2358.

Hamm, DJ. 1984. Preparation and evaluation of trialkoxytricarballylate, trialkoxycitrate, trialkoxyglycerylether, jojoba oil and sucrose polyester as low calories replacements of edible fats and oils. J Food Sci. 49:419–428.

Hansen, IA, Mead, JF. 1965. The fate of dietary wax esters in the rat. Proc Soc Exp Biol Med. 120:527-532.

Hargrove, JL, Greenspan, P, Hartle, DK. 2004. Nutritional significance and metabolism of very long chain fatty alcohols and acids from dietary waxes. Experimental Biology and Medicine, 229(3), 215-226.

Harrison, JWE. 1946. Product No. 12, type III GRS. Rubber and candelilla wax. Report 33731. Unpublished Report. *Report not available; as cited in EFSA (2012c)*.

Harrisson, JWE. 1948. Product No. 16, 50/50 mixture candelilla wax and heveatex (Styrene and Butadiene) Polymer N-1017. Report 38222. *Report not available; as cited in EFSA (2012c)*.

Harrisson, JWE. 1949. Heveatex 50%, candelilla wax, hydrogenated fat. Report 39348. *Report not available; as cited in EFSA (2012c)*.

Harrisson, JWE. 1953. Long-term safety studies. Resume of studies on young dogs and albino rats. *Report not available; as cited in EFSA (2012c)*.

Heise, C, Decombaz, J, Anantharaman, K. 1982. Energy value of JO for the growing rat. Int J Vitam Nutr Res. 52:216.

Hodge, HC. 1973. A critical review at the 1) Feeding studies of candelilla wax incorporated in gum base, 2) together with studies of the possible carcinogenic potential by other routes of administration. University of California, San Francisco. *Report not available; as cited in EFSA (2012c).*

Joint FAO/WHO Expert Committee on Food Additives (JEFCA).1993a. Toxicological evaluation of certain food additives and naturally occurring toxicants. WHO Food Additive Series: 30 (758. Carnauba Wax).

Joint FAO/WHO Expert Committee on Food Additives (JEFCA).1993b. Toxicological evaluation of certain food additives and naturally occurring toxicants. WHO Food Additive Series: 30 (757. Candelilla Wax).

Joint FAO/WHO Expert Committee on Food Additives (JEFCA). 2006. Safety evaluation of certain food additives. WHO Food Additives Series: 56.

Krendlinger, E, Wolfmeier, U, Schmidt, H, Heinrichs, F, Michalczyk, G, Payer, W, Dietsche, W, Boehlke, K, Hohner, G, Wildgruber, J. 2000. Ullmann's Encyclopedia of Industrial Chemistry. Wiley-VCH Verlag GmbH & Co. KGaA, publisher. Available from: http://onlinelibrary.wiley.com/doi/10.1002/14356007.a28 103.pub2/abstract.

Lambe, J, Kearney, J. 1999. The influence of survey duration on estimates of food intakes—Relevance for food-based dietary guidelines. Brit J Nutr. 81, Suppl. 2, S139–S142.

Lambe, J, Kearney, J, Leclercq, C, Zunft, HFJ, De Henauw, S, Lamberg-Allardt, CJE, Dunne, A, Gibney, MJ. 2000. The influence of survey duration on estimates of food intakes and its relevance for public health nutrition and food safety issues. Eur J Clin Nutr. 54: 166-173.

Leberco Testing, Inc. 1988a. Acute oral toxicity study Floraesters® 15. Unpublished data submitted by CTFA, September 17, 2007. *Report not available; as cited by Becker* (2008).

Leberco Testing, Inc. 1988b. Acute oral toxicity study Floraesters® 30. Unpublished data submitted by CTFA, September 17, 2007. *Report not available; as cited by Becker (2008).*

Leberco Testing, Inc. 1988c. Acute oral toxicity study Floraesters® 60. Unpublished data submitted by CTFA, September 17, 2007. *Report not available; as cited by Becker* (2008).

Leberco Testing, Inc. 1988d. Acute oral toxicity study Floraesters® 70. Unpublished data submitted by CTFA, September 17, 2007. *Report not available; as cited by Becker* (2008).

Leberco Testing Inc. 1991a. Acute oral toxicity in rats—Hydrogenated Rice Bran Wax. Unpublished data submitted by CTFA. 3 pages. *Report not available; as cited in Andersen, 2006.* Leclercq, C, Arcella, D, Le Donne, C, Piccinelli, R, Sette, S, Soggiu, ME. 2003. Stochastic modelling of human exposure to food chemicals and nutrients within the Montecarlo project: an exploration of the influence of brand loyalty and market share on intake estimates of intense sweeteners from sugar-free soft drinks. Toxicol Lett 140–141, 443–457.

Liebert, MA. 1984. Final report on the safety assessment of candelilla wax, carnauba wax, Japan wax, and beeswax. J Am Coll Toxicol. 3:1–41. *Report not available; as cited in EFSA (2012a; c).*

Litton Bionetics, Inc. 1975. Mutagenic evaluation of compound MX8015869, carnauba wax (73-48). Unpublished report of April 15, 1975, submitted to Food and Drug Administration, Rockville, MD. *Report not available;* quoted by *JECFA (1993a), as cited by EFSA (2012b)*.

Locke, RK. 1978. Locke, R.K. to L.J. Lin, FDA memo, 3/22/1978. Report not available; as cited by EPA (1995).

Logan, BK, Distefano, S. 1998. Ethanol content of various foods and soft drinks and their potential interference with a breath-alcohol test. J Analyt Toxicol. 32:181–183.

Loretz, LJ, Api, AM, Barraj, LM, Burdick, J, Dressler, WE, Gettings, SD, Han Hsu, H, Pan, YH, Re, TA, Renskers, KJ, Rothenstein A, Scrafford, CG, Sewall, C. 2005. Exposure data for cosmetic products: Lipstick, body lotion, and face cream. Food Chem Toxicol. 43(2):279–291.

Maps of the World. 2006. World Top 10 - Chewing Gum Consumer Countries. http://www.mapsofworld.com/world-top-ten/world-top-ten-chewing-gum-consumercountries.html.

Maru, AD, Surawase, RK, Bodhe, PV. 2012. Studies on Physico-Chemical Properties of Rice Bran Wax and its Comparison with Carnauba Wax. Int J Pharmaceut Phytopharmacol Res. 1(4):203–207.

McGee Laboratories. 1974. Unpublished report submitted to Research Institute for Fragrance Materials, 27 September 1974. Cited by American College of Toxicology (1984). *Report not available; as cited in WHO (2006)*.

Miwa, TK. 1971. Jojoba oil wax esters and derived fatty acids and alcohols: gas chromatographic analyses. J Am Oil Chemists' Soc. 48(6):259–264.

Mortelmans, KE, Eckford, SL. 1979. Microbial mutagenesis testing of substances compound report: F76-048, candelilla wax. Unpublished report. Final Report, Project No. LSU-6909. SRI International. *Report not available;* quoted by *JECFA (1993a)*, as cited by *EFSA (2012c)*.

Mortelmans, KE, Griffin, AF. 1981. Microbial mutagenesis testing of substances compound F73-048: carnauba wax, yellow. Unpublished SRI Report LSU-6909 from

Frank B. Ross & Co. Submitted to Food and Drug Administration by Frank B. Ross & Co. Report (LSU-6909). *Report not available;* quoted by *JECFA (1993a), as cited by EFSA (2012b).*

Nippon Bio-Test Laboratories Inc. 1972. Acute oral toxicity test of rice bran wax in mice. Submitted by FDA in response to an FOI request—1997. 4 pages. *Report not available; as cited in Andersen (2006).*

National Library of Medicine (NLM). 2016. Wax poisoning. www.nlm.nih.gov/medlineplus/ency/article/002815.htm

Noa, M, Mendoza, S, Mas, R, Gámez, R, Valle, M, Pardo, B, Gutiérrez, A, Mendoza, N. 2007. D-003 does not possess oestrogenic potential in-vivo: findings of the uterotrophic assay. J Pharm Pharmacol. 59(10):1433–1437.

Noa, M, Gámez, R, Más, R, Gutiérrez, A, Mendoza, N, Pardo, B, Marrero, G, Curveco, D, Goicochea, E, García, H, Pérez, Y, González, RM. 2009. Study of the long-term carcinogenicity potential of D-003, a mixture of high molecular weight sugarcane wax acids, in mice. Food Chem Toxicol. 47(4):687–692

Orlich, MJ, Jaceldo-Siegl, K, Sabaté, J, Fan, J, Singh, PN, Fraser, GE. 2014. Patterns of food consumption among vegetarians and non-vegetarians. Brit J Nutr. 112(10):1644–1653.

Oser, BL, Ford, RA. 1977. Recent progress in the consideration of flavoring ingredients under the food additives amendment. 10. GRAS substances. Food Technol. 31(1):65–74.

Parent, RA, Cox, GE, Babish, JG, Gallo, MA, Hess, FG, Becci, PJ. 1983a. Subchronic feeding study of carnauba wax in beagle dogs. Food Chem Toxicol 21:85–87.

Parent, RA, Re, TA, Babish, JG, Cox, GE, Voss, KA, Becci PJ. 1983b. Reproduction and subchronic feeding study of carnauba wax in rats. Food Chem Toxicol 21:89–93.

Place, AR. 1992. Comparative aspects of lipid digestion and absorption: physiological correlates of wax ester digestion. Am J Physiol. 263(3 Pt 2):R464–R471.

Prival, MJ, Simmon, VF, Mortelmans, KE, 1991. Bacterial mutagenicity testing of 49 food ingredients gives very few positive results. Mutation Res. 260:321–329.

REACH Registration for Fatty Acids, Lanolin. 2015. Available at: https://echa.europa.eu/registration-dossier/-/registered-dossier/13395. Study information is publicly available but may be subject to copyright laws; the authors of this GRAS assessment are in the process of attempting to obtain permission for its use.

REACH Registration for Polar Modified Rice Bran Wax. 2016. Available at: https://echa.europa.eu/registration-dossier/-/registered-dossier/18316. Study information is publicly available but may be subject to copyright laws; the authors of this GRAS assessment are in the process of attempting to obtain permission for its use. Reinhardt, JG, Brown, JH. 1990. Jojoba oil and derivatives — Safety and applications in cosmetics. Unpublished data submitted by Jojoba Growers and Processors, Inc., 1990. *Report not available; as cited in Becker (2008).*

Revolymer Limited. 2011. GRN No. 374; Maleated isoprenyl polymer with methoxypolyethylene glycol (MIP-MPEG).

http://www.fda.gov/downloads/Food/IngredientsPackagingLabeling/GRAS/NoticeInvent ory/ucm269568.pdf.

Rodeiro, I, Alemán, C, Noa, M, Menéndez, R, Más, R, Hernández, C, Garcia, M. 1998. Preclinical oral toxicology in rats of D-002, a natural drug with antiulcer effects. Drug Chem Toxicol. 21(2):151–162.

Rodríguez, MD, Gámez, R, Sánchez, M, García, H. 1998. Developmental toxicity of D-002 (a mixture of aliphatic primary alcohols) in rats and rabbits. J Appl Toxicol. 18(5):313–316.

Rodríguez, MD, González, JE, Alemán, C, Rodeiro, I, Arango, E, Gámez, R, Valdés, S, García, H, Goicochea, E, Acosta, CP. 2004. Food Chem Toxicol. 42(12):1977–1985.

Rodríguez, MD, González, JE, León, EF, Gutiérrez, A, Marrero, G, Gámez, R, García, H, Goicochea, E, Rodríguez, Y, Gómez, A. 2006. Perinatal/postnatal study of D-003, a mixture of long-chain fatty acids, in rats. J Med Food. 9(2):223–230

Rowland, IR, Butterworth, KR, Gaunt, IF, Grasso, P, Gangolli, SD. 1982. Short-term toxicity study of carnauba wax in rats. Food Chem Toxicol. 20:467–471.

Sabale, V, Sabale, PM, Lakhotiya, CL. 2007. In vitro studies on rice bran wax as skin moisturizer. Indian J Pharmaceut Sci. 69(2):215.

Scientific Committee on Food (SCF). 1992. Report of the Scientific Committee for Food on a second series of food additives of various technological functions. Opinion expressed on 19 October 1990. In: Twenty-sixth report series. *Report not available; as cited in EFSA (2012c).*

Sengupta, A, Behera, J. 2014. Comprehensive view on chemistry, manufacturing & applications of lanolin extracted from wool pretreatment. Am J Eng Res (AJER). 3(7):33–43.

Shumow, L, Barraj, LM, Murphy, MM, Bi, X, Bodor, AR. 2012. Candy consumption in the United States. FASEB Journal 26:1005.3 (abstract).

Smith, JH, Mallett, AK, Priston, RA, Brantom, PG, Worrell, NR, Sexsmith, C, Simpson, BJ. 1996. Ninety-day feeding study in Fischer-344 rats of highly refined petroleumderived food-grade white oils and waxes. Toxicol Pathol. 24(2):214–230. Stalder, R, Marchesini, M, Bexter, A. 1985. Effects of feeding jojoba waxes to rats. A 90day study. American Oil Chemists Society Symposium, Philadelphia, 1985. J Am Oil Chem Soc. 62(4):600.

Taguchi, N, Kunimoto, T. 1977. Toxicity studies on jojoba oil for cosmetic uses. Cosmet Toilet. 92:53.

ToxStrategies, Inc. 2016. Estimated daily intake of rice bran wax. Appendix D, this document.

U.S. Census Bureau. 2011. Facts for Features: Halloween. October 31. http://www.census.gov/newsroom/releases/pdf/cb11ff-20 halloween.pdf.

U.S. Department of Agriculture (USDA). 2014. USDA Waxes Report: Carnauba Wax.

Warth, AH. 1956. The chemistry and technology of waxes. New 2nd ed. Reinhold Publishing Co., New York.

Wisniak, J. 1977. Jojoba oil and derivatives. Proc Chem Fats and Lipids 15(3):167-218.

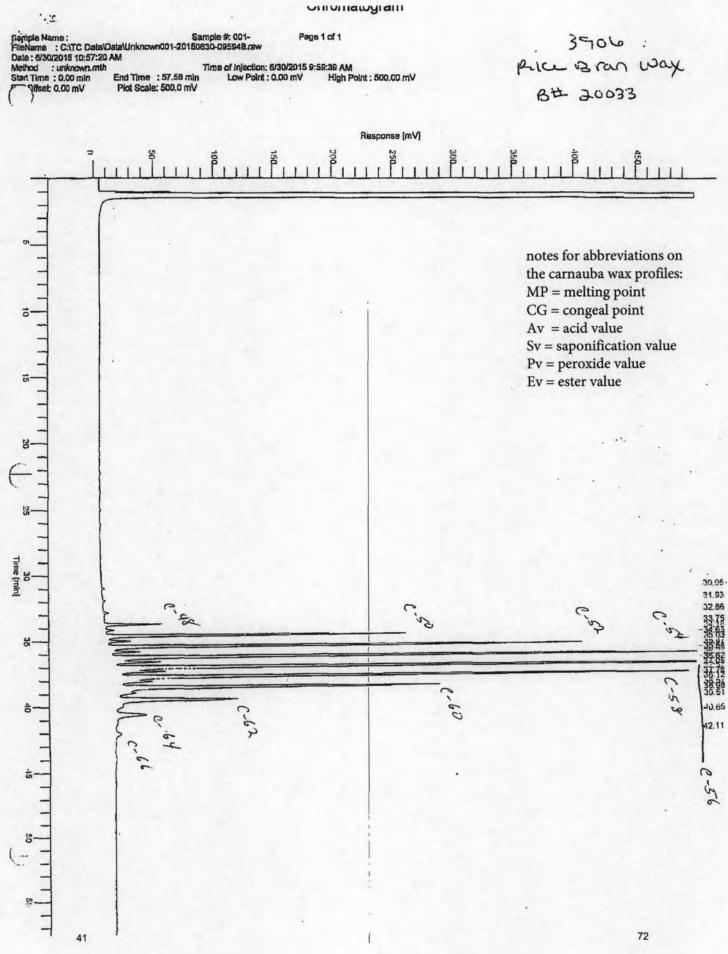
Vali, SR, Ju, YH, Kaimal, TNB, Chern, YT. 2005. A process for the preparation of foodgrade rice bran wax and the determination of its composition. J Amer Oil Chem Soc. 82:57.

Verbiscar, AJ, Banigan, TF, Weber, CW, Reid, BL, Trei, JE, Nelson, EA, Raffauf, RF, Kosersky, D. 1980. Detoxification of jojoba meal. J Agric Food Chem. 28:571–578.

Verschuren, PM. 1989. Evaluation of jojoba oil as a low-energy fat. 1. A 4-week feeding study in rats. J Food Chem Toxic. 27:35–44.

Verschuren, PM, Nugteren, DH. 1989. Evaluation of jojoba oil as a low-energy fat. 2. Intestinal transit time, stomach emptying and digestibility in short-term feeding studies in rats. J Food Chem Toxic. 27:45–48.

Yaron, A, Benzioni, A, More, I. 1980. Absorption and distribution of jojoba wax injected subcutaneously into mice. Lipids. 15:889–894.


Yaron, A, Benzioni, A, More, I, Mahler, D, Meshorere, A. 1982a. Physiological toleration of jojoba wax in laboratory animals. J Soc Cosmet Chem. 33:141–148.

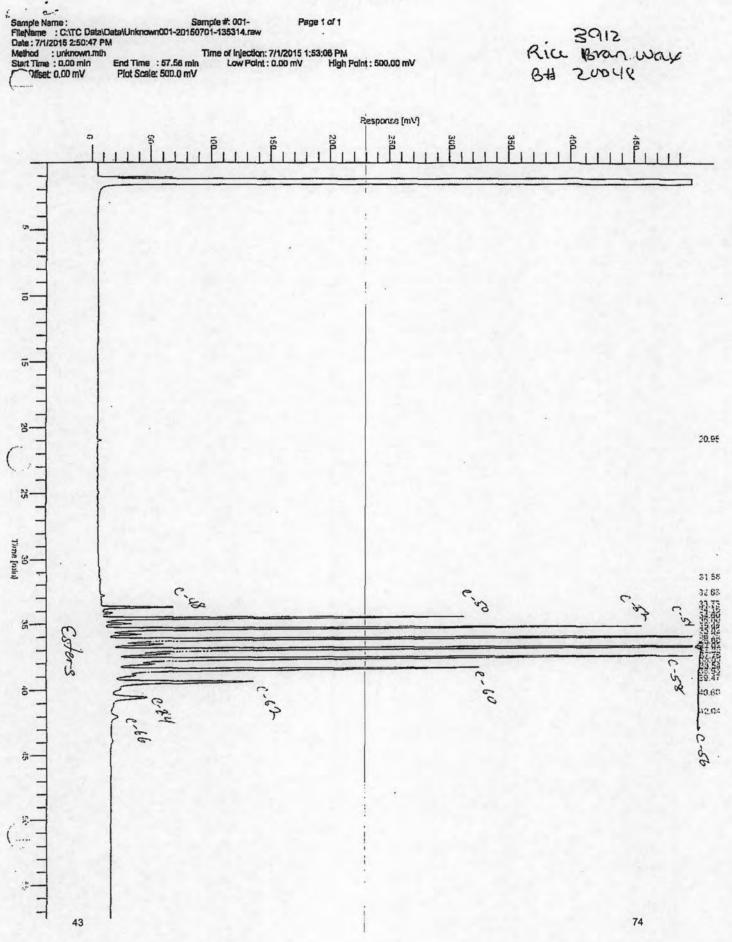
Yaron, A, Samoiloff, V, Benzioni, A. 1982b. Absorption and distribution of orally administered jojoba wax in mice. Lipids. 17:169–171.

70

APPENDIX A

Gas Chromatographs

		Page 1 of 1
Software Version : 6.3.2.0646 Reprocess Number : test-cb061b7723: 4626	Date	: 6/30/201 5 10:57:20 AM
(ample Name : Instrument Name : Autosystem Rack/Vial : 0/0 Sample Amount : 1.000000 Cycle : 1	Data Acquisition Time Channel Operator Dilution Factor	: 6/30/2015 9:59:39 AM : A : GC : 1.000000


Result File : C:\TC Data\Data\Unknown001-20150630-105720.rst Sequence File : C:\TC Data\Sequence\Unknown.seq

Rice Bran Wax (224P) B#20033

Peak #	Time [min]	Component Name	Area [uV*sec]	Norm. Area [%]
1	30.957		15661.13	0.06
2	31.933		13525.69	0.06
3	32.863		27870.63	0.11
4	33.753		333187.86	1.37
- 5	34.183		44937.57	0.19
6	34.627		1775411.71	7.32
7	35.028		137374.44	0.57
8	35.466		2876961.59	11.86
9	35.841		199670.29	0.82
10	36.274		4092070.98	16.87
11	36.624		344945.91	1.42
12	37.053	•	5069358.34	20.89
13	37.373		461433.74	1.90
14	37.780		3921734.22	16.16
15	38.119		381702.73	1.57
16	38.575		2717288.56	11.20
17	38.975		193504.39	0.80
18			1183497.75	4.88
19	40.652		380932.30	1.57
	42.113		92469.67	0.38
			24263539.52	100.00

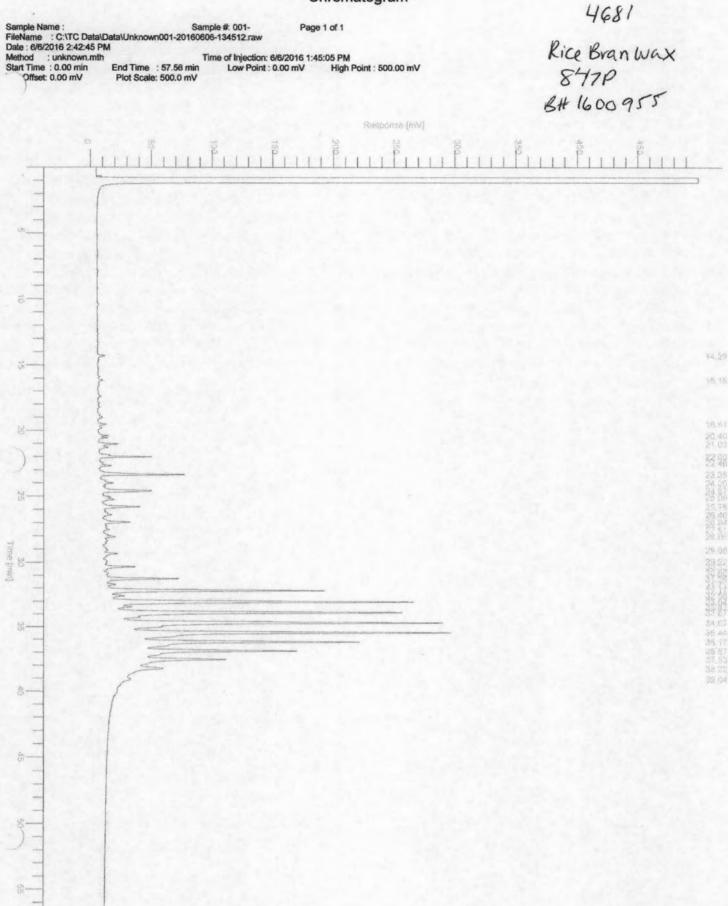
42

·

-		: 6:3.2.0646 : test-cb061b7723: 4634	Date	:	7/1/2015 2:50:46 PM	
	(ample Name Instrument Name Rack/Vial Sample Amount Cycle	: Autosystem : 0/0 : 1.000000 : 1	Data Acquisition Time Channel Operator Dilution Factor		7/1/2015 1:53:06 PM A GC 1.000000	

Result File : C:\TC Data\Data\Unknown001-20150701-145046.rst Sequence File : C:\TC Data\Sequence\Unknown.seq

1


(-

44

Rice Bran Wax (224P) B# 20048

Peak #	Time [min]	Component Name	Area [uV*sec]	Norm. Area [%]
1	20.983		20608.44	0.07
2	31.583		9702.14	0.03
3	32.832		24281.61	0.09
4	33.727		433007.48	1.52
~ 5	34.157		57968.79	0.20
6	34.603		2231083.02	7.84
7	35.003		167512.56	0.59
8	35.444		3454763.34	12.15
9	35.819		238401.81	0.84
10	36.254		4755959.99	16.72
11	36.600		456174.59	1.60
12	37.033		5845335.81	20.55
13	37.347		558600.25	1.96
14	37.755		4507671.36	15.85
15	38.087		448114.81	1.58
16	38.543		3101139.67	10.90
17	38.932		232118.18	0.82
18	39.466		1358306.00	4.78
	40.601		437570.71	1.54
20	42.040		106016.80	0.37
			28444337.37	100.00

Chromatogram

76

Page 1 of 2

Reprocess Number	: 6.3.2.0646 : test-cb061b7723: 5828	Date	: 6/6/2016 2:42:45 PM
)ample Name Instrument Name Rack/Vial Sample Amount Cycle	: Autosystem : 0/0 : 1.000000 : 1	Data Acquisition Time Channel Operator Dilution Factor	: 6/6/2016 1:45:05 PM : A : GC : 1.000000

Result File : C:\TC Data\Data\Unknown001-20160606-144245.rst Sequence File : C:\TC Data\Sequence\Unknown.seq

Rice Bran Wax (874P) # 1600955

Peak #		Time [min]	Component Name	Area [uV*sec]	Norm. Area [%]
	1	14.291		40984.95	0.19
	2	16.155		27957.85	0.13
	3	19.514		43347.67	0.20
	4	20.401		50761.17	0.23
	5	20.564		42502.86	0.20
)	6	21.026		131956.64	0.61
	7	21.291		63981.72	0.30
	8	22.004		312175.14	1.44
	9	22.457		28430.63	0.13
	10	22.680		69173.99	0.32
	11	23.354		490370.35	2.27
	12	23.996		80525.03	0.37
	13	24.568		403764.80	1.87
	14	25.057		48461.98	0.22
	15	25.230		80536.75	0.37
	16			258326.05	1.20
	17	26.399		64652.35	0.30
	18	26.945		174449.15	0.81
	19	27.514		27732.95	0.13
		28.047		82721.34	0.38
	21	29.079		57990.00	0.27
		29.334		118589.75	0.55
		29.916		45781.67	0.21
	24			219288.76	1.01
	25	30.799		24866.43	0.12
	26	31.259		505970.99	2.34
	27	31.707		49726.73	0.23
1	28	32.171		1552468.02	7.19
2	29	32.583		80607.63	0.37
	30	33.041		2449051.98	11.33
	31	33.425		83997.00	0.39
	32	33.869		2298857.13	10.64
	33	34.672		2426200.41	11.23

77

6/6/2016 2:42:45 PM Result: C:\TC Data\Data\Unknown001-20160606-144245.rst

Peak #	Time [min]	Component Name	Area [uV*sec]	Norm. Area [%]
34	35.444		3152631.29	14.59
35	36.171		2397464.30	11.10
36	36.869		1845492.46	8.54
37	37.535		1218931.29	5.64
38	38.223		502004.58	2.32
39	39.041		54297.45	0.25
			21607031.25	100.00

APPENDIX B

Analytical Results

3344 NW Industrial Street Portland, Oregon 97210 USA Tel: (503) 223-1497 Fax: (503) 223-9436 e-mail: info@omicusa.com www.omicusa.com **OMIC USA Inc.**

A Member of OMIC Group of Companies Independent Analytical Laboratory

Report Date: April 01, 2015

Koster Keunen Inc.

1021 Echo Lake Road Watertown, CT 06795

ANALYTICAL REPORT

Sample ID :	B#18940		Ma	trix: RICE BRA	N WAX 224P
Date Received:	February 20, 2015				
Lab ID # :	AB78145				
PAH'S Screen					
Analyte		Result	Units	MDL	
1 *Acenaphthene	9	ND	ppb	120	
2 *Acenaphthyle	ne	ND	ppb	100	
3 *Anthracene		ND	ppb	180	
4 *Benz(a)anthra	icene	ND	ppb	130	
5 *Benzo(a)pyrei	ne	ND	ppb	90	
6 *Benzo(b)fluora	anthene	ND	ppb	100	
7 *Benzo(g,h,i)pe	erylene	ND	ppb	100	
8 *Benzo(k)fluora	anthene	ND	ppb	100	
9 *Chrysene		ND	ppb	90	
10 *Dibenzo(a,h)a	Inthracene	ND	ppb	150	
11 *Flouranthene		ND	ppb	120	
12 *Fluorene		ND	ppb	190	
13 *Indeno((1,2,3-	-cd)pyrene	ND	ppb	130	
14 *Napthalene		ND	ppb	120	
15 *Phenanthrene		ND	ppb	100	
16 *Pyrene		ND	ppb	90	
Solvent Screen					
Analyte		Result	Units	MDL	
1 Hexane		ND	ppb	10	

Negative = < 10 CFU/g; CFU=Colony Forming Unit; ppb=parts per billion (mcg/Kg or mcg/L); ppm=parts per million (mg/Kg or mg/L) MDL=Minimum Detection Limit; ND=Not Detected; N/A=Not Applicable; Trace=Qualitative result < MDL; * = Analysis subcontracted

AB78145

Rev. 1

3344 NW Industrial Street Portland, Oregon 97210 USA Tel: (503) 223-1497 Fax: (503) 223-9436 e-mail: info@omicusa.com www.omicusa.com **OMIC USA Inc.**

A Member of OMIC Group of Companies Independent Analytical Laboratory

Report Date: April 16, 2015

Koster Keunen Inc.

1021 Echo Lake Road Watertown, CT 06795

ANALYTICAL REPORT

Sample	ID :	B#18940		Ma	trix: RICE BRAN WAX 2	24P
Date Re	eceived:	April 06, 2015				
Lab ID	#:	AB79475				
Ars	enic Specia	tion				
	Analyte		Result	Units	MDL	
1	Arsenate (As	(V)}	N/A	ppb	5	
2	Arsenite {As()}	N/A	ppb	5	
3	Inorganic Ars	enic	N/A	ppb		
4	Dimethylarse	nic acid	N/A	ppb	5	
5	Monomethyla	rsonic acid	N/A	ppb	5	
6	Organic Arse		N/A	ppb		
Che	emical Resid	lue				
	Analyte		Result	Units	MDL	
1	2,6-Diisoprop	yInaphthalene	ND	ppm	0.02	
2	Abamectin		ND	ppm	0.05	
3	Acephate		ND	ppm	0.25	
4	Acetamiprid		ND	ppm	0.05	
5	Acetochlor		ND	ppm	0.02	
6	Acibenzolar-S	S-Methyl	ND	ppm	0.25	
7	Acrinathrin		ND	ppm	0.02	
8	Alachlor		ND	ppm	0.02	
9	Aldicarb		ND	ppm	0.05	
10	Aldicarb Sulfo	one	ND	ppm	0.1	
11	Aldicarb Sulfo	oxide	ND	ppm	0.25	
12	Aldrin		ND	ppm	0.01	
13	Allethrin		ND	ppm	0.02	
14	Ametryn		ND	ppm	0.05	
15	Amitraz		ND	ppm	0.05	
16	Anilofos		ND	ppm	0.02	
17	Atrazine		ND	ppm	0.02	

Negative = < 10 CFU/g; CFU=Colony Forming Unit; ppb=parts per billion (mcg/Kg or mcg/L); ppm=parts per million (mg/Kg or mg/L) MDL=Minimum Detection Limit; ND=Not Detected; N/A=Not Applicable; Trace=Qualitative result < MDL; * = Analysis subcontracted

AB79475

Page 1 of 10

	3 Azaconazole	ND	ppm	0.02	
19		ND	ppm	0.05	
20		ND	ppm	0.1	
2	Azinphos-Methyl	ND	ppm	0.1	
22	•	ND	ppm	0.1	
2:	Benalaxyl	ND	ppm	0.02	
24	4 Bendiocarb	ND	ppm	0.05	
2	5 Benfluralin	ND	ppm	0.02	
20	6 Benfuresate	ND	ppm	0.02	
2	7 Benomyl (as Carbendazim)	ND	ppm	0.1	
2	B Benoxacor	ND	ppm	0.02	
29	9 Bensulide	ND	ppm	0.1	
30) Bentazone	ND	ppm	0.02	
3	1 Benzobicyclon	ND	ppm	0.1	
3		ND	ppm	0.05	
3		ND	ppm	0.05	
3		ND	ppm	0.02	
3		ND	ppm	0.25	
3		ND	ppm	0.02	
3		ND	ppm	0.02	
3		ND	ppm	0.1	
3		ND	ppm	0.05	
4		ND	ppm	0.02	
4		ND	ppm	0.02	
4		ND	ppm	0.02	
4		ND	ppm	0.02	
4		ND	ppm	0.02	
4		ND	ppm	0.02	
4		ND		0.02	
4		ND	ppm	0.02	
4		ND	ppm	0.02	
4			ppm		
		ND	ppm	0.02	
5		ND	ppm	0.02	
5		ND	ppm	0.02	
5		ND	ppm	0.02	
5		ND	ppm	0.05	
5		ND	ppm	0.1	
5		ND	ppm	0.05	
5		ND	ppm	0.1	
	7 Carbofuran	ND	ppm	0.05	
	8 Carbophenothion	ND	ppm	0.02	
	9 Carboxin	N/A	ppm	0.02	
	0 Carfentrazone-Ethyl	ND	ppm	0.02	
	1 Carpropamid	ND	ppm	0.02	
	2 Chlorantraniliprole	ND	ppm	0.05	
	3 Chlorbenside	ND	ppm	0.02	
	4 Chlorbufam	ND	ppm	0.02	
6	5 Chlordane	ND	ppm	0.02	

Negative = < 10 CFU/g; CFU=Colony Forming Unit; ppb=parts per billion (mcg/Kg or mcg/L); ppm=parts per million (mg/Kg or mg/L) MDL=Minimum Detection Limit; ND=Not Detected; N/A=Not Applicable; Trace=Qualitative result < MDL; * = Analysis subcontracted

	Chlorethoxyfos	ND	ppm	0.02	
67	Chlorfenapyr	ND	ppm	0.02	
68	Chlorfenson	ND	ppm	0.02	
69	Chlorfenvinphos	ND	ppm	0.02	
70	Chloridazon	ND	ppm	0.5	
71	Chlornitrofen	ND	ppm	0.1	
72	Chlorobenzilate	ND	ppm	0.02	
73	Chloroneb	ND	ppm	0.06	
74	Chloroxuron	ND	ppm	0.25	
75	Chlorpropham	ND	ppm	0.02	
76	Chlorpyrifos	ND	ppm	0.02	
77	Chlorpyrifos Methyl	ND	ppm	0.02	
78	Chlorthal-Dimethyl	ND	ppm	0.08	
79	Chlorthiofos	ND	ppm	0.1	
80	Chlozolinate	ND	ppm	0.1	
81	Chromafenozide	ND	ppm	0.05	
82	Cinidon-Ethyl	ND	ppm	0.05	
	Cinmethylin	ND	ppm	0.02	
84	Clethodim	N/A	ppm	0.02	
85	Clodinafop-Propargyl	ND	ppm	0.05	
86	Clofentezine	ND	ppm	0.05	
87	Clomazone	ND	ppm	0.04	
	Clomeprop	ND	ppm	0.1	
	Cloquintocet-Mexyl	ND	ppm	0.05	
90	Clothianidin	ND	ppm	0.05	
91	CPMC (Etrofol)	ND	ppm	0.1	
	Cumyluron	ND	ppm	0.1	
	Cyanazine	ND	ppm	0.05	
	Cyanophenphos	ND	ppm	0.04	
	Cyanophos	ND	ppm	0.02	
	Cyazofamid	ND	ppm	0.05	
	Cycloate	ND	ppm	0.02	
	Cyflufenamid	ND	ppm	0.02	
	Cyfluthrin	ND	ppm	0.1	
	Cyhalofop-Butyl	ND	ppm	0.06	
101	Cyhalothrin	ND	ppm	0.02	
	Cymoxanil	ND	ppm	0.1	
	Cypermethrin	ND		0.1	
	Cyproconazole	ND	ppm ppm	0.02	
	Cyprodinil	ND		0.02	
	Daimuron	ND	ppm ppm	0.05	
	DDD	ND	ppm	0.02	
	DDE	ND		0.02	
	DDT	ND	ppm	0.02	
	Deltamethrin	ND	ppm	0.02	
	Demeton O & S	N/A	ppm	0.04	
			ppm		
	Demeton-S-Methyl	N/A	ppm	0.02	
113	Desmedipham	ND	ppm	1	

Negative = < 10 CFU/g; CFU=Colony Forming Unit; ppb=parts per billion (mcg/Kg or mcg/L); ppm=parts per million (mg/Kg or mg/L) MDL=Minimum Detection Limit; ND=Not Detected; N/A=Not Applicable; Trace=Qualitative result < MDL; * = Analysis subcontracted

114	Diafenthiuron	N/A	ppm	0.1
115	Dialifos	ND	ppm	0.1
116	Di-allate	ND	ppm	0.04
117	Diazinon	ND	ppm	0.02
118	Dichlobenil	ND	ppm	0.1
119	Dichlofenthion (ECP)	ND	ppm	0.02
120	Dichlofluanid	ND	ppm	0.1
121	Dichlormid	ND	ppm	0.02
122	Dichlorvos	ND	ppm	0.02
	Diclobutrazol	ND	ppm	0.05
	Diclocymet	ND	ppm	0.02
125	Diclofop-Methyl	ND	ppm	0.02
126	Diclomezine	ND	ppm	0.1
127	Dicloran	ND	ppm	0.04
128	Dicofol	ND	ppm	0.02
129	Dicrotophos	ND	ppm	0.02
130	Dieldrin	ND	ppm	0.01
131	Diethofencarb	ND	ppm	0.06
132	Difenoconazole	ND	ppm	0.06
133		ND	ppm	0.5
134		ND	ppm	0.05
135		ND	ppm	0.02
136		ND	ppm	0.02
137		ND	ppm	0.05
138	Dimethenamid	ND	ppm	0.02
139		ND	ppm	0.02
140	Dimethylvinphos	ND	ppm	0.02
141	Diniconazole	ND	ppm	0.05
142		ND	ppm	0.05
	Dioxathion	ND	ppm	0.1
	Diphenamid	ND	ppm	0.02
145		ND	ppm	0.04
	Disulfoton	N/A	ppm	0.02
	Disulfoton Sulfone	ND	ppm	0.02
	Dithiopyr	ND	ppm	0.02
	Diuron	ND	ppm	0.05
	Edifenphos	ND	ppm	0.02
	Emamectin Benzoate	ND	ppm	0.05
152	Endosulfan	ND	ppm	0.02
153	Endosulfan Sulfate	ND	ppm	0.04
154	Endrin	ND	ppm	0.01
	EPN	ND	ppm	0.02
156	Epoxiconazole	ND	ppm	0.02
	EPTC	ND	ppm	0.02
	Esfenvalerate	ND	ppm	0.04
	Esprocarb	ND	ppm	0.02
	Ethalfluralin	ND	ppm	0.02
	Ethion	ND	ppm	0.02

Negative = < 10 CFU/g; CFU=Colony Forming Unit; ppb=parts per billion (mcg/Kg or mcg/L); ppm=parts per million (mg/Kg or mg/L) MDL=Minimum Detection Limit; ND=Not Detected; N/A=Not Applicable; Trace=Qualitative result < MDL; * = Analysis subcontracted

AB79475

Page 4 of 10

-	162	Ethiprole	ND	ppm	0.05
		Ethofumesate	ND	ppm	0.02
		Ethoprophos	ND	ppm	0.025
		Ethoxyquin	N/A	ppm	0.1
		Ethychlozate	ND	ppm	0.05
	167	Etobenzanid	ND	ppm	0.02
	168	Etofenprox	ND	ppm	0.02
	169	Etoxazole	ND	ppm	0.1
	170	Etridiazole	ND	ppm	0.1
	171	Etrimfos	ND	ppm	0.02
	172	Famphur	ND	ppm	0.04
	173	Fenamidone	ND	ppm	0.02
	174	Fenamiphos	ND	ppm	0.1
	175	Fenamiphos Sulfone	ND	ppm	0.02
	176	Fenarimol	ND	ppm	0.02
	177	Fenbuconazole	ND	ppm	0.05
	178	Fenchlorphos	ND	ppm	0.02
	179	Fenhexamid	ND	ppm	0.05
	180	Fenitrothion	ND	ppm	0.02
	181	Fenobucarb	ND	ppm	0.05
	182	Fenothiocarb	ND	ppm	0.05
	183	Fenoxanil	ND	ppm	0.05
	184	Fenoxaprop-Ethyl	ND	ppm	0.02
	185	Fenoxycarb	ND	ppm	0.1
	186	Fenpropathrin	ND	ppm	0.02
	187	Fenpropimorph	ND	ppm	0.02
	188	Fenpyroximate	ND	ppm	0.1
	189	Fensulfothion	ND	ppm	0.1
	190	Fenthion	ND	ppm	0.02
	191	Fentrazamide	ND	ppm	0.05
		Fenvalerate	ND	ppm	0.04
		Ferimzone	ND	ppm	0.05
		Fipronil	ND	ppm	0.01
		Flamprop-Methyl	ND	ppm	0.02
		Fluacrypyrim	ND	ppm	0.1
		Fluazifop-Butyl	ND	ppm	0.02
		Fluazinam	ND	ppm	0.25
		Flucythrinate	ND	ppm	0.04
		Fludioxonil	ND	ppm	0.05
	201	Flufenacet	ND	ppm	0.02
		Fluometuron	ND	ppm	0.1
		Fluquinconazole	ND	ppm	0.02
		Fluridone	ND	ppm	0.05
		Flusilazole Flusulfamide	ND	ppm	0.02
		Fluthiacet Methyl	ND ND	ppm	0.1 0.15
		Flutolanil	ND	ppm	0.15
		Flutriafol	ND	ppm	0.02
	203	Tion and the	ND	ppm	0.1

Negative = < 10 CFU/g; CFU=Colony Forming Unit; ppb=parts per billion (mcg/Kg or mcg/L); ppm=parts per million (mg/Kg or mg/L) MDL=Minimum Detection Limit; ND=Not Detected; N/A=Not Applicable; Trace=Qualitative result < MDL; * = Analysis subcontracted

AB79475

Page 5 of 10

210	Fluvalinate	ND	ppm	0.06
211	Fonofos	ND	ppm	0.02
212	Forchlorfenuron	ND	ppm	0.05
213	Fosthiazate	ND	ppm	0.1
214	Fthalide	ND	ppm	0.02
215	Furametpyr	ND	ppm	0.02
216	Furathiocarb	ND	ppm	0.05
217	Furilazole	ND	ppm	0.02
218	Halfenprox	ND	ppm	0.1
219	Haloxyfop	ND	ppm	0.01
	Haloxyfop Methyl	ND	ppm	0.02
221		ND	ppm	0.02
222		ND	ppm	0.02
223	Hexachlorobenzene	ND	ppm	0.02
224	Hexaconazole	ND	ppm	0.05
225	Hexazinone	ND	ppm	0.02
226	Hexythiazox	ND	ppm	0.1
227		ND	ppm	0.02
228	Imazamethabenz Methyl Ester	ND	ppm	0.2
229	Imibenconazole	ND	ppm	0.1
230	Imidacloprid	ND	ppm	0.1
231	Inabenfide	ND	ppm	0.05
232	2 Indoxacarb	ND	ppm	0.1
233	Iprobenfos	ND	ppm	0.02
234	Iprodione	ND	ppm	0.25
235	j Iprovalicarb	ND	ppm	0.1
236	i Isazophos	ND	ppm	0.02
237		ND	ppm	0.02
	l Isofenphos	ND	ppm	0.02
239	Isofenphos-Methyl	ND	ppm	0.02
240) Isoprocarb	ND	ppm	0.05
241	Isoprothiolane	ND	ppm	0.06
242	2 Isotianil	ND	ppm	0.02
243		ND	ppm	0.1
244		ND	ppm	0.02
245	i Isoxaflutole	ND	ppm	0.05
246		ND	ppm	0.05
	Kresoxim-Methyl	ND	ppm	0.02
	3 Lenacil	ND	ppm	0.25
	Lindane (gamma-BHC)	ND	ppm	0.02
250		ND	ppm	0.1
251		ND	ppm	0.02
252		ND	ppm	0.05
253		ND	ppm	0.02
	Mefenacet	ND	ppm	0.05
	Mefenpyr-Diethyl	ND	ppm	0.05
256		ND	ppm	0.02
257	Mephosfolan	ND	ppm	0.1

Negative = < 10 CFU/g; CFU=Colony Forming Unit; ppb=parts per billion (mcg/Kg or mcg/L); ppm=parts per million (mg/Kg or mg/L) MDL=Minimum Detection Limit; ND=Not Detected; N/A=Not Applicable; Trace=Qualitative result < MDL; * = Analysis subcontracted

AB79475

Page 6 of 10

-	258	Mepronil	ND	ppm	0.02	-
	259		ND	ppm	0.02	
	260		ND	ppm	0.04	
	261	Methabenzthiazuron	N/A	ppm	0.02	
	262	Methacrifos	ND	ppm	0.02	
	263	Methamidophos	ND	ppm	0.05	
		Methidathion	ND	ppm	0.05	
		Methiocarb	ND	ppm	0.05	
		Methomyl	ND	ppm	0.05	
		Methoprene	ND	ppm	0.02	
		Methoxychlor	ND	ppm	0.02	
		Methoxyfenozide	ND	ppm	0.05	
	270		ND	ppm	0.02	
	271	Metominostrobin	ND	ppm	0.02	
	272		ND	ppm	0.02	
	273		ND	ppm	0.02	
		Mirex	ND	ppm	0.2	
		Molinate	ND	ppm	0.02	
	276	Monocrotophos	ND	ppm	0.02	
	277	Monolinuron	ND	ppm	0.05	
	278	Myclobutanil	ND	ppm	0.02	
		Naled	ND	ppm	0.02	
	280	Naproanilide	ND		0.02	
	281	Napropamide	ND	ppm	0.02	
		Nitenpyram	ND	ppm	0.25	
		Nitrofen	ND	ppm	0.06	
			ND	ppm	0.02	
		Nitrothal-Isopropyl Norflurazon	ND	ppm	0.02	
		Novaluron	ND	ppm	0.05	
	287	Ofurace	ND	ppm	0.05	
	288	Omethoate	ND	ppm	0.05	
			ND	ppm	0.1	
		o-Phenyl Phenol		ppm		
	290 291	Orysastrobin	ND ND	ppm	0.02	
		Oryzalin		ppm		
	292		ND	ppm	0.02	
		Oxadixyl Oxamyl	ND ND	ppm	0.5 0.05	
				ppm		
		Oxaziclomefone	ND	ppm	0.05	
		Oxpoconazole-Fumarate	ND ND	ppm	0.15 0.25	
		Oxycarboxin		ppm		
		Oxydemeton-Methyl	ND	ppm	0.05 0.02	
		Oxyfluorfen Paclobutrazol	ND	ppm		
		Parathion	ND ND	ppm	0.02 0.02	
		Parathion-Methyl	ND	ppm	0.02	
		Pebulate	ND	ppm		
		Penconazole	ND	ppm	0.02 0.02	
		Pencycuron	ND	ppm	0.02	
	305	- encyculon	ND	ppm	0.05	

Negative = < 10 CFU/g; CFU=Colony Forming Unit; ppb=parts per billion (mcg/Kg or mcg/L); ppm=parts per million (mg/Kg or mg/L) MDL=Minimum Detection Limit; ND=Not Detected; N/A=Not Applicable; Trace=Qualitative result < MDL; * = Analysis subcontracted

-	306	Pendimethalin	ND	ppm	0.04
	307	Pentoxazone	ND	ppm	0.02
	308	Permethrin	ND	ppm	0.04
	309	Perthane	ND	ppm	0.06
	310	Phenmedipham	ND	ppm	0.25
	311	Phenothiol	ND	ppm	0.1
	312	Phenothrin	ND	ppm	0.04
	313	Phenthoate	ND	ppm	0.02
	314	Phorate	ND	ppm	0.02
	315	Phorate Sulfone	ND	ppm	0.02
	316	Phosalone	ND	ppm	0.02
	317	Phosmet	ND	ppm	0.02
		Phosphamidon	ND	ppm	0.02
		Phoxim	ND	ppm	0.1
		Picolinafen	ND	ppm	0.05
		Piperonyl Butoxide	ND	ppm	0.04
		Piperophos	ND	ppm	0.02
		Pirimicarb	ND	ppm	0.02
		Pirimioxyphos	ND	ppm	0.02
		Pirimiphos Ethyl	ND	ppm	0.04
		Pirimiphos-Methyl	ND	ppm	0.02
		Pretilachlor	ND	ppm	0.02
		Prochloraz	ND	ppm	0.02
	1000	Procymidone	ND	ppm	0.04
		Profenofos	ND	ppm	0.02
		Prohydrojasmon	ND	ppm	0.25
		Prometryn	ND	ppm	0.04
		Propachlor	ND	ppm	0.02
		Propanil	ND	ppm	0.02
		Propaphos	ND	ppm	0.02
		Propargite	ND	ppm	0.02
		Propazine	ND	ppm	0.02
		Propetamphos	ND		0.02
		Propiconazole	ND	ppm ppm	0.06
		Propoxur	ND		0.05
		Propyzamide	ND	ppm	0.05
		Prothiofos	ND	ppm ppm	0.02
		Pyraclofos	ND		0.04
		Pyraclonil	ND	ppm	0.02
		Pyraclostrobin	ND	ppm	0.05
		Pyraflufen Ethyl	ND	ppm	0.02
		Pyrazolynate	ND	ppm	0.05
			ND	ppm	0.02
		Pyrazophos Pyrazoxyfen	ND	ppm	0.25
		Pyrethrins	ND	ppm	0.25
	351		ND	ppm	0.02
		Pyridaben	ND	ppm ppm	0.02
		Pyridafenthion	ND	ppm	0.02
	000	, ynderonenon	110	ppm	0.02

Negative = < 10 CFU/g; CFU=Colony Forming Unit; ppb=parts per billion (mcg/Kg or mcg/L); ppm=parts per million (mg/Kg or mg/L) MDL=Minimum Detection Limit; ND=Not Detected; N/A=Not Applicable; Trace=Qualitative result < MDL; * = Analysis subcontracted

AB79475

Page 8 of 10

354	Pyrifenox	ND	ppm	0.02	-
355		ND	ppm	0.05	
356		ND	ppm	0.02	
357	Pyrimidifen	ND	ppm	0.02	
358		ND	ppm	0.02	
359		ND	ppm	0.02	
360		ND	ppm	0.02	
361		ND	ppm	0.02	
362		ND	ppm	0.05	
363	Quinoxyfen	ND	ppm	0.02	
364		ND	ppm	0.02	
365	Quizalofop-Ethyl	ND	ppm	0.02	
	Salithion (Dioxabenzofos)	ND	ppm	0.02	
	Sethoxydim	ND	ppm	0.25	
368		ND	ppm	0.02	
369		ND	ppm	0.1	
370		ND	ppm	0.05	
371		ND	ppm	0.04	
372		ND	ppm	0.05	
373		ND	ppm	0.05	
	Sulfotep	ND	ppm	0.02	
	Sulprofos	ND	ppm	0.02	
376		ND	ppm	0.04	
377		ND	ppm	0.06	
378	Tebufenozide	ND	ppm	0.25	
379	Tebufenpyrad	ND	ppm	0.02	
380		ND	ppm	0.04	
381		ND	ppm	0.1	
382	Tecnazene	ND	ppm	0.02	
383	Tefluthrin	ND	ppm	0.04	
384	Terbacil	ND	ppm	0.25	
385	Terbufos	ND	ppm	0.01	
386	Terbutryn	ND	ppm	0.04	
387	Tetrachlorvinphos	ND	ppm	0.02	
388	Tetraconazole	ND	ppm	0.02	
389	Tetradifon	ND	ppm	0.02	
390	Tetramethrin	ND	ppm	0.02	
391	Thenylchlor	ND	ppm	0.02	
392	Thiabendazole	ND	ppm	0.25	
393	Thiacloprid	ND	ppm	0.1	
394	Thiamethoxam	ND	ppm	0.05	
395	Thiazopyr	ND	ppm	0.02	
396		ND	ppm	0.15	
397	Thifluzamide	ND	ppm	0.04	
	Thiobencarb	ND	ppm	0.02	
399		ND	ppm	0.02	
400	Tiadinil	ND	ppm	0.05	
	Tolclofos-Methyl	ND		0.02	

Negative = < 10 CFU/g; CFU=Colony Forming Unit; ppb=parts per billion (mcg/Kg or mcg/L); ppm=parts per million (mg/Kg or mg/L) MDL=Minimum Detection Limit; ND=Not Detected; N/A=Not Applicable; Trace=Qualitative result < MDL; * = Analysis subcontracted

402	Tralomethrin	ND	ppm	0.04
403	Triadimefon	ND	ppm	0.02
404	Triadimenol	ND	ppm	0.05
405	Tri-allate	ND	ppm	0.02
406	Triazophos	ND	ppm	0.02
407	Tribuphos	ND	ppm	0.02
408	Trichlamide	ND	ppm	0.1
409	Trichlorfon	ND	ppm	0.05
410	Tricyclazole	ND	ppm	0.1
411	Tridiphane	ND	ppm	0.04
412	Trifloxystrobin	ND	ppm	0.1
413	Triflumizole	ND	ppm	0.02
414	Triflumuron	ND	ppm	0.1
415	Trifluralin	ND	ppm	0.02
416	Triforine	ND	ppm	0.05
417	Triticonazole	ND	ppm	0.05
418	Uniconazole P	ND	ppm	0.1
419	Vinclozolin	ND	ppm	0.02
420	XMC	ND	ppm	0.05
421	Xylylcarb	ND	ppm	0.05
422	Zoxamide	ND	ppm	0.1
Mir	nerals / Metals Screen			
	Analyte	Result	Units	MDL
1	Arsenic	ND	ppb	10
2	Cadmium	ND	ppb	10
3	Lead	21	ppb	10
4	Mercury	ND	ppb	5

Note:

1. The compounds reported as N/A did not recover from the matrix or had instrument interferences

2. The Lead analysis result is qualified as qualitative due the variation in quality control data

3. Unable to report the Arsenic Speciation results, however the total Arsenic determined by a different test method is not present.

Negative = < 10 CFU/g; CFU=Colony Forming Unit; ppb=parts per billion (mcg/Kg or mcg/L); ppm=parts per million (mg/Kg or mg/L) MDL=Minimum Detection Limit; ND=Not Detected; N/A=Not Applicable; Trace=Qualitative result < MDL; * = Analysis subcontracted

AB79475

Page 10 of 10

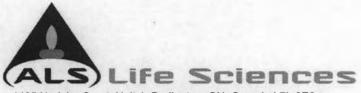
3344 NW Industrial Street Portland, Oregon 97210 USA Tel: (503) 223-1497 Fax: (503) 223-9436 e-mail: info@omicusa.com www.omicusa.com

OMIC USA Inc.

A Member of OMIC Group of Companies Independent Analytical Laboratory

Report Date: July 22, 2015

Koster Keunen Inc.


1021 Echo Lake Road Watertown, CT 06795

ANALYTICAL REPORT

Sample	ID :	B#18940		Mat	trix:	RICE BRAN WAX 224P
Date Re	eceived:	May 06, 2015				
Lab ID	#:	AB80320				
Per	sistent Orga	nic Pollutants				
1	Analyte *Dioxins/Furan	s/WHO-12 PCBs	Result Completed – see atta	ached ALS Ana	lysis Re	eport
Mic	robiological	Tests				
	Analyte		Result	Units		
1	Aerobic Plate	Count (APC)	10	CFU/g		
2	Coliform, Plat	e Count	<10	CFU/g		
3	E Coli, Plate	Count	<10	CFU/g		
4	Listeria Genu	s (by PCR)	Negative			
5	Mold		<10	CFU/g		
6	Salmonella (b	y PCR)	Negative			
7	Yeast		<10	CFU/g		
My	cotoxins Scr	een				
	Analyte		Result	Units	LO	Q
1	Aflatoxin B1		ND	ppb	5	5
2	Aflatoxin B2		ND	ppb	5	5
3	Aflatoxin G1		ND	ppb	5	5
4	Aflatoxin G2		ND	ppb	5	5

*This analysis is outside the scope of OMIC USA operations and has been subcontracted to ALS laboratory. Their report analysis is attached in its entirety. OMIC USA assumes no responsibility for its interpretations or use.

Negative = < 10 CFU/g; CFU=Colony Forming Unit; ppb=parts per billion (mcg/Kg or mcg/L); ppm=parts per million (mg/Kg or mg/L) LOQ= Limit of Quantification; ND=Not Detected; N/A=Not Applicable; Trace=Qualitative result < LOQ; * = Analysis subcontracted

1435 Norjohn Court, Unit 1, Burlington, ON, Canada L7L 0E6 Phone: 905-331-3111, FAX: 905-331-4567

Certificate of Analysis

ALS Project Contact: Ron McLeod ALS Project ID: ALS800 ALS WO#: L1623923 Date of Report 17-Jul-15 Date of Sample Receipt 9-Jun-15

Client Name: **Client Address:**

ALS Environmental 10450 Stancliff Road, Suite 210 Houston, Texas 77099-4338

Client Project ID: E1500506

Client Contact: Nicole Brown

COMMENTS:

PCDD/F by EPA 1613B

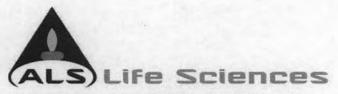
Percent recovery for 13C12 TCDD was below method acceptance criteria in Method blank. However, there was no native TCDD in the sample and therefore there is no compromise to the batch based upon this QC exceedance.

(b) (6)

Ron McLeod, PhD Director, Air Toxics & Special Chemistries

Results in this certificate relate only to the samples as submitted to the laboratory.

This report shall not be reproduced, except in full, without the written permission of ALS Canada Ltd.


ALS Life Sciences								
Sample Analysis summary Report								
Sample Name	AB80320							
ALS Sample ID	L1623923-1							
Sample Size	1.00							
Sample size units Percent Moisture	9							
	n/a							
Sample Matrix	Wax pellets							
Sampling Date Extraction Date	6-May-15 16-Jun-15							
	En Ardena							
Target Analytes	pg/g							
2,3,7,8-TCDD	<1.3							
1,2,3,7,8-PeCDD	<1.0							
1,2,3,4,7,8-HxCDD	<0.95							
1,2,3,6,7,8-HxCDD	<1.0							
1,2,3,7,8,9-HxCDD	<0.90							
1,2,3,4,6,7,8-HpCDD	<0.91							
OCDD	<0.87							
2,3,7,8-TCDF	<0.79							
1,2,3,7,8-PeCDF	<0.74							
2,3,4,7,8-PeCDF	<0.62							
1,2,3,4,7,8-HxCDF	<0.67							
1,2,3,6,7,8-HxCDF	<0.65							
2,3,4,6,7,8-HxCDF	<0.68							
1,2,3,7,8,9-HxCDF	1.05							
1,2,3,4,6,7,8-HpCDF	<0.55							
1,2,3,4,7,8,9-HpCDF	<0.75							
OCDF	1.24							
Extraction Standards	% Rec							
13C12-2,3,7,8-TCDD	54							
13C12-1,2,3,7,8-PeCDD	84							
13C12-1,2,3,4,7,8-HxCDD	85							
13C12-1,2,3,6,7,8-HxCDD	107							
13C12-1,2,3,4,6,7,8-HpCDD	68							
13C12-OCDD	56							
13C12-2,3,7,8-TCDF	83							
13C12-1,2,3,7,8-PeCDF	89							
13C12-2,3,4,7,8-PeCDF	95							
13C12-1,2,3,4,7,8-HxCDF	93							
13C12-1,2,3,6,7,8-HxCDF	108							
13C12-2,3,4,6,7,8-HxCDF	97							
13C12-1,2,3,7,8,9-HxCDF	92							
13C12-1,2,3,4,6,7,8-HpCDF	85							
13C12-1,2,3,4,7,8,9-HpCDF	73							
Cleanup Standard								
37Cl4-2,3,7,8-TCDD (Cleanup)	52							
Homologue Group Totals	P9/9							
Total-TCDD	<1.3							
Total-PeCDD	<0.59							
Total-HxCDD	<0.95							
Total-HpCDD	<0.68							
Total-TCDF	<0.79							
Total-PeCDF	<0.74							
Total-HxCDF	1.97							
Total-HpCDF	<0.75							
Toxic Equivalency - (WHO 2005)								
Lower Bound PCDD/F TEQ (WHO 2005)	0.105							
Mid Point PCDD/F TEQ (WHO 2005)	2.24							
Upper Bound PCDD/F TEQ (WHO 2005)	3.20							

ALS Life Sciences									
		ality Control Summ							
Sample Name		aboratory Control							
		Sample							
ALS Sample ID	WG2108486-1	WG2108486-2							
Sample Size	1.00	1.00		1000					
Sample size units	g	n/a							
Percent Moisture	n/a	n/a							
Sample Matrix	QC	QC							
Sampling Date	n/a	n/a							
Extraction Date	16-Jun-15	16-Jun-15							
Target Analytes	pg/g	% Rec		2.36					
2,3,7,8-TCDD	<8.6	93							
1,2,3,7,8-PeCDD	<1.9	98							
1,2,3,4,7,8-HxCDD	<2.2	101							
1,2,3,6,7,8-HxCDD	<2.0	90							
1,2,3,7,8,9-HxCDD	<2.1	97							
1,2,3,4,6,7,8-HpCDD	<2.7	98							
OCDD	<6.4	90							
2,3,7,8-TCDF	<1.3	89							
1,2,3,7,8-PeCDF	<1.7	96							
2,3,4,7,8-PeCDF	<2.3	89							
1,2,3,4,7,8-HxCDF	<0.88	97							
1,2,3,6,7,8-HxCDF	<1.4	96							
2,3,4,6,7,8-HxCDF	<1.9	100							
1,2,3,7,8,9-HxCDF	2.73	97							
1,2,3,4,6,7,8-HpCDF	<1.2	93							
1,2,3,4,7,8,9-HpCDF	<1.7	94							
OCDF	<4.1	98							
Extraction Standards	% Rec	% Rec							
13C12-2,3,7,8-TCDD	17	31							
13C12-1,2,3,7,8-PeCDD	74	79							
13C12-1,2,3,4,7,8-HxCDD	80	87							
13C12-1,2,3,6,7,8-HxCDD	115 73	107 75							
13C12-1,2,3,4,6,7,8-HpCDD 13C12-OCDD	75	65							
13C12-2,3,7,8-TCDF	76	80							
13C12-1,2,3,7,8-PeCDF	84	87							
13C12-2,3,4,7,8-PeCDF	86	89							
13C12-1,2,3,4,7,8-HxCDF	94	89							
13C12-1,2,3,6,7,8-HxCDF	108	111							
13C12-2,3,4,6,7,8-HxCDF	96	95							
13C12-1,2,3,7,8,9-HxCDF	88	91							
13C12-1,2,3,4,6,7,8-HpCDF	87	91							
13C12-1,2,3,4,7,8,9-HpCDF	82	78							
Cleanup Standard									
37Cl4-2,3,7,8-TCDD (Cleanup)	16	29							
Homologue Group Totals	P9/9								
Total-TCDD	<8.6								
Total-PeCDD	<1.5								
Total-HxCDD	<2.2								
Total-HpCDD	<1.8								
Total-TCDF	1.31								
Total-PeCDF	2.26								
Total-HxCDF Total-HpCDF	2.73 <1.7								
	<1./								
Toxic Equivalency - (WHO 2005)	0.075								
Lower Bound PCDD/F TEQ (WHO 2005)	0.273								
Mid Point PCDD/F TEQ (WHO 2005)	8.01								
Upper Bound PCDD/F TEQ (WHO 2005)	12.8								

ALS Life Sciences											
Sample Analysis Report											
Sample Name ALS Sample ID Analysis Method Analysis Type Sample Matrix	AB80320 L1623923-1 EPA 1613B Sample Wax pellets							Sampling Date Extraction Date Sample Size Percent Moisture Split Ratio	6-May-15 16-Jun-15 1 n/a 1	g	Approved: A.Ali e-signature 17-Jul-2015
Run Information		Run 1	6.7	-		-					
Filename Run Date		1-1507154									
Final Volume		15-Jul-15 25 u	ID:39								
Dilution Factor		1									
Analysis Units		pg/g									
Instrument - Column		HRMS-1	DB5MS60	USE3647	27H						
	TEF	Ret.	Conc.	EDL		EMPC					
Target Analytes	(WHO 2005)		pg/g	pg/g	1.1	Pg/g	LQL				
2,3,7,8-TCDD 1,2,3,7,8-PeCDD	1 1	NotFnd 31:29	<1.3 <1.0	1.3	U M,J,R	1.0	13 63				
1,2,3,4,7,8-HxCDD	0.1	NotFnd	<0.95	0.95			63				
1,2,3,6,7,8-HxCDD		33:40	<1.0	0.88	J,R	1.0	63				
1,2,3,7,8,9-HxCDD	0.1	NotFnd	<0.90	0.90	U		63				
1,2,3,4,6,7,8-HpCDD	0.01	35:12	<0.91	0.68		0.91	63				
OCDD	0.0003	36:21	<0.87	0.87	U	0.62	130				
2,3,7,8-TCDF	0.1	NotFnd	<0.79	0.79	U		13				
1,2,3,7,8-PeCDF	0.03	NotFnd	<0.74	0.74	U		63				
2,3,4,7,8-PeCDF		NotFnd	<0.62	0.62	U		63				
1,2,3,4,7,8-HxCDF		33:07	<0.67	0.67	U		63				
1,2,3,6,7,8-HxCDF		NotFnd	<0.65	0.65	U		63				
2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF	0.1	33:31 33:56	<0.68	0.67	M,J,R J,B	0.68	63 63				
1,2,3,4,6,7,8-HpCDF		33:50	<0.55	0.94	J,B J,R		63				
1,2,3,4,7,8,9-HpCDF	0.01	NotFnd	<0.75	0.75	U		63				
OCDF		36:26	1.24	0.75			130				
Extraction Standards	Pg		% Rec	Limits							
13C12-2,3,7,8-TCDD	2000	26:46	54	25-164							
13C12-1,2,3,7,8-PeCDD	2000	31:28	84	25-181							
13C12-1,2,3,4,7,8-HxCDD	2000	33:37	85	32-141	R						
13C12-1,2,3,6,7,8-HxCDD 13C12-1,2,3,4,6,7,8-HpCDD	2000 2000	33:40 35:12	107 68	28-130 23-140							
13C12-0CDD	4000	36:22	56	17-157							
		25:51	83	24-169							
13C12-2,3,7,8-TCDF 13C12-1,2,3,7,8-PeCDF	2000	30:27	89	24-185							
13C12-2,3,4,7,8-PeCDF	2000	31:15	95	21-178							
13C12-1,2,3,4,7,8-HxCDF	2000	33:06	93	26-152							
13C12-1,2,3,6,7,8-HxCDF		33:11	108	26-123							
13C12-2,3,4,6,7,8-HxCDF	2000 2000	33:31 33:56	97 92	29-147 28-136							
13C12-1,2,3,7,8,9-HxCDF 13C12-1,2,3,4,6,7,8-HpCDF		33:56	92 85	28-136 28-143							
13C12-1,2,3,4,7,8,9-HpCDF	2000	35:24	73	26-138							
Cleanup Standard	pg										
37Cl4-2,3,7,8-TCDD (Cleanup)	40	26:48	52	35-197							
			Conc.	EDL							
Homologue Group Totals		# peaks	pg/g	P9/9							
Total-TCDD Total-PeCDD		0	<1.3	1.3			13 63				
Total-HxCDD		0	<0.95				63				
Total-HpCDD		0	<0.68	0.68			63				
Total-TCDF		0	<0.79	0.79	U		13				
Total-PeCDF		0	<0.74				63				
Total-HxCDF Total-HpCDF		3	1.97				63 63				
Toxic Equivalency - (WHO	2005)		P9/9	3.75	-						
Lower Bound PCDD/F TEQ			0.105								
Mid Point PCDD/F TEQ (WH Upper Bound PCDD/F TEQ (0 2005)		2.24 3.20								
EDL			the Estim				ed on the m	easured background noise t	or this target in	this sample.	
TEF		Indicates I Indicates I	the Toxic	Equivale	ncy Fac	tor		TEQ Indicates	the Toxic Equiva	alenc	
Ŭ							ed above th	e MDL.			
1								alibrated range. d did not meet the acceptan	ce criterion.		
R											

ALS Life Sciences											
Laboratory Method Blank Analysis Report											
Analysis Type	Method Blank WG2108486-1 EPA 1613B Blank QC							Sampling Date Extraction Date Sample Size Percent Moisture Split Ratio	n/a 16-Jun-15 1 n/a 1	9	Approved: <i>A.All</i> e-signature 17-Jul-2015
Run Information		Run 1									
Filename Run Date		1-150715/ 15-Jul-15									
Final Volume			14.50 UL								
Dilution Factor		1									
Analysis Units		pg/g									
Instrument - Column		HRMS-1	DB5MS60	USE3647	27H						
	TEF	Ret.	Conc.	EDL		EMPC					
Target Analytes	(WHO 2005)) Time	P9/9	pg/g	Flags	pg/g	LQL				
2,3,7,8-TCDD		NotFnd	<8.6	8.6	U		13				
1,2,3,7,8-PeCDD	1 0.1	31:29 NotFnd	<1.9	1.5	M,J,R U	1.9	63 63				
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD	0.1	NotFnd	<2.2	2.2	U		63				
1,2,3,7,8,9-HxCDD	0.1	NotFnd	<2.1	2.1	U		63				
1,2,3,4,6,7,8-HpCDD		35:11	<2.7	1.8	M,J,R	2.7	63				
OCDD	0.0003	36:22	<6.4	3.3	M,J,R	6.4	130				
2,3,7,8-TCDF	0.1	25:52	<1.3	1.3	U	0.11	13				
1,2,3,7,8-PeCDF		30:27	<1.7	1.1	M,J,R		63				
2,3,4,7,8-PeCDF		31:15	<2.3	0.98	M,J,R		63				
1,2,3,4,7,8-HxCDF		NotFnd	<0.88	0.88	U		63				
1,2,3,6,7,8-HxCDF		33:10	<1.4	0.84	J,R		63				
2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF		33:31 33:56	<1.9 2.73	0.88	M,J,R		63 63				
1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF		33:56 NotFnd	<1.2	1.2	M,J U		63				
1,2,3,4,7,8,9-HpCDF	0.01	NotFnd	<1.7	1.7	U		63				
OCDF		36:27	<4.1	3.6		4.1	130				
Extraction Standards	Pg		% Rec	Limits							
13C12-2,3,7,8-TCDD		26:45	17	25-164							
13C12-1,2,3,7,8-PeCDD		31:27	74	25-181							
13C12-1,2,3,4,7,8-HxCDD	2000 2000	33:36 33:39	80 115	32-141 28-130							
13C12-1,2,3,6,7,8-HxCDD 13C12-1,2,3,4,6,7,8-HpCDD	2000	35:39	73	23-140							
13C12-OCDD		36:22	76	17-157							
13C12-2,3,7,8-TCDF	2000	25:50	76	24-169							
13C12-1,2,3,7,8-PeCDF	2000	30:26	84	24-185							
13C12-2,3,4,7,8-PeCDF	2000	31:13	86	21-178							
13C12-1,2,3,4,7,8-HxCDF	2000 2000	33:05 33:10	94 108	26-152 26-123							
13C12-1,2,3,6,7,8-HxCDF 13C12-2,3,4,6,7,8-HxCDF		33:10	96	29-123							
13C12-1,2,3,7,8,9-HxCDF	2000	33:56	88	28-136							
13C12-1,2,3,4,6,7,8-HpCDF		34:41	87	28-143							
13C12-1,2,3,4,7,8,9-HpCDF	2000	35:23	82	26-138							
Cleanup Standard	Pg										
37Cl4-2,3,7,8-TCDD (Cleanup)	40	26:46	16	35-197							
Homologue Group Totals		# peaks	Conc. pg/g	EDL Pg/g							
Total-TCDD		0	<8.6	8.6	U		13				
Total-PeCDD		0	<1.5	1.5	U		63				
Total-HxCDD		0	<2.2	2.2			63				
Total-HpCDD		0	<1.8	1.8	U		63				
Total-TCDF Total-PeCDF		5	1.31 2.26	1.3			13 63				
Total-HxCDF		1	2.20	1.1			63				
Total-HpCDF		ō	<1.7	1.7	U		63				
Toxic Equivalency - (WHO	2005)		pg/g	-	1						
Lower Bound PCDD/F TEQ			0.273								
Mid Point PCDD/F TEQ (WH Upper Bound PCDD/F TEQ	WHO 2005)		8.01 12.8								
EDL TEF M U		Indicates Indicates	the Estim the Toxic that a pea	Equivale ak has be	ncy Fac	tor nually into			e for this target in es the Toxic Equiva		
1								alibrated range.			

ALS Life Sciences										
Laboratory Control Sample Analysis Report Sample Name Laboratory Control Sample Sampling Date n/a										
ALS Sample ID Analysis Method Analysis Type	WG2108486-2 EPA 1613B LCS QC	ontroi samp			Extraction Date Sample Size Percent Moisture Split Ratio	16-Jun-15 1 n/a 1	n/a	Approved: A.Ali e-signature 17-Jul-2015		
Run Information		Run 1		2011/2011						
Filename		1-150715A								
Run Date Final Volume		15-Jul-15 : 25 u								
Dilution Factor		1								
Analysis Units		%								
Instrument - Column		HRMS-1	DB5MS60	USE364727H						
	Pg	Ret.	1	Limits				5		
Target Analytes		Time	% Rec	Flags						
2,3,7,8-TCDD	200	26:48	93	67-158						
1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD	1000	31:29 33:38	98 101	70-142 70-164						
1,2,3,6,7,8-HxCDD	1000	33:40	90	76-134						
1,2,3,7,8,9-HxCDD	1000	33:48	97	64-162						
1,2,3,4,6,7,8-HpCDD	1000	35:12	98	70-140						
OCDD	2000	36:23	90	78-144						
2,3,7,8-TCDF		25:52	89	75-158						
1,2,3,7,8-PeCDF		30:28	96	80-134						
2,3,4,7,8-PeCDF		31:15 33:07	89 97	68-160 72-134						
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF		33:07	96	84-130						
2,3,4,6,7,8-HxCDF		33:32	100	78-130						
1,2,3,7,8,9-HxCDF	1000	33:57	97	70-156						
1,2,3,4,6,7,8-HpCDF	1000	34:42	93	82-122						
1,2,3,4,7,8,9-HpCDF OCDF	1000 2000	35:24 36:26	94 98	78-138 63-170						
Extraction Standards	2000 Pg	50.20		Limits						
		26:47	31	20-175						
13C12-2,3,7,8-TCDD 13C12-1,2,3,7,8-PeCDD		31:28		21-227						
13C12-1,2,3,4,7,8-HxCDD	2000	33:37	87	21-193						
13C12-1,2,3,6,7,8-HxCDD		33:40		25-163						
13C12-1,2,3,4,6,7,8-HpCDD 13C12-OCDD	2000 4000	35:12 36:22	75 65	26-166 13-138						
		25:51	80	22-152						
13C12-2,3,7,8-TCDF 13C12-1,2,3,7,8-PeCDF	2000 2000	30:27	80	21-192						
13C12-2,3,4,7,8-PeCDF		31:15	89	13-328						
13C12-1,2,3,4,7,8-HxCDF		33:07	89	19-202						
13C12-1,2,3,6,7,8-HxCDF 13C12-2,3,4,6,7,8-HxCDF		33:11 33:31	111 95	21-159 17-205						
13C12-1,2,3,7,8,9-HxCDF		33:57	91	22-176						
13C12-1,2,3,4,6,7,8-HpCDF	2000	34:42	91	21-158						
13C12-1,2,3,4,7,8,9-HpCDF	2000	35:24	78	20-186						
Cleanup Standard	Pg									
37CI4-2,3,7,8-TCDD (Cleanup)	40	26:48	29	31-191						
		-	_							
A State of the second	12.12	del a	_	and a second				and and the		
		-								

1435 Norjohn Court, Unit 1, Burlington, ON, Canada L7L 0E6 Phone: 905-331-3111, FAX: 905-331-4567

Certificate of Analysis

ALS Project Contact: Ron McLeod ALS Project ID: ALS800 ALS WO#: L1623923 Date of Report 17-Jul-15 Date of Sample Receipt 9-Jun-15

Client Address:

Client Name: ALS Environmental 10450 Stancliff Road, Suite 210 Houston, Texas 77099-4338

Client Contact: Nicole Brown Client Project ID: E1500506

COMMENTS:

PCB Congeners by EPA 1668A

PCB Congener Group Totals and Total PCB are a sum of detected values, including EMPC values, consistent with USEPA CLP SOW CBC1.2

The 13C12-PCB-3 (in L1623923-1) and 13C12-PCB-1 (in the method blank) extraction standard recoveries were below the 1668A control limits but were well above the 1668C control limits. Due to isotope dilution technique there is no significant impact to data quality from these lower recoveries.

> Ron McLeod, PhD Director Special Chemistries & Air Toxics, Eastern Canada

Results in this certificate relate only to the samples as submitted to the laboratory. This report shall not be reproduced, except in full, without the written permission of ALS Canada Ltd.

ALS Life Sciences								
Sample Analysis summary Report								
Sample Name	AB80320							
ALS Sample ID	L1623923-1							
Sample Size	1.01							
Sample size units	g							
Percent Moisture	n/a							
Sample Matrix	Wax pellets							
Sampling Date	6-May-15							
Extraction Date	n/a							
Target Analytes	Pg/g							
PCB-001	7.49							
PCB-002	7.48							
PCB-003 PCB-004	<10							
PCB-004 PCB-010	10.4 <0.44							
PCB-009	<9.5							
PCB-007	0.874							
PCB-006	3.22							
PCB-005	<0.45							
PCB-008	19.0							
PCB-014	<0.57							
PCB-011	76.9							
PCB-012/013 PCB-015	<0.67 <5.5							
PCB-015 PCB-019	<5.5 4.25							
PCB-019 PCB-018/030	33.3							
PCB-017	14.0							
PCB-027	1.78							
PCB-024	<0.22							
PCB-016	14.8							
PCB-032	9.92							
PCB-034	<0.42							
PCB-023 PCB-026/029	<0.38 6.01							
PCB-025	1.89							
PCB-031	41.0							
PCB-020/028	42.0							
PCB-021/033	22.6							
PCB-022	13.8							
PCB-036	<0.40							
PCB-039	<0.45							
PCB-038	<0.39							
PCB-035 PCB-037	0.911 3.87							
PCB-054	<0.39							
PCB-050/053	7.46							
PCB-045/051	10.4							
PCB-046	3.30							
PCB-052	50.7							
PCB-073	<0.37							
PCB-043 PCB-049/069	<1.8 23.1							
PCB-049/069 PCB-048	10.6							
PCB-044/047/065	43.2							
PCB-059/062/075	3.26							
PCB-042	10.1							
PCB-040/041/071	23.1							
PCB-064	16.5							
PCB-072 PCB-068	<0.89 <0.74							
PCB-068 PCB-057	<0.74 <0.88							
PCB-057	<0.88							
PCB-067	<0.74							
PCB-063	<0.85							
PCB-061/070/074/076	45.2							
PCB-066	24.9							
PCB-055	<0.84							
PCB-056	10.8							
PCB-060 PCB-080	7.27							
PCB-080 PCB-079	<0.83 <0.82							
PCB-079 PCB-078	<0.82							
PCB-081	<0.92							
PCB-077	<0.98							
PCB-104	0.240							
PCB-096	<0.22							
PCB-103	<0.17							
PCB-094	<0.19							
PCB-095	15.8							
PCB-093/098/100/102	1.55							

	ALS	S Life Sciences
	Sample	Analysis summary Report
Sample Name	AB80320	
ALS Sample ID	L1623923-1	
PCB-088/091	<3.2	
PCB-084	5.97	
PCB-089 PCB-121	<0.71 <0.12	
PCB-092	<2.1	
PCB-090/101/113	13.9	
PCB-083/099	9.21	
PCB-112	<0.13	
PCB-086/087/097/108/119/125	11.1	
PCB-085/110/115/116/117 PCB-082	17.2 2.72	
PCB-111	<0.13	
PCB-120	<0.13	
PCB-107/124	<4.3	
PCB-109	<4.3	
PCB-123 PCB-106	<4.3 <4.1	
PCB-118	11.4	
PCB-122	<4.3	
PCB-114	<4.3	
PCB-105	<4.9	
PCB-127	<4.1	
PCB-126 PCB-155	<6.2 <1.0	
PCB-155	<0.19	
PCB-150	<0.17	
PCB-136	1.35	
PCB-145	<0.19	
PCB-148	<0.25	
PCB-135/151 PCB-154	1.38 <0.22	
PCB-144	0.471	
PCB-147/149	5.77	
PCB-134/143	<0.41	
PCB-139/140	<0.36	
PCB-131	<0.40	
PCB-142 PCB-132	<0.42 2.82	
PCB-132 PCB-133	<0.40	
PCB-165	<0.30	
PCB-146	0.831	
PCB-161	<0.28	
PCB-153/168	5.56	
PCB-141 PCB-130	<1.3 <0.47	
PCB-130 PCB-137/164	1.02	
PCB-129/138/163	7.55	
PCB-160	<0.27	
PCB-158	<0.57	
PCB-128/166	<0.49	
PCB-159 PCB-162	<0.26 <0.24	
PCB-162 PCB-167	<0.24 0.517	
PCB-156/157	1.01	
PCB-169	<0.26	
PCB-188	<3.0	
PCB-179	<4.0	
PCB-184 PCB-176	<3.4 <3.8	
PCB-176 PCB-186	<3.8 <3.9	
PCB-178	<5.1	
PCB-175	<4.8	
PCB-187	<4.0	
PCB-182	<4.5	
PCB-183 PCB-185	<4.5 <4.6	
PCB-185 PCB-174	<4.6 <4.9	
PCB-177	<5.0	
PCB-181	<4.5	
PCB-171/173	<5.0	
PCB-172	<4.8	
PCB-192	<3.6	
PCB-180/193 PCB-191	<3.7 <3.3	
PCB-191 PCB-170	<4.5	
PCB-190	<2.8	
PCB-189	<5.9	
PCB-202	<0.21	
PCB-201	<0.21	

ALS Life Sciences									
Sample Analysis summary Report									
Sample Name	AB80320								
ALS Sample ID	L1623923-1								
PCB-204	<0.20 <0.19								
PCB-197 PCB-200	<0.19								
PCB-198/199	<0.50								
PCB-196	<0.29								
PCB-203	<0.28								
PCB-195	< 0.39								
PCB-194	<0.37								
PCB-205	<0.34								
PCB-208	<0.82								
PCB-207	<0.92								
PCB-206	<1.7								
PCB-209	<4.4								
Extraction Standards	%								
13C12-PCB-001	28								
13C12-PCB-001 13C12-PCB-003	11								
13C12-PCB-003	53								
13C12-PCB-004 13C12-PCB-015	66								
13C12-PCB-015 13C12-PCB-019	62								
13C12-PCB-037	73								
13C12-PCB-054	60								
13C12-PCB-081	78								
13C12-PCB-077	78								
13C12-PCB-104	76								
13C12-PCB-123	81								
13C12-PCB-118	82								
13C12-PCB-114	80								
13C12-PCB-105	80								
13C12-PCB-126	64								
13C12-PCB-155	62								
13C12-PCB-167	64								
13C12-PCB-156/157	69								
13C12-PCB-169	79								
13C12-PCB-188	71								
13C12-PCB-189	64								
13C12-PCB-202	55								
13C12-PCB-205	93								
13C12-PCB-208	96								
13C12-PCB-206	74								
13C12-PCB-209	67								
Cleanup Standards	%								
13C12-PCB-028	71								
13C12-PCB-111	81								
13C12-PCB-178	73								
Homologue Group Totals	P9/9								
Total MonoCB	25.0								
Total MonoCB Total DiCB	125								
Total TriCB	210								
Total TetraCB	292								
Total PentaCB	100								
Total HexaCB	32.1								
Total HeptaCB	0								
Total OctaCB	0.780								
Total NonaCB	0								
DecaCB	0								
Total PCB	785								
Toxic Equivalency - (WHO 2005)	pg/g								
Lower Bound PCB TEQ (WHO 2005)	0.000388								
Mid Point PCB TEQ (WHO 2005)	0.315								
Upper Bound PCB TEQ (WHO 2005)	0.629								

	ALS	Life Sciences	the set of a
	Quality C	ontrol Summary Report	
Sample Name	Method Blank	Laboratory Control Sample	
ALC Comple ID	WC3109496-1		
ALS Sample ID Sample Size	WG2108486-1 1	WG2108486-2 1	
Sample size units	g	n/a	
Percent Solids	n/a	n/a	
Sample Matrix	QC	QC	
Sampling Date	n/a	n/a	
Extraction Date	n/a	n/a	
Target Analytes	Pg/g	%	
PCB-001	<5.3	113	
PCB-002	2.99		
PCB-003 PCB-004	<4.1 9.82	111 115	
PCB-010	<0.45	115	
PCB-009	<8.4		
PCB-007	<1.4		
PCB-006	<0.39		
PCB-005	<0.44		
PCB-008	10.5		
PCB-014	<0.35		
PCB-011	<34		
PCB-012/013 PCB-015	0.973 <2.3	113	
PCB-015 PCB-019	<2.3 <0.87	113	
PCB-018/030	6.24		
PCB-017	2.92		
PCB-027	0.336		
PCB-024	<0.13		
PCB-016	<2.9		
PCB-032	<1.4		
PCB-034	<0.20		
PCB-023 PCB-026/029	<0.19 <0.88		
PCB-025	<0.88		
PCB-031	3.99		
PCB-020/028	4.59		
PCB-021/033	2.76		
PCB-022	1.59		
PCB-036	<0.19		
PCB-039	<0.22		
PCB-038	<0.19		
PCB-035 PCB-037	<0.25	99	
PCB-037	<0.15	114	
PCB-050/053	<0.36	114	
PCB-045/051	<1.3		
PCB-046	<0.27		
PCB-052	2.79		
PCB-073	<0.16		
PCB-043	<0.24		
PCB-049/069	1.07		
PCB-048 PCB-044/047/065	<0.31 3.96		
PCB-059/062/075	<0.16		
PCB-042	<0.47		
PCB-040/041/071	<0.51		
PCB-064	<0.60		
PCB-072	<0.37		
PCB-068	<0.31		
PCB-057 PCB-058	<0.36 <0.38		
PCB-058	<0.38		
PCB-063	<0.35		
PCB-061/070/074/076	<0.43		
PCB-066	<0.44		
PCB-055	<0.35		
PCB-056	<0.37		
PCB-060	<0.36		
PCB-080	<0.34		
PCB-079	<0.34		
PCB-078 PCB-081	<0.36 <0.45	107	
PCB-081	<0.35	107	
PCB-104	<0.11	100	
PCB-096	<0.11		
PCB-103	<0.11		
PCB-094	<0.12		
PCB-095	<0.75		
PCB-093/098/100/102	<0.11		

ALS Life Sciences Quality Control Summary Report									
	Quality C	ontrol Summary Report							
Sample Name	Method Blank	Laboratory Control Sample							
ALS Sample ID	WG2108486-1	WG2108486-2							
PCB-088/091	0.189	and the second second							
PCB-084 PCB-089	0.430 <0.13								
CB-121	<0.080								
PCB-092	<0.12								
PCB-090/101/113	0.970								
PCB-083/099	<0.13								
PCB-112 PCB-086/087/097/108/119/125	<0.081 <0.43								
PCB-085/110/115/116/117	<0.43								
PCB-082	<0.14								
PCB-111	<0.082								
PCB-120	<0.082								
PCB-107/124	<0.13								
PCB-109 PCB-123	<0.12 <0.12	113							
PCB-106	<0.12	113							
PCB-118	0.711	110							
PCB-122	<0.14								
PCB-114	<0.15	113							
PCB-105	<0.11	110							
PCB-127	<0.13 0.278								
PCB-126 PCB-155	0.278 <0.11	112 109							
PCB-152	<0.11	109							
PCB-150	<0.068								
PCB-136	<0.077								
PCB-145	<0.077								
PCB-148	<0.099								
PCB-135/151 PCB-154	0.184 <0.087								
PCB-144	<0.098								
PCB-147/149	0.490								
PCB-134/143	<0.13								
PCB-139/140	<0.11								
PCB-131 PCB-142	<0.12 <0.13								
PCB-142 PCB-132	<0.13								
PCB-133	<0.12								
PCB-165	<0.093								
PCB-146	<0.10								
PCB-161	<0.087								
PCB-153/168 PCB-141	<0.25 <0.12								
PCB-130	<0.12								
PCB-137/164	<0.10								
PCB-129/138/163	0.699								
PCB-160	<0.082								
PCB-158	<0.080								
PCB-128/166	<0.10								
PCB-159 PCB-162	<0.080 <0.075								
PCB-167	<0.075	109							
PCB-156/157	<0.26	109							
PCB-169	0.288	108							
PCB-188	<0.081	108							
PCB-179 PCB-184	<0.10 <0.086								
PCB-164 PCB-176	<0.086								
PCB-186	<0.10								
PCB-178	<0.13								
PCB-175	<0.13								
PCB-187	0.225								
PCB-182 PCB-183	<0.12 <0.12								
PCB-185	<0.12								
PCB-174	<0.24								
PCB-177	<0.13								
PCB-181	<0.12								
PCB-171/173	<0.13								
PCB-172 PCB-192	<0.13 <0.11								
PCB-192 PCB-180/193	<0.11								
PCB-191	<0.096								
PCB-170	<0.19								
PCB-190	0.0971								
PCB-189	<0.42	114							
PCB-202 PCB-201	<0.078 <0.11	111							

	ALS	Life Sciences								
Quality Control Summary Report										
Sample Name	Method Blank	Laboratory Control Sample								
ALS Sample ID	WG2108486-1	WG2108486-2	and a second second							
PCB-204	<0.10									
PCB-197	<0.10									
PCB-200	<0.12									
PCB-198/199	<0.15									
PCB-196	<0.16									
PCB-203	<0.14									
PCB-195	<0.32									
PCB-194	<0.30									
PCB-205	<0.44	108								
PCB-208	<1.2	108								
PCB-207	<1.2									
PCB-206	<1.9	118								
PCB-209	1.18	115								
Extraction Standards	%	%								
13C12-PCB-001	15	30								
13C12-PCB-003	42	30								
13C12-PCB-004	46	35								
13C12-PCB-015	49	45								
13C12-PCB-019	49	42								
13C12-PCB-037	58	55								
13C12-PCB-054	50	38								
13C12-PCB-081	64	64								
13C12-PCB-077	67	68								
13C12-PCB-104	58	47								
13C12-PCB-123	66	67								
13C12-PCB-123	39	69								
13C12-PCB-114	67	68								
		73								
13C12-PCB-105	70									
13C12-PCB-126	84	78								
13C12-PCB-155 13C12-PCB-167	60	50								
	93	82								
13C12-PCB-156/157	88	81								
13C12-PCB-169	79	89								
13C12-PCB-188	67	65								
13C12-PCB-189	50	81								
13C12-PCB-202	86	73								
13C12-PCB-205	84	91								
13C12-PCB-208	109	82								
13C12-PCB-206	110	90								
13C12-PCB-209	116	78								
Cleanup Standard	%	%								
13C12-PCB-028	63	58								
13C12-PCB-111	79	74								
13C12-PCB-178	82	76								
Homologue Group Totals	P9/9									
Total MonoCB	12.4									
Total DiCB	67.8									
Total TriCB	30.2									
Total TetraCB	12.2									
Total PentaCB	4.71									
Total HexaCB	2.54									
Total HeptaCB	1.02									
Total OctaCB	0									
Total NonaCB	0									
DecaCB	1.18									
Total PCB	132									
Toxic Equivalency - (WHO 2005)	Pg/g									
Lower Bound PCB TEQ (WHO 2005)	0.0365									
Mid Point PCB TEQ (WHO 2005)	0.0366									
Upper Bound PCB TEQ (WHO 2005)	0.0367									

		-				ALS	Life Sci	lences				
						Samp	le Analysis	s Report	2			
Cample Name	AB80320					- unip	Associated Me			08486-1		
Sample Name ALS Sample ID	AB80320 L1623923-1						Associated Me Sampling Dat		WG21 6-May-1			
							Extraction Da		n/a			Approved:
Analysis Method	EPA 1668C						Sample Size		1.01	9		E. Sabljic
Analysis Type	Sample						Percent Moist	ure	n/a			e-signature
Sample Matrix	Wax pellets						Split Ratio		1			17-Jul-2015
							0.0	-		-		
Run Information		Run 1					Run 2					
Filename		5-150710A06					5-150713A09					
Run Date		10-Jul-15 16:	27				13-Jul-15 16:	40				
Final Volume		45 ul					45 uL					
Dilution Factor		1					10					
Analysis Units Instrument - Column		Pg/g	OCTYL55800-	028			Pg/g	OCTYL55800-	028			
		10000000										
		Ret.	Conc.	EDL	EMPC	LQL	Ret.	Conc.	EDL	EMPC	LQL	
Target Analytes		Time	P9/9	pg/g Flags	pg/g		Time	P9/9	pg/g Flags	pg/g		
PCB-00	1	8:50	7.49	0.51 J		45						
PCB-00		10:16	7.48	0.70 J,B		45						
PCB-00	3	10:22	<10	1.5 J,R	10	45						
PCB-004		10:32	10.4	0.68 J,B		45						
PCB-01		10:39	<0.44	0.44 U	0.32	45						
PCB-00		11:49	<9.5	0.44 J,R	9.5	45						
PCB-00		11:55	0.874	0.41 J		45						
PCB-00		12:04	3.22	0.39 J		45						
PCB-00		NotFnd	<0.45	0.45 U		45						
PCB-00		12:21	19.0	0.38 J,B		45						
PCB-01		NotFnd	<0.57	0.57 U		45						
PCB-01		13:52	76.9	0.68		45						
PCB-012/01		NotFnd	<0.67	0.67 U		45						
PCB-01		14:14	<5.5	0.90 J,R	5.5	45						
PCB-01		12:32	4.25	0.30)		45						
PCB-018/03		13:39	33.3	0.25 J,B		45						
PCB-01		13:54	14.0	0.31 J,B		45						
PCB-02		14:01	1.78	0.22 J,B		45						
PCB-02		14:07	<0.22	0.22 U	0.092	45						
PCB-01		14:11	14.8	0.36 J		45						
PCB-03		14:29	9.92	0.20 3		45						
PC8-03		NotFnd	<0.42	0.42 U		45						
PCB-02		NotFnd	<0.38	0.38 U		45						
PCB-026/02		15:28	6.01	0.46 J		45						
PCB-02		15:36	1.89	0.36 J		45						
PCB-03		15:47	41.0	0.41 3		45						
PCB-020/02 PCB-021/03		15:57	42.0	0.42 J,B		45						
PCB-021/03 PCB-02		16:05 16:19	22.6 13.8	0.39 J,B 0.43 J,B		45 45						
PCB-02		16:19 NotFnd	<0.40	0.43 J,B 0.40 U		45						
PCB-03		NotFnd	<0.40	0.40 U		45						
PCB-03		NotFind	<0.39	0.45 U		45						
PCB-03		17:58	0.911	0.45 3		45						
PCB-03		18:11	3.87	0.59 J,B		45						
PCB-05		NotFnd	<0.39	0.39 U		45						
PCB-050/05		15:37	7.46	0.50 3		45						
PCB-045/05		16:01	10.4	0.52 J		45						
PCB-04	6	16:11	3.30	0.61 J		45						
PCB-05	2	16:56	50.7	0.53		45						
PCB-07		NotFnd	<0.37	0.37 U		45						
PCB-04		17:04	<1.8	0.56 J,R	1.8	45						
PCB-049/06		17:13	23.1	0.42 3		45						
PCB-04		17:22	10.6	0.51 J		45						
PCB-044/047/06	-	17:30	43.2	0.47 J		45						
PCB-059/062/07		17:40	3.26	0.37 J		45						
PCB-04		17:48	10.1	0.52 J		45						
PCB-040/041/07 PCB-06		18:03	23.1	0.51 J		45						
		18:11 NotEnd	16.5	0.37 1		45						
PCB-07 PCB-06		NotFnd	<0.89	0.89 U		45						
PCB-05		NotFnd NotFnd	<0.74 <0.88	0.74 U 0.88 U		45 45						
PCB-05		NotFnd	<0.88	0.88 U 0.91 U		45						
PCB-06		19:14	<0.91	0.91 U	0.41	45						
PCB-06		19:14	<0.85	0.85 U	0.81	45						
PCB-061/070/074/07		19:34	45.2	0.86		45						
PCB-06		19:44	24.9	0.88 J		45						
PCB-05		19:53	<0.84	0.84 U	0.086	45						
PCB-05		20:06	10.8	0.89 3		45						
PCB-06		20:13	7.27	0.86 1		45						
PCB-08		NotFnd	<0.83	0.83 U		45						
PCB-07		NotFnd	<0.82	0.82 U		45						
PCB-07		NotFnd	<0.88	0.82 U		45						
PCB-08		NotFnd	<0.92	0.92 U		45						
PCB-07		NotFnd	<0.92	0.92 U		45						
			0.240			45						
PCB-10	4	17:28		0.077 3								

							ALS	Life Sc	iences				
	200						Samp	le Analysi	s Report				
Sample Name	AB803							Associated M	ethod Blank	WG2	108486-1		
ALS Sample ID	L16239	23-1						Sampling Dal Extraction Da	te	6-May-	15		Approved:
Analysis Method	EPA 16	68C						Sample Size		1.01	9		E. Sabljic
Analysis Type	Sample							Percent Moist	ture	n/a			e-signature
Sample Matrix	Wax pe	ellets						Split Ratio		1			17-Jul-2015
Run Information		Rur			-			Run 2					
			0710A06					5-150713A0					
Filename Run Date			0710A06 ul-15 16:					5-150713A09 13-Jul-15 16					
Final Volume		45	5 ul					45 uL					
Dilution Factor Analysis Units		1 P9/						10 pg/g					
Instrument - Column				BOCTYL55800-	02B				BOCTYL55800-	02B			
			1			-					-		
Target Analytes			Ret. 'ime	Conc. pg/g	EDL pg/g Flags	EMPC Pg/g	LQL	Ret. Time	Conc. pg/g	EDL pg/g Flags	EMPC Pg/g	LQL	
	PCB-103		8:41	<0.17	0.17 U	0.11	45						
	PCB-094		tFnd	<0.19	0.19 U		45						
	PCB-095		9:04	15.8	0.20 J		45						
PCB-093/098/	/100/102 -088/091		9:14 9:32	1.55	0.17 M,J 0.18 J,R	3.2	45 45						
	PCB-084		9:32 9:40	<3.2 5.97	0.18 J,R 0.21 J	3.2	45						
	PCB-089		9:56	<0.71	0.20 J,R	0.71	45						
	PCB-121	20	0:03	<0.12	0.12 U	0.036	45						
	PCB-092		0:18	<2.1	0.19 J,R	2.1	45						
	/101/113 -083/099		0:37	13.9 9.21	0.17 J 0.19 J		45 45						
	PCB-112		tFnd	<0.13	0.19 J 0.13 U		45						
PCB-086/087/097/108/	/119/125		1:14	11.1	0.16 M,J		45						
PCB-085/110/115/			1:39	17.2	0.14 M,J		45						
	PCB-082 PCB-111		1:52 tFnd	2.72	0.21 J 0.13 U		45 45						
	PCB-111 PCB-120		tFnd tFnd	<0.13	0.13 U 0.13 U		45						
	-107/124							NotFnd	<4.3	4.3 U		450	
	PCB-109							NotFnd	<4.3	4.3 U		450	
	PCB-123							NotFnd	<4.3	4.3 U		450	
	PCB-106 PCB-118							NotFnd	<4.1	4.1 U		450	
	PCB-118 PCB-122							23:17 NotFnd	11.4	4.2 J 4.3 U		450 450	
	PCB-114							NotFnd	<4.3	4.3 U		450	
	PCB-105							23:55	<4.9	4.6 J,R	4.9	450	
	PCB-127							NotFnd	<4.1	4.1 U		450	
	PCB-126 PCB-155		0:30	<1.0	0.19 J,R	1.0	45	NotFnd	<6.2	6.2 U		450	
	PCB-155 PCB-152		0:30 tFnd	<1.0	0.19 J,R 0.19 U	1.0	45						
	PCB-150		tFnd	<0.17	0.17 U		45						
	PCB-136	20	0:55	1.35	0.19 J		45						
	PCB-145		tFnd	<0.19	0.19 U		45						
	PCB-148 -135/151		1:46 2:10	<0.25	0.25 U 0.25 J,B	0.077	45 45						
	PCB-154		tFnd	<0.22	0.25 J,B 0.22 U		45						
	PCB-144	23	2:26	0.471	0.24 3		45						
	-147/149	23	2:37	5.77	0.36 M,J		45						
	-134/143		2:45	<0.41	0.41 U	0.35	45						
	-139/140 PCB-131		2:54 tFnd	<0.36 <0.40	0.36 U 0.40 U	0.21	45 45						
	PCB-142		tFnd	<0.40	0.40 U		45						
	PCB-132		3:18	2.82	0.40 J		45						
	PCB-133		3:32	<0.40	0.40 U	0.10	45						
	PCB-165 PCB-146		tFnd	<0.30	0.30 U		45						
	PCB-146 PCB-161		3:51 tFnd	0.831 <0.28	0.33 J 0.28 U		45 45						
PCB	-153/168		4:10	5.56	0.30 J		45						
	PCB-141		4:17	<1.3	0.40 J,R	1.3	45						
	PCB-130 -137/164		4:31	<0.47	0.44 J,R	0.47	45						
	/138/163		4:39 4:50	1.02	0.33 J 0.36 J		45 45						
	PCB-160		tFnd	<0.27	0.27 U		45						
	PCB-158	2!	5:02	<0.57	0.26 J,R	0.57	45						
	-128/166 PCB-159		5:31	<0.49	0.33 J,R	0.49	45						
	PCB-159 PCB-162		itFnd itFnd	<0.26 <0.24	0.26 U 0.24 U		45 45						
	PCB-167		6:23	0.517	0.30 3		45						
PCB	-156/157		6:59	1.01	0.32 J		45						
	PCB-169		tFnd	<0.26	0.26 U		45						
	PCB-188							NotFnd	<3.0	3.0 U		450	
	PCB-179 PCB-184							NotFnd NotFnd	<4.0 <3.4	4.0 U 3.4 U		450 450	
	PCB-176							NotFnd	<3.4	3.4 U		450	
	PCB-186							NotFnd	<3.9	3.9 U		450	
	PCB-178							NotFnd	<5.1	5.1 U		450	
	PCB-175							NotFnd	<4.8	4.8 U		450	
	PCB-187		-				-	25:32	<4.0	4.0 U		450	

						ALS	Life Sc	iences				
						Samo	le Analysi	s Report				
Sample Name	AB80320					Samp	Associated M		wee	108486-1		
Sample Name ALS Sample ID	AB80320 L1623923-1						Sampling Da		6-May			
							Extraction Da		n/a			Approved:
Analysis Method	EPA 1668C						Sample Size		1.01	g		E. Sabljic
Analysis Type Sample Matrix	Sample Wax pellets						Percent Mois Split Ratio	ure	n/a 1			e-signature 17-Jul-2015
						-	opine reactor					
Run Information		Run 1					Run 2					
Filename		5-150710A06					5-150713A0					
Run Date		10-Jul-15 16:					13-Jul-15 16					
Final Volume		45 ul					45 uL					
Dilution Factor Analysis Units		1					10					
Analysis Units Instrument - Column		Pg/g HRMS-5 SPE	BOCTYL55800	-02B			Pg/g HRMS-5 SP	BOCTYLS5800-	02B			
		Ret.	Conc.	EDL	EMPC	LQL	Ret.	Conc.	EDL	EMPC	LQL	
Target Analytes PCB-182		Time	P9/9	pg/g Flags	PW/9		Time 25:37	P9/9 <4.5	pg/g Flags 4.5 U	P9/9 2.3	450	
PCB-183							NotFnd	<4.5	4.5 U		450	
PCB-185							NotFnd	<4.6	4.6 U		450	
PCB-174							NotFnd	<4.9	4.9 U		450	
PCB-177							NotFnd	<5.0	5.0 U		450	
PCB-181							26:27	<4.5	4.5 U	0.45	450	
PCB-171/173							NotFnd	<5.0	5.0 U		450	
PCB-172							27:20	<4.8	4.8 U	2.2	450	
PCB-192							NotFnd	<3.6	3.6 U		450	
PCB-180/193							NotFnd	<3.7	3.7 U		450	
PCB-191 PCB-170							NotFnd	<3.3	3.3 U		450	
PCB-170 PCB-190							NotFnd NotFnd	<4.5 <2.8	4.5 U 2.8 U		450 450	
PCB-190 PCB-189							NotFnd	<2.8	2.8 U 5.9 U		450	
PCB-202		NotFnd	<0.21	0.21 U		45	Houring	-3.9	5.50			
PCB-201		NotFnd	<0.21	0.21 U		45						
PCB-204		NotFnd	<0.20	0.20 U		45						
PCB-197		NotFnd	<0.19	0.19 U		45						
PCB-200		NotFnd	<0.22	0.22 U		45						
PCB-198/199		28:39	<0.50	0.29 J,R	0.50	45						
PCB-196		29:00	<0.29	0.29 U	0.21	45						
PCB-203		29:06	<0.28	0.27 J,R	0.28	45						
PC8-195		NotFnd	<0.39	0.39 U		45						
PCB-194 PCB-205		31:02	<0.37	0.37 U	0.25	45						
PCB-205 PCB-208		NotFnd NotFnd	<0.34 <0.82	0.34 U 0.82 U		45						
PCB-200		NotFnd	<0.82	0.82 U		45						
PCB-206		NotFnd	<1.7	1.7 U		45						
PCB-209							NotFnd	<4.4	4.4 U		450	
Extraction Standards	Pg		%	Limits				%				
13C12-PCB-001 13C12-PCB-003		8:50 10:23	28	25-150								
13C12-PCB-003 13C12-PCB-004		10:23	11 53	25-150 25-150								
13C12-PCB-004		10:31	53	25-150								
13C12-PCB-019		14:14	62	25-150								
13C12-PCB-037		18:11	73	25-150								
13C12-PCB-054	2000	14:22	60	25-150								
13C12-PCB-081		21:46	78	25-150								
13C12-PCB-077		22:04	78	25-150								
13C12-PCB-104		17:27	74	25-150								
13C12-PCB-123		23:03	81	25-150								
13C12-PCB-118		23:14	82	25-150								
13C12-PCB-114 13C12-PCB-105		23:31	80	25-150								
13C12-PCB-105 13C12-PCB-126		23:52	80	25-150 25-150			25:31	64				
13C12-PCB-120		20:28	62	25-150			25.31	0.4				
13C12-PCB-167	2000	26:22	64	25-150								
13C12-PCB-156/157	4000	26:59	69	25-150								
13C12-PCB-169	2000	28:39	79	25-150								
13C12-PCB-188	2000	23:28	71	25-150								
13C12-PCB-189		-		25-150			29:57	64				
13C12-PCB-202		26:14	55	25-150								
13C12-PCB-205		31:18	93	25-150								
13C12-PCB-208 13C12-PCB-208		29:39	96	25-150								
13C12-PCB-209	2000	32:22	74	25-150 25-150			33:32	67				
Cleanup Standards	Pg		96									
13C12-PCB-028		15:56	71	30-135								
13C12-PCB-111		22:00	81	30-135								
13C12-PCB-178	2000	25:02	73	30-135								

ALS Sample ID L162 Analysis Method EPA Analysis Type Sam	Run 1 5-150710A(10-Jul-15 1) 45 ul 1 99/9	6:27	-028 EDL		Jamph	e Analysi Associated M Sampling Da Extraction Di Sample Size Percent Moisi Spilt Ratio Run 2 S-150713A00 13-Jul-15 16 45 uL 0 pg/g HRMS-5 SPI	ethod Blank te ate ture 9 ::40	WG2 6-May- n/a 1.01 n/a 1	108486-1 15 9		<u> </u>	Approved: E. Sebijic e-signature- 17-Jul-2015
ALS Sample ID L162 Analysis Method EPA Analysis Type Sam Sample Matrix Wax Run Information Filename Run Date Final Volume Dilution Factor Analysis Units Instrument - Column	3923-1 1668C peliets Run 1 5-150710A(10-3ul-151 45 1 pg/o HRMS-5 SI Ret.	6:27 PBOCTYL55800 Conc.	-			Sampling Da Extraction Di Sample Size Percent Nais Split Ratio Run 2 S-150713A09 13-Jul-15 16 45 uL 10 pg/g	te ate ture 9 :40	6-May- n/a 1.01 n/a 1	15			E. Sabljic e-signature
Analysis Method EPA Analysis Type Sam Sample Matrix Wax Run Information Filename Run Date Final Volume Dilution Factor Analysis Units Instrument - Column Target Analytes	1668C pellets Run 1 5-150710A0 10-Jul-151 45 ul 1 pg/g HRMS-5 Sl Ret.	6:27 PBOCTYL55800 Conc.	-			Extraction Da Sample Size Percent Moisi Split Ratio Run 2 5-150713A09 13-Jul-15 16 45 uL 10 pg/g	ate ture 9 :40	n/a 1.01 n/a 1				E. Sabljic e-signature
Analysis Type Sam Sample Matrix Wax Run Information Filename Run Date Final Volume Dilution Factor Analysis Units Instrument - Column Target Analytes	pellets Run 1 5-150710A 10-Jul-15 1 1 9g/g HRMS-5 SI Ret.	6:27 PBOCTYL55800 Conc.	-			Sample Size Percent Moisi Split Ratio Run 2 S-150713A00 13-Jul-15 16 45 uL 10 Pg/g	9 :40	1.01 n/a 1	9			E. Sabljic e-signature
Analysis Type Sam Sample Matrix Wax Run Information Filename Run Date Final Volume Dilution Factor Analysis Units Instrument - Column Target Analytes	pellets Run 1 5-150710A 10-Jul-15 1 1 9g/g HRMS-5 SI Ret.	6:27 PBOCTYL55800 Conc.	-			Percent Mois' Split Ratio Run 2 5-150713A04 13-Jul-15 16 45 uL 10 pg/g	9 9	n/a 1	9			e-signature
Sample Matrix Wax Run Information Filename Run Date Final Volume Dilution Factor Analysis Units Instrument - Column Target Analytes	Pellets Run 1 5-150710A(10-Ju-151 45 ul 1 pg/g HRMS-5 SJ Ret.	6:27 PBOCTYL55800 Conc.	-			Split Ratio Run 2 S-150713A09 13-Jul-15 16 45 uL 10 p9/9	9 ::40	1	7			
Run Information Filename Run Date Final Yolume Dilution Factor Analysis Units Instrument - Column Target Analytes	Run 1 5-150710A(10-Jul-15 ul 1 99/9 HRM5-5 SI Ret.	6:27 PBOCTYL55800 Conc.	-			Run 2 5-150713A09 13-Jul-15 16 45 uL 10 pg/g	:40		-			17-307-2013
Filename Run Date Final Volume Dilution Factor Analysis Units Instrument - Column Target Analytes	5-150710A 10-Jul-15 1 45 ul 1 pg/g HRMS-5 Si Ret.	6:27 PBOCTYL55800 Conc.	-			5-150713A09 13-Jul-15 16 45 uL 10 pg/g	:40					
Run Date Final Volume Dilution Factor Analysis Units Instrument - Column Target Analytes	10-Jul-15 1 45 ul 1 99/9 HRMS-5 Sl	6:27 PBOCTYL55800 Conc.	-			13-Jul-15 16 45 uL 10 pg/g	:40					
Final Volume Dilution Factor Analysis Units Instrument - Column Target Analytes	45 ul 1 pg/g HRMS-5 Sl Ret.	PBOCTYL55800	-			45 uL 10 pg/g						
Dilution Factor Analysis Units Instrument - Column Target Analytes	1 pg/g HRMS-5 SI Ret.	PBOCTYL55800	-			10 pg/g						
Analysis Units Instrument - Column Target Analytes	pg/g HRMS-5 SI Ret.	Conc.	-			pg/g	BOCTYL55800-					
Instrument - Column Target Analytes	HRMS-S S	Conc.	-				BOCTYL55800-					
Target Analytes	Ret.	Conc.	-	-		HRMS-5 SP	BOCTYL55800-					
			EDL					028				
	Time	pg/g		EMPC	LQL	Ret.	Conc.	EDL	EMPC	LQL		
Homologue Group Totals			pg/g Fla	igs pg/g		Time	P9/9	pg/g Flags	P9/9			
Total MonoCB		25.0	0.51)		45							
Total DiCB		125	0.38)		45							
Total TriCB		210	0.2 J		45							
Total TetraCB		292	0.37)		45							
Total PentaCB		100	0.068)		45							
Total HexaCB		32.1	0.17 J		45							
Total HeptaCB		0	2.8 L		45							
Total OctaCB		0.780	0.19)		45							
Total NonaCB		0	0.82 1		45							
DecaCB		0	4.4 1		45							
Total PCB		785	4.4 0		45							
1111110												
Toxic Equivalency - (WHO 2005)	P9/9										10000
Lower Bound PCB TEQ (WHO 200	5)	0.000388										
Mid Point PCB TEQ (WHO 2005)		0.315										
Upper Bound PCB TEQ (WHO 200	5)	0.629										
	The second	1200	-	-		-	-					
EDL	Indicates th	e Estimated De	etection Limit,	based on the	measured ba	ckground noise	for this target	in this sample.				
TEF	Indicates th	ne Toxic Equival	lency Factor		TEQ	Indicates	s the Toxic Equ	ivalency				
м	Indicates th	hat a peak has l	been manually	integrated.								
U		hat the analyte			the reported	estimated det	ection limit.					
1	indicates th	at the analyte	was positively	identifed. The	associated n	umerical result	is an estimate					
R	Indicates th	hat the ion abur	ndance ratio fo	or this analyte	did not meet	the control lim	it. The reporte	d value represent	s an estima	ated concentration	1.	
в		hat this target w										

ALS Life Sciences Laboratory Method Blank Analysis Report										
				L	aborat	tory Me	thod Blank Analys	is Report		
Sample Name ALS Sample ID	Method Blank WG2108486-1						Sampling Date	n/a		
neo sumple to							Extraction Date	n/a	1	Approved:
Analysis Method	EPA 1668C						Sample Size	1	9	E. Sabljic
Analysis Type Sample Matrix	Blank QC						Percent Moisture Split Ratio	n/a 1		e-signature 17-Jul-2015
						_			E. S.	
Run Information		Run 1								
Filename		5-150710A05								
Run Date		10-Jul-15 15:								
Final Volume		45 ul								
Dilution Factor Analysis Units		1 pg/g								
Instrument - Column			BOCTYLSS800-	02B						
			-	-	-					
Target Analytes		Ret. Time	Conc. pg/g	EDL pg/g Flags	EMPC Pg/g	LQL				
PCB-	001	9:12	<5.3	1.0 J,R	5.3	45				
PCB-		10:19	2.99	0.54 J		45				
PCB-		10:26	<4.1	0.43 J,R	4.1	45				
PCB-		10:36	9.82	0.61 J		45				
PCB-		10:43	<0.45	0.43 J,R	0.45	45				
PCB- PCB-		11:51 11:57	<8.4 <1.4	0.43 J,R 0.40 J,R	8.4 1.4	45 45				
PCB		NotFnd	<0.39	0.40 J,R		45				
PCB-		12:18	<0.44	0.44 U		45				
PCB-		12:23	10.5	0.37 1		45				
PCB-		NotFnd	<0.35	0.35 U		45				
PCB-		13:53	<34	0.42 J,R	34	45				
PCB-012/ PCB-		14:05 14:15	0.973 <2.3	0.41 J 0.57 J,R	2.3	45 45				
PCB-		14:15	<0.87	0.25 J,R	0.87	45				
PCB-018/		13:41	6.24	0.15 3		45				
PCB-		13:56	2.92	0.18 J		45				
PCB-		14:03	0.336	0.13 J		45				
PCB- PCB-		14:08	<0.13	0.13 U	0.024	45				
PCB-		14:12 14:30	<2.9 <1.4	0.21 J,R 0.12 J,R	2.9 1.4	45 45				
PCB		NotFnd	<0.20	0.12 J,R 0.20 U	1.4	45				
PCB		NotFnd	<0.19	0.19 U		45				
PCB-026/		15:28	<0.88	0.22 J,R	0.88	45				
PCB		15:36	<0.34	0.17 J,R	0.34	45				
PCB- PCB-020/		15:47	3.99	0.20 3		45				
PCB-020/ PCB-021/		15:57 16:06	4.59 2.76	0.20 J 0.19 J		45 45				
PCB		16:00	1.59	0.19 3		45				
PCB-	036	NotFnd	<0.19	0.19 U		45				
PCB		NotFnd	<0.22	0.22 U		45				
PCB		NotFnd	<0.19	0.19 U		45				
PCB- PCB-		17:58 18:12	<0.25	0.22 J,R 0.28 J	0.25	45 45				
PCB		18:12	<0.15	0.28 J 0.15 U	0.077	45				
PCB-050/		15:38	<0.36	0.22 J,R	0.36	45				
PCB-045/		16:02	<1.3	0.23 J,R	1.3	45				
PCB		NotFnd	<0.27	0.27 U		45				
PCB- PCB-		16:57 NotFnd	2.79 <0.16	0.23 J 0.16 U		45 45				
PCB		NotFind	<0.16	0.16 U 0.24 U		45				
PCB-049/		17:13	1.07	0.18 3		45				
PCB		17:22	<0.31	0.22 J,R	0.31	45				
PCB-044/047/		17:31	3.96	0.20 3		45				
PCB-059/062/ PCB-		17:41 17:48	<0.16 <0.47	0.16 U 0.23 J,R	0.074	45				
PCB-040/041/		17:48	<0.47	0.23 J,R 0.23 J,R	0.47	45 45				
PCB	064	18:11	<0.60	0.16 J,R	0.60	45				
PCB		NotFnd	<0.37	0.37 U		45				
PCB- PCB-		18:46	<0.31	0.31 U	0.29	45				
PCB		NotFnd NotFnd	<0.36 <0.38	0.36 U 0.38 U		45 45				
PCB		NotFnd	<0.38	0.38 U		45				
PCB	-063	NotFnd	<0.35	0.35 U		45				
PCB-061/070/074/		19:34	<0.43	0.36 J,R	0.43	45				
PCB		19:44	<0.44	0.36 J,R	0.44	45				
PCB- PCB-		19:48 20:06	<0.35 <0.37	0.35 U 0.37 U	0.11	45				
PCB		20:06 NotFnd	<0.37	0.37 U 0.36 U	0.14	45 45				
PCB		NotFnd	<0.34	0.36 U		45				
PCB	079	NotFnd	<0.34	0.34 U		45				
PCB		NotFnd	<0.36	0.36 U		45				
PCB		NotFnd	<0.45	0.45 U		45				
PCB		NotFnd	<0.35	0.35 U		45				
PCB	-104	NotFnd NotFnd	<0.11 <0.11	0.11 U 0.11 U		45 45				

ALS Life Sciences Laboratory Method Blank Analysis Report											
					aborat	tory Me	thod Blank Analys	is Report			
Sample Name ALS Sample ID	Method Bla WG2108486						Sampling Date	n/a			
							Extraction Date	n/a		Approved:	
Analysis Method	EPA 1668C						Sample Size	1	9	E. Sabijic	
Analysis Type Sample Matrix	Blank QC						Percent Moisture Split Ratio	n/a 1		e-signature 17-Jul-2015	
Sample Matrix	qu						Spint Natio			17-30-2013	
Run Information		Run 1									
Filename		5-150710A0	IS								
Run Date		10-Jul-15 15	5:48								
Final Volume		45 ul									
Dilution Factor Analysis Units		1 pg/g									
Instrument - Column			BOCTYL55800	-02B							
					-	-					
Target Analytes		Ret. Time	Conc. pg/g	EDL pg/g Flags	EMPC Pg/g	LQL					
	PCB-103	18:43	<0.11	0.11 U		45					
	PCB-094	NotFnd	<0.12	0.12 U		45					
	PCB-095	19:05	<0.75	0.12 J,R	0.75	45					
PCB-093/098/1		NotFnd	<0.11	0.11 U		45					
	088/091	19:32	0.189	0.12 J		45					
	PCB-084	19:40	0.430	0.13 J		45					
	PCB-089	NotFnd	<0.13	0.13 U		45					
	PCB-121 PCB-092	20:07	<0.080	0.080 U		45					
PCB-090/1		20:18	<0.12	0.12 U	0.063	45					
	083/099	20:37 20:57	0.970 <0.13	0.11 J 0.12 J,R	0.13	45 45					
	PCB-112	20:57 NotFnd	<0.13	0.12 J,R 0.081 U	0.13	45					
PCB-086/087/097/108/1		21:17	<0.43	0.10 J,R	0.43	45					
PCB-085/110/115/1		21:41	<0.67	0.092 J,R	0.67	45					
	PCB-082	NotFnd	<0.14	0.14 U		45					
P	PCB-111	21:58	<0.082	0.082 U	0.0025	45					
	PCB-120	22:16	<0.082	0.082 U	0.043	45					
	107/124	NotFnd	<0.13	0.13 U		45					
	PCB-109	NotFnd	<0.12	0.12 U	1 June	45					
	PCB-123	23:04	<0.12	0.12 J,R	0.12	45					
	PCB-106	NotFnd	<0.13	0.13 U		45					
	PCB-118 PCB-122	23:16	0.711	0.21 J		45					
	PCB-1122	NotFnd 23:33	<0.14 <0.15	0.14 U 0.11 J,R	0.15	45 45					
	PCB-105	23:55	<0.15	0.11 J,K	0.093	45					
	PCB-127	NotFnd	<0.13	0.13 U	0.035	45					
	PCB-126	25:28	0.278	0.11 J		45					
	PCB-155	20:29	<0.11	0.099 J,R	0.11	45					
P	PCB-152	NotFnd	<0.075	0.075 U		45					
	PCB-150	20:43	<0.068	0.068 U	0.016	45					
	PCB-136	NotFnd	<0.077	0.077 U		45					
	PCB-145	21:01	<0.077	0.077 U	0.011	45					
	PCB-148	21:47	<0.099	0.099 U		45					
	135/151	22:11	0.184	0.099 J		45					
	PCB-154 PCB-144	NotFnd	<0.087	0.087 U		45					
	PCB-144 147/149	NotFind 22:30	< 0.098	0.098 U		45					
	134/143	22:39 22:49	0.490 <0.13	0.11 J 0.13 U	0.033	45 45					
	139/140	NotFnd	<0.13	0.13 U 0.11 U	0.033	45					
	PCB-131	NotFnd	<0.11	0.11 U		45					
P	PCB-142	NotFnd	<0.13	0.13 U		45					
P	PCB-132	23:20	<0.18	0.12 J,R	0.18	45					
	PCB-133	NotFnd	<0.12	0.12 U		45					
	PCB-165	23:46	< 0.093	0.093 U	0.015	45					
	PCB-146	23:52	<0.10	0.10 J,R	0.10	45					
	PCB-161	NotFnd	<0.087	0.087 U		45					
	153/168 PCB-141	24:12	<0.25	0.092 J,R	0.25	45					
	PCB-141 PCB-130	24:18 NotFnd	<0.12 <0.14	0.12 U 0.14 U	0.073	45 45					
	137/164	NotFind	<0.14	0.14 U 0.10 U		45					
PCB-129/1		24:52	0.699	0.11 J		45					
	PCB-160	24:58	<0.082	0.082 U	0.017	45					
	PCB-158	25:03	<0.080	0.080 U	0.050	45					
	128/166	25:31	<0.10	0.10 U	0.019	45					
	PCB-159	26:00	<0.080	0.080 U	0.040	45					
	PCB-162	26:11	<0.075	0.075 U	0.047	45					
	PCB-167	26:24	<0.080	0.071 J,R	0.080	45					
	156/157	27:00	<0.26	0.090 J,R	0.26	45					
	PCB-169 PCB-188	28:41	0.288	0.093 J	0.050	45					
	PCB-188	23:31 23:42	<0.081 <0.10	0.081 U 0.10 U	0.050	45 45					
	PCB-184	23:42 NotFnd	<0.10	0.10 U 0.086 U	0.054	45					
	PCB-176	NotFnd	<0.086	0.086 U		45					
	PCB-186	NotFnd	<0.10	0.10 U		45					
	PCB-178	25:06	<0.13	0.13 U	0.054	45					
	PCB-175	25:24	<0.13	0.13 U	0.046	45					
	PCB-187	25:32	0.225	0.11 J		45					

and the second		1.1			-	ALO	Life Sciences	>	Section 1	Laboratory Method Blank Analysis Report										
				L	aborat	tory Me	thod Blank Analys	is Report												
	Method Blank WG2108486-1						Sampling Date	n/a												
ALS Sample to	WG2100400-1						Extraction Date	n/a		Approved:										
	EPA 1668C						Sample Size	1	9	E. Sabijic										
	Blank						Percent Moisture	n/a		e-signature										
Sample Matrix	QC						Split Ratio	1		17-Jul-2015										
	-																			
Run Information		Run 1																		
Filename		5-150710A05																		
Run Date Final Volume		10-Jul-15 15: 45 ul	48																	
Dilution Factor		1																		
Analysis Units		P9/9																		
Instrument - Column		HRMS-5 SPE	BOCTYL55800	-028																
		Ret.	Conc.	EDL	EMPC	LQL														
Target Analytes		Time	Pg/g	pg/g Flags	P9/9	rdr														
PCB-182		25:37	<0.12	0.12 U	0.069	45														
PCB-183		25:53	<0.12	0.12 U	0.099	45														
PCB-185		25:56	<0.12	0.12 U	0.064	45														
PCB-174		26:00	<0.24	0.12 J,R	0.24	45														
PCB-177		26:13	<0.13	0.13 U	0.071	45														
PCB-181		26:23	<0.12	0.12 U	0.040	45														
PCB-171/173 PCB-172		NotFnd	<0.13	0.13 U		45														
PCB-172 PCB-192		27:19	<0.13	0.13 U	0.087	45														
PCB-192 PCB-180/193		NotFnd 27:42	<0.11 <0.27	0.11 U 0.11 J,R	0.27	45 45														
PCB-180/193 PCB-191		27:42 NotFnd	<0.27	0.11 J,R 0.096 U	0.21	45														
PCB-170		28:22	<0.19	0.14 J,R	0.19	45														
PCB-190		28:39	0.0971	0.091 J		45														
PCB-189		NotFnd	<0.42	0.42 U		45														
PCB-202		26:16	<0.078	0.078 U	0.036	45														
PCB-201		26:44	<0.11	0.11 U	0.10	45														
PCB-204		NotFnd	<0.10	0.10 U		45														
PCB-197 PCB-200		NotFnd	<0.10	0.10 U		45														
PCB-200 PCB-198/199		NotFnd 28:39	<0.12 <0.15	0.12 U 0.15 U	0.072	45 45														
PCB-196/199		28:39	<0.15	0.15 U 0.16 U	0.072	45														
PCB-203		29:03	<0.14	0.14 U	0.035	45														
PCB-195		NotFnd	<0.32	0.32 U	0.033	45														
PCB-194		NotFnd	<0.30	0.30 U		45														
PCB-205		NotFnd	<0.44	0.44 U		45														
PCB-208		NotFnd	<1.2	1.2 U		45														
PCB-207		NotFnd	<1.2	1.2 U		45														
PCB-206		NotFnd	<1.9	1.9 U		45														
PCB-209		33:31	1.18	0.35 J		45														
Extraction Standards	ng		%	Limits																
13C12-PCB-001	2000	9:11	15	25-150 R																
13C12-PCB-003		10:26	42	25-150																
13C12-PCB-004		10:35	46	25-150																
13C12-PCB-015		14:15	49	25-150																
13C12-PCB-019		12:33	49	25-150																
13C12-PCB-037		18:11	58	25-150																
13C12-PCB-054 13C12-PCB-081	2000 2000	14:24 21:47	50 64	25-150 25-150																
13C12-PCB-081		21:47 22:05	64	25-150																
13C12-PCB-104		17:28	58	25-150																
13C12-PCB-123	2000	23:05	66	25-150																
13C12-PCB-118	2000	23:15	39	25-150																
13C12-PCB-114	2000	23:33	67	25-150																
13C12-PCB-105		23:53	70	25-150																
13C12-PCB-126		25:29	84	25-150																
13C12-PCB-155		20:29	60	25-150																
13C12-PCB-167 13C12-PCB-156/157		26:23	93	25-150																
13C12-PCB-150/157 13C12-PCB-169		27:00 28:39	88 79	25-150 25-150																
13C12-PCB-188	2000	28:39	67	25-150																
13C12-PCB-189	2000	29:55	50	25-150																
13C12-PCB-202	2000	26:14	86	25-150																
13C12-PCB-205	2000	31:21	84	25-150																
13C12-PCB-208	2000	29:39	109	25-150																
13C12-PCB-206		32:23	110	25-150																
13C12-PCB-209	2000	33:31	116	25-150																
Cleanup Standards	ng		%																	
13C12-PCB-028	2000	15:57	63	30-135																
13C12-PCB-111		22:02	79	30-135																
	2000	25:03	82																	

E. C. C. R. C. S.				1		ALS	Life Sciences	5		
	1.1		194		Labo	oratory Me	thod Blank Analys	sis Report	14.71	
Sample Name ALS Sample ID	Method Blank WG2108486-1						Sampling Date	n/a		
Analysis Method	EPA 1668C						Extraction Date Sample Size	n/a 1	9	Approved: E. Sabljic
Analysis Type	Blank						Percent Moisture	n/a	4	e-signature
Sample Matrix	QC						Split Ratio	1		17-Jul-2015
Run Information		Run 1		1	1	2	1.1.1.1.1.1.1.1		1.224	
Filename		5-150710A0	5							
Run Date		10-Jul-15 15	:48							
Final Volume		45 ul								
Dilution Factor		1								
Analysis Units		P9/9								
Instrument - Column			BOCTYLSS800	-028						
		Ret.	Conc.	EDL	EMI			1.1		
Target Analytes		Time	P9/9	pg/g Fl	ags pg/	9				
Homologue Group Totals										
Total MonoC			12.4	0.43		45				
Total DiC			67.8	0.35		45				
Total TriC			30.2	0.12	3	45				
Total TetraC			12.2	0.15	3	45				
Total PentaC	в		4.71	0.08	J	45				
Total HexaC	8		2.54	0.068	J	45				
Total HeptaC	в		1.02	0.081	1	45				
Total OctaC	в		0	0.078	U	45				
Total NonaC	в		0	1.2	U	45				
DecaC			1.18	0.35		45				
Total PC			132		3					
Toxic Equivalency - (WHC	2005)		P9/9		-				-	
Lower Bound PCB TEQ (WH			0.0365							
Mid Point PCB TEQ (WHO 2			0.0366							
Upper Bound PCB TEQ (WHO			0.0366							
opper bound reb red (wh			0.0307	1			and the second	1.00	and the second	and the starts
EC	L	Indicates the	e Estimated De	tection Limit	, based or	n the measured b	ackground noise for this targe	et in this sample.		
TE	F	Indicates the	e Toxic Equival	ency Factor		TEC	Indicates the Toxic Eq	uivalency		
	U	Indicates the	at the analyte	was not deto	ted at or a	above the reporte	d estimated detection limit.			
	J						numerical result is an estimat			
	R	Indicates the	at the ion abur	idance ratio f	for this and	alyte did not mee	t the control limit. The report	ed value represents	an estimated concentrati	ion.

Denne La La D			-		ALS Life Sciences		and the second s	
				Laborato	ry Control Sample Analy	sis Report		
Sample Name ALS Sample ID	Laboratory WG2108486	Control Sample			Sampling Date	n/a		
	1102100-100				Extraction Date	n/a		Approved:
Analysis Method	EPA 1668C				Sample Size	1 n/a		E. Sabljic
Analysis Type Sample Matrix	LCS QC				Percent Moisture Split Ratio	n/a 1		e-signature 17-Jul-2015
Sample Matrix	QC.	-		ale and a second	Split Ratio			17-30-2013
Run Information		Run 1						
Filename		5-150710A03						
Run Date		10-Jul-15 14:29						
Final Volume		45 ul						
Dilution Factor Analysis Units		1 %						
Instrument - Column		0	0					
	ng	Ret.	1	Limits				
Target Analytes		Time	%	Flags				
	-001 1000	8:51	113	50-150				
	-002 1000	10:23	111	50-150				
	-004 1000	10:32	115	50-150				
PCB	-010 1000							
	-009 1000							
	-007 1000							
	-005 1000							
PCB	-008 1000							
	-014 1000							
	-011 1000 /013 1000							
	-015 1000	14:14	113	50-150				
PCB	-019 1000	12:32	115	50-150				
	/030 1000							
	-017 1000							
	-024 1000							
PCB	-016 1000							
	-032 1000							
	-034 1000 -023 1000							
	/029 1000							
	-025 1000							
	-031 1000							
	/028 1000 /033 1000							
	-022 1000							
PCB	-036 1000							
	-039 1000							
	-038 1000 -035 1000							
	-037 1000	18:11	99	50-150				
	-054 1000	14:23	114	50-150				
	/053 1000 /051 1000							
	/051 1000 -046 1000							
PCB	-052 1000							
	-073 1000							
	-043 1000 /069 1000							
	-048 1000							
PCB-044/047	/065 1000							
PCB-059/062								
PCB-040/041	-042 1000							
PCB	-064 1000							
PCB	-072 1000							
	-068 1000							
	-057 1000							
PCB	-067 1000							
	-063 1000							
PCB-061/070/074	/076 1000 -066 1000							
	-055 1000							
PCB	-056 1000							
	-060 1000							
	-080 1000							
	-079 1000 -078 1000							
	-081 1000	21:46	107	50-150				
PCB	-077 1000	22:04	106	50-150				
	-104 1000	17:28	107	50-150				
PCB	-096 1000					and the second se		

ALS Life Sciences Laboratory Control Sample Analysis Report										
				Laborator	y Control Sample Analy	sis Report				
Sample Name		Control Sample			Compliant Party					
ALS Sample ID	WG2108486	-2			Sampling Date Extraction Date	n/a n/a		Approved:		
Analysis Method	EPA 1668C				Sample Size	1 n/a		E. Sabijic		
Analysis Type Sample Matrix	LCS QC				Percent Moisture Split Ratio	n/a 1	and the second sec	e-signature 17-Jul-2015		
Sample Hautix	qe	Sec. and		and the second second	Spile Racio			17-30-2015		
Run Information	12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Run 1	-							
Filename		5-150710A03								
Run Date		10-Jul-15 14:29								
Final Volume		45 ul								
Dilution Factor Analysis Units		1 %								
Instrument - Column	•	0	0							
Target Analytes	ng	Ret. Time	%	Limits Flags						
	PCB-103 1000 PCB-094 1000									
	PCB-095 1000									
	8/100/102 1000									
PC	B-088/091 1000									
	PCB-084 1000 PCB-089 1000									
	PCB-089 1000 PCB-121 1000									
	PCB-092 1000									
	90/101/113 1000									
PC	B-083/099 1000									
PCB-086/087/097/10	PCB-112 1000									
	15/116/117 1000									
	PCB-082 1000									
	PCB-111 1000									
	PCB-120 1000 B-107/124 1000									
	PCB-109 1000									
	PCB-123 1000	23:03	113	50-150						
	PCB-106 1000									
	PCB-118 1000 PCB-122 1000	23:14	110	50-150						
	PCB-122 1000 PCB-114 1000	23:31	113	50-150						
	PCB-105 1000	23:52	110	50-150						
	PCB-127 1000									
	PCB-126 1000 PCB-155 1000	25:28	112	50-150						
	PCB-155 1000 PCB-152 1000	20:29	109	50-150						
	PCB-150 1000									
	PCB-136 1000									
	PCB-145 1000 PCB-148 1000									
PC	PCB-148 1000 CB-135/151 1000									
	PCB-154 1000									
1	PCB-144 1000									
	CB-147/149 1000									
	CB-134/143 1000 CB-139/140 1000									
	PCB-131 1000									
	PCB-142 1000									
	PCB-132 1000 PCB-133 1000									
	PCB-165 1000									
	PCB-146 1000									
1. 1996	PCB-161 1000									
PC	CB-153/168 1000									
	PCB-141 1000 PCB-130 1000									
	CB-137/164 1000									
PCB-1	29/138/163 1000									
	PCB-160 1000 PCB-158 1000									
PC	CB-128/166 1000									
	PCB-159 1000									
	PCB-162 1000									
	PCB-167 1000 CB-156/157 2000	26:22	109	50-150						
PC	PCB-169 1000	26:59 28:39	109 108	50-150 50-150						
	PCB-189 1000	28:39 23:28	108	50-150						
	PCB-179 1000									
	PCB-184 1000									
	PCB-176 1000									
	PCB-186 1000 PCB-178 1000									
	PCB-175 1000									
	PCB-187 1000					Contraction of St.				

					ALS Life Sciences		
				Laborator	ry Control Sample Analy	sis Report	
Sample Name ALS Sample ID	Laboratory C WG2108486-2	ontrol Sample			Sampling Date	n/a	
					Extraction Date	n/a	Approved:
Analysis Method	EPA 1668C				Sample Size	1 n/a	E. Sabijic
Analysis Type Sample Matrix	LCS QC				Percent Moisture Split Ratio	n/a 1	e-signature 17-Jul-2015
Semple Free IA	de				Spint Ratio		17-50-2015
Run Information		Run 1					
Filename		5-150710A03					
Run Date		10-Jul-15 14:29					
Final Volume		45 ul					
Dilution Factor		1					
Analysis Units Instrument - Column		% 0	0				
	-		-				
Target Analytes	ng	Ret. Time	%	Limits Flags			
PCB-182							
PCB-183 PCB-185							
PCB-174							
PCB-177							
PCB-181	1000						
PCB-171/173							
PCB-172							
PCB-192 PCB-180/193							
PCB-180/193 PCB-191							
PCB-170							
PCB-190	1000						
PCB-189		29:55	114	50-150			
PCB-202		26:14	111	50-150			
PCB-201 PCB-204							
PCB-197							
PCB-200							
PCB-198/199							
PCB-196							
PCB-203 PCB-195							
PCB-195							
PCB-205		31:18	108	50-150			
PCB-208	1000	29:39	108	50-150			
PCB-207							
PCB-206 PCB-209		32:22 33:30	118 115	50-150 50-150			
1.03-201		33.30	115	30-130			
Extraction Standards	ng		%	Limits			
13C12-PCB-001		8:50	30	30-140			
13C12-PCB-003		10:23	30	30-140			
13C12-PCB-004 13C12-PCB-015		10:31	35	30-140			
13C12-PCB-015		14:13 12:31	45 42	30-140 30-140			
13C12-PCB-037		12:31	42 55	30-140			
13C12-PCB-054	2000	14:22	38	30-140			
13C12-PCB-081		21:45	64	30-140			
13C12-PCB-077 13C12-PCB-104		22:03 17:27	68 47	30-140 30-140			
13C12-PCB-123		23:03	67	30-140			
13C12-PCB-118	2000	23:13	69	30-140			
13C12-PCB-114		23:30	68	30-140			
13C12-PCB-105		23:51	73	30-140			
13C12-PCB-126 13C12-PCB-155	2000	25:27 20:28	78 50	30-140 30-140			
13C12-PCB-167	2000	26:21	82	30-140			
13C12-PCB-156/157	4000	26:58	81	30-140			
13C12-PCB-169	2000	28:38	89	30-140			
13C12-PCB-188 13C12-PCB-189		23:27 29:54	65 81	30-140 30-140			
13C12-PCB-202		29:54	73	30-140			
13C12-PCB-205	2000	31:17	91	30-140			
13C12-PCB-208	2000	29:38	82	30-140			
13C12-PCB-200 13C12-PCB-200		32:22	90	30-140			
	2000	33:29		30-140			
Cleanup Standards	ng		%				
13C12-PCB-028		15:56	58	40-125			
13C12-PCB-111		21:59 25:01	74	40-125 40-125			
13C12-PCB-178			76				

3344 NW Industrial Street Portland, Oregon 97210 USA Tel: (503) 223-1497 Fax: (503) 223-9436 e-mail: info@omicusa.com www.omicusa.com

OMIC USA Inc.

A Member of OMIC Group of Companies Independent Analytical Laboratory

Report Date: July 30, 2015

Koster Keunen Inc.

1021 Echo Lake Road Watertown, CT 06795

ANALYTICAL REPORT

Sample ID :	B#20033		Ma	trix: RICE BRAN WA	X 224P
Date Received:	July 15, 2015				
Lab ID # :	AB82050				
Chemical Resid	due				
Analista		Result	Units	LOQ	
Analyte 1 2,4-Dichlorob		ND		0.02	
2 2,6-Diisoprop		ND	ppm	0.02	
3 4,4-Dichlorob		ND	ppm	0.04	
	benzophenone	ND	ppm	0.02	
4 Abamectin			ppm	0.05	
5 Acephate		ND ND	ppm	0.05	
6 Acetamiprid 7 Acetochlor			ppm	0.05	
	C mathe	ND	ppm	0.02	
8 Acibenzolar- 9 Acrinathrin	S-meinyi	ND ND	ppm	0.05	
10 Alachlor		ND	ppm	0.02	
			ppm	0.02	
11 Aldicarb 12 Aldicarb-sulf	1	ND ND	ppm	0.05	
12 Aldicarb-sulfe			ppm		
	oxide	ND	ppm	0.1	
14 Aldrin		ND	ppm	0.02 0.2	
15 Allethrin		ND ND	ppm	0.05	
16 Ametryn 17 Amitraz		ND	ppm	0.05	
17 Amiliaz 18 Anilofos		ND	ppm	0.05	
19 Atrazine		ND	ppm	0.05	
20 Azaconazole		ND	ppm	0.02	
20 Azaconazole 21 Azamethipho		ND	ppm	0.02	
22 Azinphos-eth		ND	ppm ppm	0.05	
23 Azinphos-me	-	ND		0.05	
24 Azoxystrobin	-	ND	ppm ppm	0.05	
25 Benalaxyl		ND	ppm	0.02	
26 Bendiocarb		ND	ppm	0.05	
27 Benfluralin		ND		0.02	
28 Benfuresate		ND	ppm	0.02	
29 Benomyl (as	Carbondazim)	ND	ppm	0.05	
	Carbendazini)	ND	ppm	0.02	
30 Benoxacor 31 Bensulide		ND	ppm	0.02	
31 Bensuide 32 Bentazone		ND	ppm	0.05	
32 Demazone		ND	ppm	0.02	

33	Benzobicyclon	ND	ppm	0.05
34	Benzofenap	ND	ppm	0.05
35	Benzyladenine	ND	ppm	0.05
36	BHC (alpha)	ND	ppm	0.02
	BHC (beta)	ND	ppm	0.02
	BHC (delta)	ND	ppm	0.02
	Bifenazate	ND	ppm	0.05
40	Bifenox	ND	ppm	0.02
41	Bifenthrin	ND	ppm	0.02
	Bioresmethrin (as Resmethrin)	ND	ppm	0.1
	Bitertanol	ND	ppm	0.05
44	Boscalid	ND	ppm	0.02
45	Bromobutide	ND	ppm	0.02
	Bromophos-ethyl	ND	ppm	0.05
	Bromophos-methyl	ND	ppm	0.05
48	Bromopropylate	ND	ppm	0.02
49	Bupirimate	ND	ppm	0.02
50	Buprofezin	ND		0.02
51	Butachlor	ND	ppm	0.02
52	Butafenacil	ND	ppm	0.02
	Butamifos	ND	ppm	0.02
54	Butralin	ND	ppm	0.02
55		ND	ppm	0.02
55	Butylate	ND	ppm	0.02
	Cadusafos Cafenstrole	ND	ppm	0.05
57			ppm	
58	Captan	ND	ppm	0.1
59	Carbaryl	ND	ppm	0.05
60	Carbendazim	ND	ppm	0.05
61	Carbofuran	ND	ppm	0.05
62	Carbophenothion	ND	ppm	0.05
63	Carboxin	ND	ppm	0.02
	Carfentrazone-ethyl	ND	ppm	0.02
65	Carpropamid	ND	ppm	0.02
66	Chlorantraniliprole	ND	ppm	0.05
67	Chlorbenside	ND	ppm	0.02
68	Chlorbufam	ND	ppm	0.02
69	Chlordane (cis)	ND	ppm	0.02
70	Chlordane (trans)	ND	ppm	0.02
71	Chlorethoxyfos	ND	ppm	0.02
	Chlorfenapyr	ND	ppm	0.02
	Chlorfenson	ND	ppm	0.02
	Chlorfenvinphos	ND	ppm	0.05
	Chloridazon	ND	ppm	0.05
	Chlornitrofen	ND	ppm	0.02
	Chlorobenzilate	ND	ppm	0.02
78	Chloroneb	ND	ppm	0.02
	Chloroxuron	ND	ppm	0.05
	Chlorpropham	ND	ppm	0.02
	Chlorpyrifos	ND	ppm	0.05
	Chlorpyrifos-methyl	ND	ppm	0.05
83	Chlorthal-dimethyl	ND	ppm	0.02
	Chlorthiofos	ND	ppm	0.05
85	Chlozolinate	ND	ppm	0.02
00	Chromafenozide	ND	ppm	0.05

-	87	Cinidon-ethyl	ND	ppm	0.05
	88	Cinmethylin	ND	ppm	0.02
	89	Clethodim	ND	ppm	0.02
	90	Clodinafop-propargyl	ND	ppm	0.05
	91	Clofentezine	ND	ppm	0.05
	92	Clomazone	ND	ppm	0.02
	93	Clomeprop	ND	ppm	0.05
	94	Cloquintocet-mexyl	ND	ppm	0.05
	95	Clothianidin	ND	ppm	0.05
	96	CPMC (Etrofol)	ND	ppm	0.05
	97	Cumyluron	ND	ppm	0.05
	98	Cyanazine	ND	ppm	0.05
	99	Cyanophenphos	ND	ppm	0.05
	100	Cyanophos	ND	ppm	0.05
	101	Cyazofamid	ND	ppm	0.05
	102	Cycloate	ND	ppm	0.02
	103	Cyflufenamid	ND	ppm	0.02
	104	Cyfluthrin	ND	ppm	0.02
	105	Cyhalofop-butyl	ND	ppm	0.02
	106	Cyhalothrin (gamma)	ND	ppm	0.02
	107	Cyhalothrin (lambda)	ND	ppm	0.02
	108	Cymoxanil	ND	ppm	0.05
	109	Cypermethrin	ND	ppm	0.02
	110	Cyproconazole	ND	ppm	0.02
	111	Cyprodinil	ND	ppm	0.05
	112	Daimuron	ND	ppm	0.05
	113	DDD	ND	ppm	0.02
	114	DDE	ND	ppm	0.02
	115	DDT	ND	ppm	0.02
	116	Deltamethrin	ND	ppm	0.02
	117	Demeton O & S	ND	ppm	0.05
	118	Demeton-S-methyl	ND	ppm	0.05
	119	Desmedipham	ND	ppm	0.1
	120	Diafenthiuron	N/A	ppm	0.1
	121	Dialifos	ND	ppm	0.05
	122	Di-allate	ND	ppm	0.02
	123	Diazinon	ND	ppm	0.05
	124	Dichlobenil	ND	ppm	0.02
	125	Dichlofenthion (ECP)	ND	ppm	0.05
	126		ND	ppm	0.02
	127		ND	ppm	0.02
	128		ND	ppm	0.05
		Diclobutrazol	ND	ppm	0.05
		Diclocymet	ND	ppm	0.02
	131	Diclofop-methyl	ND	ppm	0.02
		Diclomezine	ND	ppm	0.05
		Dicloran	ND	ppm	0.02
		Dicrotophos	ND	ppm	0.05
		Dieldrin	ND	ppm	0.02
		Diethofencarb	ND	ppm	0.02
		Difenoconazole	ND	ppm	0.02
		Difenzoquat	ND	ppm	0.05
		Diflubenzuron	ND	ppm	0.05
	140	Diflufenican	ND	ppm	0.02

141	Dimepiperate	ND	ppm	0.02	ĺ
142	Dimethametryn	ND	ppm	0.05	
143	Dimethenamid	ND	ppm	0.02	
144	Dimethoate	ND	ppm	0.05	
145	Dimethylvinphos	ND	ppm	0.05	
146	Diniconazole	ND	ppm	0.05	
147	Dinotefuran	ND	ppm	0.05	
148	Dioxathion	ND	ppm	0.05	
149	Diphenamid	ND	ppm	0.02	
150	Diphenylamine	ND	ppm	0.02	
151	Disulfoton	ND	ppm	0.02	
152	Disulfoton-sulfone	ND	ppm	0.02	
153	Dithiopyr	ND	ppm	0.02	
	Diuron	ND	ppm	0.05	
155	Edifenphos	ND	ppm	0.05	
156	Emamectin-benzoate	ND	ppm	0.05	
157	Endosulfan (alpha)	ND	ppm	0.02	
158	Endosulfan (beta)	ND	ppm	0.02	
	Endosulfan-sulfate	ND	ppm	0.04	
160	Endrin	ND	ppm	0.02	
161	EPN	ND	ppm	0.05	
162	Epoxiconazole	ND	ppm	0.02	
163	EPTC	ND	ppm	0.02	
164	Esfenvalerate	ND	ppm	0.04	
165	Esprocarb	ND	ppm	0.02	
	Ethalfluralin	ND	ppm	0.02	
167	Ethion	ND	ppm	0.05	
168	Ethiprole	ND	ppm	0.05	
169	Ethofumesate	ND	ppm	0.02	
170	Ethoprophos	ND	ppm	0.025	
171	Ethoxyquin	N/A	ppm	0.1	
172		ND	ppm	0.05	
173	Etobenzanid	ND	ppm	0.02	
174	Etofenprox	ND	ppm	0.02	
175		ND	ppm	0.02	
176	Etridiazole	ND	ppm	0.02	
177	Etrimfos	ND	ppm	0.05	
178	Famphur	ND	ppm	0.02	
179	Fenamidone	ND	ppm	0.02	
180	Fenamiphos	ND	ppm	0.05	
181	Fenamiphos-sulfone	ND	ppm	0.05	
182	Fenarimol	ND	ppm	0.02	
183	Fenbuconazole	ND	ppm	0.05	
184	Fenchlorphos	ND	ppm	0.05	
185	Fenhexamid	ND	ppm	0.05	
186	Fenitrothion	ND	ppm	0.05	
187	Fenobucarb	ND	ppm	0.05	
188	Fenothiocarb	ND	ppm	0.05	
189	Fenoxanil	ND	ppm	0.05	
190	Fenoxaprop-ethyl	ND	ppm	0.02	
191	Fenoxycarb	ND	ppm	0.05	
192	Fenpropathrin	ND	ppm	0.02	
193	Fenpropimorph	ND	ppm	0.02	

-	195	Fensulfothion	ND	ppm	0.05
	196	Fenthion	ND	ppm	0.05
	197	Fentrazamide	ND	ppm	0.05
	198	Fenvalerate	ND	ppm	0.04
	199	Ferimzone E	ND	ppm	0.05
	200	Ferimzone Z	ND	ppm	0.05
	201	Fipronil	ND	ppm	0.01
		Flamprop-methyl	ND	ppm	0.02
		Fluacrypyrim	ND	ppm	0.05
		Fluazifop-butyl	ND	ppm	0.02
		Fluazinam	ND	ppm	0.05
	206	Flucythrinate	ND	ppm	0.02
	207	Fludioxonil	ND	ppm	0.05
	208	Flufenacet	ND	ppm	0.02
	209	Fluometuron	ND	ppm	0.05
	210	Fluquinconazole	ND	ppm	0.02
	211	Fluridone	ND	ppm	0.05
	212	Flusilazole	ND	ppm	0.02
	213	Flusulfamide	ND	ppm	0.05
	214	Fluthiacet-methyl	ND	ppm	0.05
	215	Flutolanil	ND	ppm	0.02
	216	Flutriafol	ND	ppm	0.05
	217	Fluvalinate	0.03	ppm	0.02
	218	Fonofos	ND	ppm	0.05
	219	Forchlorfenuron	ND	ppm	0.05
	220	Fosthiazate	ND	ppm	0.05
	221	Fthalide	ND	ppm	0.02
	222	Furametpyr	ND	ppm	0.02
	223	Furathiocarb	ND	ppm	0.05
	224	Furilazole	ND	ppm	0.02
	225	Halfenprox	ND	ppm	0.02
	226	Haloxyfop	ND	ppm	0.01
	227	Haloxyfop-methyl	ND	ppm	0.02
	228	Heptachlor	ND	ppm	0.02
	229	Heptachlor-epoxide	ND	ppm	0.02
	230	Hexachlorobenzene	ND	ppm	0.02
	231	Hexaconazole	ND	ppm	0.05
	232	Hexazinone	ND	ppm	0.02
	233	Hexythiazox	ND	ppm	0.05
	234	Imazalil	ND	ppm	0.05
	235	Imazamethabenz-methyl-ester	ND	ppm	0.05
	236	Imibenconazole	ND	ppm	0.05
	237	Imidacloprid	ND	ppm	0.05
	238	Inabenfide	ND	ppm	0.05
	239	Indoxacarb	ND	ppm	0.05
		Iprobenfos	ND	ppm	0.05
	241	Iprodione	ND	ppm	0.05
	242	Iprovalicarb	ND	ppm	0.05
		Isazophos	ND	ppm	0.05
		Isocarbophos	ND	ppm	0.05
		Isofenphos	ND	ppm	0.05
	246	Isofenphos-methyl	ND	ppm	0.05
	247	Isoprocarb	ND	ppm	0.05
	248	Isoprothiolane	ND	ppm	0.02

250IsouronNDppm251Isoxadifien-ethylNDppm252IsoxaflutoleNDppm253IsoxaflutoleNDppm254Kresoxim-methylNDppm255LenacilNDppm256LindaneNDppm257LinuronNDppm258MalathionNDppm259MandipropamidNDppm260MecarbamNDppm261MefenacetNDppm263MephosfolanNDppm264MephosfolanNDppm265MeptonaliNDppm266MetalaxylNDppm266MethacrifosNDppm266MethacrifosNDppm270MethadiphosNDppm271MethidathionNDppm272MethidachophosNDppm274MethorpeneNDppm275MethoxychlorNDppm276MethoxychlorNDppm277MethoxychlorNDppm278MethorotopinNDppm279MetrinostrobinNDppm276MethoxychlorNDppm277MethorotopinNDppm278MetoninostrobinNDppm279MetrinostrobinNDppm280MeoninorotophosND </th <th>0.02 0.05 0.02 0.05 0.05</th>	0.02 0.05 0.02 0.05 0.05
250IsouronNDppm251Isoxadifien-ethylNDppm252IsoxaflutoleNDppm253IsoxaflutoleNDppm254Kresoxim-methylNDppm255LenacilNDppm256LindaneNDppm257LinuronNDppm258MalathionNDppm259MandipropamidNDppm260MecarbamNDppm261MefenacetNDppm262Mefenpyr-DiethylNDppm263MepanjayrimNDppm264MephosfolanNDppm265MepronilNDppm266MetlabaylNDppm266MethabenzthiazuronNDppm266MethabenzthiazuronNDppm270MethaenidophosNDppm271MethidathionNDppm275MethorylNDppm276MethorychlorNDppm277MethorylenozideNDppm278MethorylenozideNDppm279MethorylosNDppm279MethorylosNDppm280MeoninostobinNDppm281MetorylosNDppm282MetoninostobinNDppm283MetoninostobinNDppm284Monolinuron <td>0.02 0.05</td>	0.02 0.05
251Isoxadifen-ethylNDppm252IsoxaflutoleNDppm253IsoxaflutoleNDppm254Kresoxim-methylNDppm255LenacilNDppm256LindaneNDppm257LinuronNDppm258MalathionNDppm259MandipropamidNDppm260MecarbarnNDppm261MefenacetNDppm262Mefenyr-DiethylNDppm263MepanipyrimNDppm264MephosfolanNDppm265MepronilNDppm266MetalaxylNDppm266MetalaxylNDppm267MetconazoleNDppm270MethadenzthiazuronNDppm271MethidophosNDppm273MethorylNDppm274MethogreneNDppm275MethoxychlorNDppm276MethoxychlorNDppm277MetholocarbinNDppm278MethorylenosiceNDppm279MetribuzinNDppm276MethoxychlorNDppm277MetolachlorNDppm278MetonychosiNDppm279MetribuzinNDppm279MetribuzinNDpp	0.05
252IsoxaflutoleNDppm253IsoxathionNDppm254Kresoxim-methylNDppm255LenacilNDppm256LindaneNDppm257LinuronNDppm258MalathionNDppm259MandipropamidNDppm259MandipropamidNDppm259MandipropamidNDppm260MecarbamNDppm261MefenacetNDppm263MepanipyrimNDppm264MephosfolanNDppm265MepronilNDppm266MetonazoleNDppm267MetonazoleNDppm268MethabenzthiazuronNDppm270MetharifosNDppm271MethodphosNDppm273MethoryfenozideNDppm274MethoyfenozideNDppm275MetoxyfenozideNDppm276MetoxyfenozideNDppm278MetominostrobinNDppm280MevinphosNDppm281MirexNDppm284MonolinuronNDppm275MetioxyfenozideNDppm276MetioxyfenozideNDppm278MetominostrobinNDppm281MirexND<	
253IsoxathionNDppm254Kresoxim-methylNDppm255LenacilNDppm256LindaneNDppm257LinuronNDppm258MalathionNDppm259MandipropamidNDppm260MecarbamNDppm261MefenacetNDppm263MepanipyrimNDppm264Mefengyr-DiethylNDppm265MeprosfolanNDppm266MetalaxylNDppm267MetconazoleNDppm268MethacrifosNDppm269MethacrifosNDppm270MethardiohosNDppm271MethorpeneNDppm273MethorylNDppm274MethorychorNDppm275MetonizotekNDppm276MethoxychlorNDppm277MetohorylorNDppm278MetoninostrobinNDppm279MetribuzinNDppm281MonocrotophosNDppm283MonocrotophosNDppm284MonolinuronNDppm275MetrobycolorsNDppm276MetrobycolorsNDppm277MetocarbaNDppm278MetonyfonosNDppm <td>.05</td>	.05
255LenacilNDppm256LindaneNDppm257LinuronNDppm258MalathionNDppm259MandipropamidNDppm260MecarbamNDppm261MefenacetNDppm262Mefenpyr-DiethylNDppm263MepanipyrimNDppm264MephosfolanNDppm265MepronilNDppm266MetalaxylNDppm267MetconazoleNDppm268MethabenzthiazuronNDppm269MethacrifosNDppm270MethadophosNDppm271MethogreneNDppm273MethogreneNDppm274MethogreneNDppm275MethoxyfenozideNDppm276MethoxyfenozideNDppm277MetolorobinNDppm278MetominostrobinNDppm279MetribuzinNDppm281MirexNDppm282MolinateNDppm283MonocrotophosNDppm284MonolinuronNDppm285NgolobutanilNDppm286Naled (screened as Dichlorvos)NDppm287NaproanilideNDppm288NapropamideND	
256LindaneNDppm257LinuronNDppm258MalathionNDppm259MandipropamidNDppm260MecarbamNDppm261MefenacetNDppm262MefenacetNDppm263MepanipyrimNDppm264MephosfolanNDppm265MepronilNDppm266MetalaxylNDppm267MetconazoleNDppm268MethabenzthiazuronNDppm269MethacrifosNDppm270MethadohosNDppm271MethidathionNDppm273MethorylNDppm274MethogreneNDppm275MethoxychlorNDppm276MethoxychlorNDppm277MethoxychlorNDppm278MetominostrobinNDppm279MetribuzinNDppm274MetoninostrobinNDppm275MetonylosNDppm281MirexNDppm282MolinateNDppm283MonocrotophosNDppm284MonolinuronNDppm285NaproanilideNDppm286Naled (screened as Dichlorvos)NDppm288NapropamideND <td< td=""><td>0.02</td></td<>	0.02
256LindaneNDppm257LinuronNDppm258MalathionNDppm258MalathionNDppm259MandipropamidNDppm260MecarbamNDppm261MefenacetNDppm262Mefenpyr-DiethylNDppm263MepanipyrimNDppm264MephosfolanNDppm265MepronilNDppm266MetalaxylNDppm267MetconazoleNDppm268MethabenzthiazuronNDppm269MethacrifosNDppm270MethadohosNDppm271MethidathionNDppm273MethorpreneNDppm274MethogreneNDppm275MethoxychlorNDppm276MetomylNDppm277MetoloprobinNDppm278MetominostrobinNDppm279MetribuzinNDppm281MirexNDppm282MolinateNDppm283MonocrotophosNDppm284MonolinuronNDppm285MyclobutanilNDppm286Naled (screened as Dichlorvos)NDppm287NaproanilideNDppm288NapropamideND<	.05
257LinuronNDppm258MalathionNDppm259MandipropamidNDppm260MecarbarnNDppm261MefenacetNDppm262Mefenpyr-DiethylNDppm263MepanipyrimNDppm264MephosfolanNDppm265MepronilNDppm266MetalaxylNDppm267MetconazoleNDppm268MethaberzthiazuronNDppm269MethacrifosNDppm270MethadiophosNDppm271MethidathionNDppm273MethorylNDppm274MethopreneNDppm275MethoxyfenozideNDppm276MetoninostrobinNDppm277MetolachlorNDppm278MetominostrobinNDppm279MetinbuzinNDppm280MevinphosNDppm281MirexNDppm282MolinateNDppm283MonocrotophosNDppm284MonolinuronNDppm285NaproanilideNDppm286Naled (screened as Dichlorvos)NDppm287NaproanilideNDppm288NapropamideNDppm	0.02
258MalathionNDppm259MandipropamidNDppm260MecarbamNDppm261MefenacetNDppm262MefenacetNDppm263MepanipyrimNDppm264MephosfolanNDppm265MeponilNDppm266MetalaxylNDppm267MetconazoleNDppm268MethabenzthiazuronNDppm269MethacrifosNDppm270MethamidophosNDppm271MethogreneNDppm272MethocarbNDppm273MethorylNDppm274MethopreneNDppm275MethoxychlorNDppm276MethoxychlorNDppm277MetolachlorNDppm278MetoninostrobinNDppm279MetribuzinNDppm278MetoninostrobinNDppm279MetribuzinNDppm280MevinphosNDppm281MirexNDppm283MonocrotophosNDppm284MonlinuronNDppm285MyclobutanilNDppm286Naled (screened as Dichlorvos)NDppm287NaporanildeNDppm288NaporpamideND </td <td>0.05</td>	0.05
260MecarbamNDppm261MefenacetNDppm262Mefenpyr-DiethylNDppm263MepanipyrimNDppm264MephosfolanNDppm265MepronilNDppm266MetalaxylNDppm267MetconazoleNDppm268MethabenzthiazuronNDppm269MethacrifosNDppm270MethanidophosNDppm271MethidathionNDppm273MethorylNDppm274MethogreneNDppm275MethoxychlorNDppm276MethoxyfenozideNDppm277MetlachionNDppm278MetomostrobinNDppm279MetribuzinNDppm279MetribuzinNDppm280MevinphosNDppm281MirexNDppm284MonolinuronNDppm285MyclobutanilNDppm286Naled (screened as Dichlorvos)NDppm287NaproanilideNDppm288NapropanideNDppm286Naled (screened as Dichlorvos)NDppm286NaproanilideNDppm286NaproanilideNDppm286NaproanilideNDppm286 <td>0.05</td>	0.05
261MefenacetNDppm262Mefenpyr-DiethylNDppm263MepanipyrimNDppm264MephosfolanNDppm265MepronilNDppm266MetalaxylNDppm267MetconazoleNDppm268MethabenzthiazuronNDppm269MethacrifosNDppm270MethadrifosNDppm271MethidathionNDppm272MethorylNDppm273MethorylNDppm274MethorylNDppm275MethoxychlorNDppm276MethoxychlorNDppm277MetolachlorNDppm278MetomolstrobinNDppm279MetribuzinNDppm280MevinphosNDppm281MirexNDppm283MonocrotophosNDppm284MonolinuronNDppm285MyclobutanilNDppm286Naled (screened as Dichlorvos)NDppm287NaproanilideNDppm288NapropanideNDppm286Naled (screened as Dichlorvos)NDppm286Naled (screened as Dichlorvos)NDppm287NaproanilideNDppm288NapropanideNDppm <td>0.05</td>	0.05
262Mefenpyr-DiethylNDppm263MepanipyrimNDppm264MephosfolanNDppm265MepronilNDppm266MetalaxylNDppm267MetconazoleNDppm268MethabenzthiazuronNDppm269MethacrifosNDppm270MethamidophosNDppm271MethidathionNDppm273MethorylNDppm274MethogreneNDppm275MethoxyfenozideNDppm276MetoxyfenozideNDppm277MetolachlorNDppm278MetoninostrobinNDppm279MetribuzinNDppm278MetoninostrobinNDppm279MetribuzinNDppm280MevinphosNDppm281MinexNDppm283MonocrotophosNDppm284MonolinuronNDppm286Naled (screened as Dichlorvos)NDppm287NaproanilideNDppm288NapropamideNDppm288NapropamideNDppm288NapropamideNDppm281NaproanilideNDppm285NaproanilideNDppm286NaproanilideNDppm287 <t< td=""><td>0.05</td></t<>	0.05
262Mefenpyr-DiethylNDppm263MepanipyrimNDppm264MephosfolanNDppm265MepronilNDppm266MetalaxylNDppm267MetconazoleNDppm268MethabenzthiazuronNDppm269MethacrifosNDppm270MethamidophosNDppm271MethidathionNDppm272MethorylNDppm273MethorylNDppm274MethogreneNDppm275MethoxychlorNDppm276MethoxyfenozideNDppm277MetolachlorNDppm278MetoninostrobinNDppm279MetribuzinNDppm278MetoninostrobinNDppm279MetribuzinNDppm280MevinphosNDppm281MinateNDppm283MonocrotophosNDppm286Naled (screened as Dichlorvos)NDppm287NaproanilideNDppm288NaproanilideNDppm288NaproanilideNDppm288NaproanilideNDppm286NaproanilideNDppm287NaproanilideNDppm288NaproanilideNDppm286 <td< td=""><td>0.05</td></td<>	0.05
264MephosfolanNDppm265MepronilNDppm266MetalaxylNDppm267MetconazoleNDppm268MethabenzthiazuronNDppm269MethacrifosNDppm270MethamidophosNDppm271MethidathionNDppm272MethorarbNDppm273MethorylNDppm274MethopreneNDppm275MethoxyfenozideNDppm276MetoxyfenozideNDppm277MetolachlorNDppm278MetominostrobinNDppm279MetribuzinNDppm280MevinphosNDppm281MirexNDppm282MolinateNDppm283MonocrotophosNDppm284MonolinuronNDppm285MyclobutanilNDppm286Naled (screened as Dichlorvos)NDppm287NaproamildeNDppm288NapropamideNDppm288NapropamideNDppm288NapropamideNDppm288NapropamideNDppm288NapropamideNDppm288NapropamideNDppm288NapropamideNDppm288Napropamide <td>0.05</td>	0.05
265MepronilNDppm266MetalaxylNDppm267MetconazoleNDppm268MethabenzthiazuronNDppm269MethacrifosNDppm270MethamidophosNDppm271MethidathionNDppm272MethiocarbNDppm273MethorylNDppm274MethopreneNDppm275MethoxyfenozideNDppm276MetoxyfenozideNDppm277MetolachlorNDppm278MetominostrobinNDppm279MetribuzinNDppm280MevinphosNDppm281MirexNDppm283MonocrotophosNDppm284MonolinuronNDppm285MyclobutanilNDppm286Naled (screened as Dichlorvos)NDppm287NaproanilideNDppm288NapropamideNDppm	0.02
266MetalaxylNDppm267MetconazoleNDppm268MethabenzthiazuronNDppm269MethaenzthiazuronNDppm270MethacrifosNDppm271MethadiophosNDppm272MethacarbNDppm273MethorylNDppm274MethopreneNDppm275MethoxyfenozideNDppm276MetoxyfenozideNDppm277MetolachlorNDppm278MetominostrobinNDppm279MetribuzinNDppm280MevinphosNDppm281MirexNDppm283MonocrotophosNDppm284MonolinuronNDppm285MyclobutanilNDppm286Naled (screened as Dichlorvos)NDppm287NaproanilideNDppm288NapropamideNDppm288NapropamideNDppm288NapropamideNDppm288NapropamideNDppm288NapropamideNDppm288NapropamideNDppm288NapropamideNDppm288NapropamideNDppm288NapropamideNDppm288NapropamideNDppm288Nap	0.05
266MetalaxylNDppm267MetconazoleNDppm268MethabenzthiazuronNDppm269MethacrifosNDppm270MethamidophosNDppm271MethidathionNDppm272MethicarbNDppm273MethorylNDppm274MethopreneNDppm275MethoxyfenozideNDppm276MetosyfenozideNDppm277MetolachlorNDppm278MetominostrobinNDppm279MetribuzinNDppm280MevinphosNDppm281MirexNDppm283MonocrotophosNDppm284MonolinuronNDppm285MyclobutanilNDppm286Naled (screened as Dichlorvos)NDppm287NaproanilideNDppm288NapropamideNDppm288NapropamideNDppm288NapropamideNDppm288NapropamideNDppm288NapropamideNDppm288NapropamideNDppm288NapropamideNDppm288NapropamideNDppm288NapropamideNDppm288NapropamideNDppm288Napropa	0.02
267MetconazoleNDppm268MethabenzthiazuronNDppm269MethacrifosNDppm270MetharnidophosNDppm271MethidathionNDppm272MethidathionNDppm273MethorylNDppm274MethopreneNDppm275MethoxychlorNDppm276MethoxyfenozideNDppm277MetolachlorNDppm278MetominostrobinNDppm279MetribuzinNDppm280MevinphosNDppm281MirexNDppm283MonocrotophosNDppm284MonolinuronNDppm285MyclobutanilNDppm286Naled (screened as Dichlorvos)NDppm287NaproanilideNDppm288NapropamideNDppm	0.02
268MethabenzthiazuronNDppm269MethacrifosNDppm270MethamidophosNDppm271MethidathionNDppm272MethiocarbNDppm273MethonylNDppm274MethopreneNDppm275MethoxyfenozideNDppm276MethoxyfenozideNDppm277MetolachlorNDppm278MetominostrobinNDppm279MetribuzinNDppm280MevinphosNDppm281MirexNDppm283MonocrotophosNDppm284MonolinuronNDppm285MyclobutanilNDppm286Naled (screened as Dichlorvos)NDppm287NaproanilideNDppm288NapropamideNDppm	0.02
269MethacrifosNDppm270MethamidophosNDppm271MethidathionNDppm272MethiocarbNDppm273MethomylNDppm274MethopreneNDppm275MethoxychlorNDppm276MethoxyfenozideNDppm277MetolachlorNDppm278MetominostrobinNDppm279MetribuzinNDppm280MevinphosNDppm281MirexNDppm283MonocrotophosNDppm284MonolinuronNDppm285MyclobutanilNDppm286Naled (screened as Dichlorvos)NDppm287NaproanilideNDppm288NapropamideNDppm	0.05
271MethidathionNDppm272MethiocarbNDppm273MethomylNDppm274MethopreneNDppm275MethoxychlorNDppm276MethoxyfenozideNDppm277MetolachlorNDppm278MetominostrobinNDppm279MetribuzinNDppm280MevinphosNDppm281MirexNDppm283MonocrotophosNDppm284MonolinuronNDppm285MyclobutanilNDppm286Naled (screened as Dichlorvos)NDppm287NaproanilideNDppm288NapropamideNDppm	0.05
271MethidathionNDppm272MethiocarbNDppm273MethomylNDppm274MethopreneNDppm275MethoxychlorNDppm276MethoxyfenozideNDppm277MetolachlorNDppm278MetominostrobinNDppm279MetribuzinNDppm280MevinphosNDppm281MirexNDppm283MonocrotophosNDppm284MonolinuronNDppm285MyclobutanilNDppm286Naled (screened as Dichlorvos)NDppm288NapropamideNDppm288NapropamideNDppm	0.05
273MethomylNDppm274MethopreneNDppm275MethoxychlorNDppm276MethoxyfenozideNDppm277MetolachlorNDppm278MetominostrobinNDppm279MetribuzinNDppm280MevinphosNDppm281MirexNDppm283MonocrotophosNDppm284MonolinuronNDppm285MyclobutanilNDppm286Naled (screened as Dichlorvos)NDppm288NapropamideNDppm	0.05
273MethomylNDppm274MethopreneNDppm275MethoxychlorNDppm276MethoxyfenozideNDppm277MetolachlorNDppm278MetominostrobinNDppm279MetribuzinNDppm280MevinphosNDppm281MirexNDppm282MolinateNDppm283MonocrotophosNDppm284MonolinuronNDppm285MyclobutanilNDppm286Naled (screened as Dichlorvos)NDppm287NaproanilideNDppm288NapropamideNDppm	0.05
274MethopreneNDppm275MethoxychlorNDppm276MethoxyfenozideNDppm277MetolachlorNDppm278MetominostrobinNDppm279MetribuzinNDppm280MevinphosNDppm281MirexNDppm282MolinateNDppm283MonocrotophosNDppm284MonolinuronNDppm285MyclobutanilNDppm286Naled (screened as Dichlorvos)NDppm288NapropamideNDppm	0.05
275MethoxychlorNDppm276MethoxyfenozideNDppm277MetolachlorNDppm278MetominostrobinNDppm279MetribuzinNDppm280MevinphosNDppm281MirexNDppm282MolinateNDppm283MonocrotophosNDppm284MonolinuronNDppm285MyclobutanilNDppm286Naled (screened as Dichlorvos)NDppm288NapropamideNDppm	0.02
276MethoxyfenozideNDppm277MetolachlorNDppm278MetominostrobinNDppm279MetribuzinNDppm280MevinphosNDppm281MirexNDppm282MolinateNDppm283MonocrotophosNDppm284MonolinuronNDppm285MyclobutanilNDppm286Naled (screened as Dichlorvos)NDppm288NapropamideNDppm	0.02
278MetominostrobinNDppm279MetribuzinNDppm280MevinphosNDppm281MirexNDppm282MolinateNDppm283MonocrotophosNDppm284MonolinuronNDppm285MyclobutanilNDppm286Naled (screened as Dichlorvos)NDppm287NapropamideNDppm	0.05
279MetribuzinNDppm280MevinphosNDppm281MirexNDppm282MolinateNDppm283MonocrotophosNDppm284MonolinuronNDppm285MyclobutanilNDppm286Naled (screened as Dichlorvos)NDppm287NaproanilideNDppm288NapropamideNDppm	0.02
280MevinphosNDppm281MirexNDppm282MolinateNDppm283MonocrotophosNDppm284MonolinuronNDppm285MyclobutanilNDppm286Naled (screened as Dichlorvos)NDppm287NaproanilideNDppm288NapropamideNDppm	0.02
281 MirexNDppm282 MolinateNDppm283 MonocrotophosNDppm284 MonolinuronNDppm285 MyclobutanilNDppm286 Naled (screened as Dichlorvos)NDppm287 NaproanilideNDppm288 NapropamideNDppm	0.02
282MolinateNDppm283MonocrotophosNDppm284MonolinuronNDppm285MyclobutanilNDppm286Naled (screened as Dichlorvos)NDppm287NaproanilideNDppm288NapropamideNDppm	0.05
283MonocrotophosNDppm284MonolinuronNDppm285MyclobutanilNDppm286Naled (screened as Dichlorvos)NDppm287NaproanilideNDppm288NapropamideNDppm	0.02
284MonolinuronNDppm285MyclobutanilNDppm286Naled (screened as Dichlorvos)NDppm287NaproanilideNDppm288NapropamideNDppm	0.02
285MyclobutanilNDppm286Naled (screened as Dichlorvos)NDppm287NaproanilideNDppm288NapropamideNDppm	0.05
286Naled (screened as Dichlorvos)NDppm287NaproanilideNDppm288NapropamideNDppm	0.05
287 NaproanilideNDppm288 NapropamideNDppm	0.02
288 Napropamide ND ppm	0.05
	0.02
	0.02
289 Nitenpyram ND ppm	0.05
290 Nitrofen ND ppm	0.02
291 Nitrothal-isopropyl ND ppm	0.02
292 Norflurazon ND ppm	0.02
293 Novaluron ND ppm	0.05
294 Ofurace ND ppm	0.05
295 Omethoate ND ppm	0.05
296 o-Phenylphenol ND ppm	0.1
297 Orysastrobin ND ppm	0.02
298 Oryzalin ND ppm	0.05
299 Oxadiazon ND ppm	0.02
300 Oxadixyl ND ppm	0.1
301 Oxamyl ND ppm	0.05
302 Oxaziclomefone ND ppm	0.05

_				
	Oxpoconazole-fumarate	ND	ppm	0.1
	Oxycarboxin	ND	ppm	0.05
	Oxydemeton-methyl	ND	ppm	0.05
306	Oxyfluorfen	ND	ppm	0.02
307	Paclobutrazol	ND	ppm	0.02
308	Parathion	ND	ppm	0.05
309	Parathion-methyl	ND	ppm	0.05
310	Pebulate	ND	ppm	0.02
311	Penconazole	ND	ppm	0.02
312	Pencycuron	ND	ppm	0.05
313	Pendimethalin	ND	ppm	0.02
314	Pentoxazone	ND	ppm	0.02
315	Permethrin	ND	ppm	0.02
316	Perthane	ND	ppm	0.02
317	Phenmedipham	ND	ppm	0.05
318	Phenothiol	ND	ppm	0.02
319	Phenothrin	ND	ppm	0.02
320	Phenthoate	ND	ppm	0.05
321	Phorate	ND	ppm	0.05
322	Phorate-sulfone	ND	ppm	0.05
323	Phosalone	ND	ppm	0.05
324	Phosmet	ND	ppm	0.05
325	Phosphamidon	ND	ppm	0.05
326	Phoxim	ND	ppm	0.05
327	Picolinafen	ND	ppm	0.05
328	Piperonyl-butoxide	ND	ppm	0.02
329	Piperophos	ND	ppm	0.05
330	Pirimicarb	ND	ppm	0.02
331	Pirimioxyphos	ND	ppm	0.05
332	Pirimiphos-ethyl	ND	ppm	0.05
333	Pirimiphos-methyl	ND	ppm	0.05
334	Pretilachlor	ND	ppm	0.02
335	Prochloraz	ND	ppm	0.02
336	Procymidone	ND	ppm	0.02
337	Profenofos	ND	ppm	0.05
	Prohydrojasmon	ND	ppm	0.1
	Prometryn	ND	ppm	0.02
340	Propachlor	ND	ppm	0.02
341	Propanil	ND	ppm	0.02
	Propaphos	ND	ppm	0.05
	Propargite	ND	ppm	0.05
	Propazine	ND	ppm	0.02
	Propetamphos	ND	ppm	0.05
	Propiconazole	ND	ppm	0.02
	Propoxur	ND	ppm	0.05
	Propyzamide	ND	ppm	0.05
	Prothiofos	ND	ppm	0.05
350	Pyraclofos	ND	ppm	0.05
351	Pyraclonil	ND	ppm	0.02
	Pyraclostrobin	ND	ppm	0.05
	Pyraflufen-ethyl	ND	ppm	0.02
	Pyrazolynate	ND	ppm	0.05
	Pyrazophos	ND	ppm	0.05
356	Pyrazoxyfen	ND	ppm	0.05

		in the inche	ILI OK		
357	Pyrethrins	ND	ppm	0.25	
358	Pyributicarb	ND	ppm	0.02	
359	Pyridaben	ND	ppm	0.02	
360	Pyridafenthion	ND	ppm	0.05	
361	Pyrifenox	ND	ppm	0.02	
	Pyriftalid	ND	ppm	0.05	
	Pyrimethanil	ND	ppm	0.02	
	Pyrimidifen	ND	ppm	0.02	
	Pyriminobac-methyl	ND	ppm	0.02	
	Pyriproxyfen	ND	ppm	0.02	
	Pyroquilon	ND	ppm	0.02	
	Quinalphos	ND	ppm	0.05	
	Quinoclamine	ND	ppm	0.05	
	Quinoxyfen	ND	ppm	0.05	
	Quintozene	ND	ppm	0.02	
	Quizalofop-ethyl	ND		0.02	
	Salithion	ND	ppm	0.02	
	Sethoxydim	ND	ppm	0.05	
			ppm		
	Silafluofen	ND	ppm	0.02	
376		ND	ppm	0.02	
	Simeconazole	ND	ppm	0.05	
	Simetryn	ND	ppm	0.02	
	Spinosad	ND	ppm	0.05	
	Spiromesifen	ND	ppm	0.1	
	Sulfotep	ND	ppm	0.05	
	Sulprofos	ND	ppm	0.05	
	ТСМТВ	ND	ppm	0.05	
	Tebuconazole	ND	ppm	0.02	
	Tebufenozide	ND	ppm	0.1	
	Tebufenpyrad	ND	ppm	0.02	
	Tebupirimfos	ND	ppm	0.05	
	Tebuthiuron	ND	ppm	0.05	
	Tecnazene	ND	ppm	0.02	
	Tefluthrin	ND	ppm	0.02	
391	Terbacil	ND	ppm	0.05	
	Terbufos	ND	ppm	0.05	
	Terbutryn	ND	ppm	0.02	
	Tetrachlorvinphos	ND	ppm	0.05	
	Tetraconazole	ND	ppm	0.02	
	Tetradifon	ND	ppm	0.02	
397	Tetrahydrophthalimide	ND	ppm	0.1	
	Tetramethrin	ND	ppm	0.02	
399	Thenylchlor	ND	ppm	0.02	
400	Thiabendazole	ND	ppm	0.05	
401	Thiacloprid	ND	ppm	0.05	
402	Thiamethoxam	ND	ppm	0.05	
403	Thiazopyr	ND	ppm	0.02	
404	Thidiazuron	ND	ppm	0.05	
405	Thifluzamide	ND	ppm	0.02	
406	Thiobencarb	ND	ppm	0.02	
407	Thiometon	ND	ppm	0.02	
	Tiadinil	ND	ppm	0.05	
	Tolclofos-methyl	ND	ppm	0.05	
	Tralomethrin	ND	ppm	0.02	
410	naomeann	ND	ppin	0.02	

411				
	Triadimefon	ND	ppm	0.02
412	Triadimenol	ND	ppm	0.05
413	Tri-allate	ND	ppm	0.02
414	Triazophos	ND	ppm	0.05
415	Tribuphos	ND	ppm	0.05
	Trichlamide	ND	ppm	0.02
417	Trichlorfon	ND	ppm	0.05
418	Tricyclazole	ND	ppm	0.05
419	Tridiphane	ND	ppm	0.02
420	Trifloxystrobin	ND	ppm	0.05
421	Triflumizole	ND	ppm	0.02
422	Triflumuron	ND	ppm	0.05
423	Trifluralin	ND	ppm	0.02
424	Triforine	ND	ppm	0.05
425	Triticonazole	ND	ppm	0.05
426	Uniconazole-P	ND	ppm	0.05
427	Vinclozolin	ND	ppm	0.02
428	XMC	ND	ppm	0.05
429	Xylylcarb	ND	ppm	0.05
	Zoxamide	ND	ppm	0.05
Per	rsistent Organic Pollutants			
	Analyte	Result		
1	**Dioxins / Furans / WHO-12 PCBs	Complete - see attach	ned eurofins A	nalysis Report
Mic	crobiological Tests			
	Analyte	The second second		
1		Result	Units	
		Result < 10	Units CFU/a	
	Aerobic Plate Count (APC)	< 10	CFU/g	
2	Aerobic Plate Count (APC) Coliform, Plate Count	< 10 <10	CFU/g CFU/g	
2 3	Aerobic Plate Count (APC) Coliform, Plate Count E Coli, Plate Count	< 10 <10 <10	CFU/g	
2 3	Aerobic Plate Count (APC) Coliform, Plate Count	< 10 <10	CFU/g CFU/g CFU/g	
2 3 4	Aerobic Plate Count (APC) Coliform, Plate Count E Coli, Plate Count Listeria Genus (by PCR) Mold	< 10 <10 <10 Negative <10	CFU/g CFU/g	
2 3 4 5 6	Aerobic Plate Count (APC) Coliform, Plate Count E Coli, Plate Count Listeria Genus (by PCR)	< 10 <10 <10 Negative	CFU/g CFU/g CFU/g	
2 3 4 5 6 7	Aerobic Plate Count (APC) Coliform, Plate Count E Coli, Plate Count Listeria Genus (by PCR) Mold Salmonella (by PCR)	< 10 <10 <10 Negative <10 Negative	CFU/g CFU/g CFU/g CFU/g	
2 3 4 5 6 7	Aerobic Plate Count (APC) Coliform, Plate Count E Coli, Plate Count Listeria Genus (by PCR) Mold Salmonella (by PCR) Yeast	< 10 <10 <10 Negative <10 Negative	CFU/g CFU/g CFU/g CFU/g	LOQ
2 3 4 5 6 7 Mir	Aerobic Plate Count (APC) Coliform, Plate Count E Coli, Plate Count Listeria Genus (by PCR) Mold Salmonella (by PCR) Yeast	< 10 <10 <10 Negative <10 Negative <10	CFU/g CFU/g CFU/g CFU/g CFU/g	LOQ 10
2 3 4 5 6 7 Mir	Aerobic Plate Count (APC) Coliform, Plate Count E Coli, Plate Count Listeria Genus (by PCR) Mold Salmonella (by PCR) Yeast herals / Metals Screen Analyte	< 10 <10 <10 Negative <10 Negative <10	CFU/g CFU/g CFU/g CFU/g CFU/g Units ppb	
2 3 4 5 6 7 Mir 1 2	Aerobic Plate Count (APC) Coliform, Plate Count E Coli, Plate Count Listeria Genus (by PCR) Mold Salmonella (by PCR) Yeast herals / Metals Screen Analyte Arsenic	< 10 <10 <10 Negative <10 Negative <10 Result ND	CFU/g CFU/g CFU/g CFU/g CFU/g Units	10
2 3 4 5 6 7 Mir 1 2 3	Aerobic Plate Count (APC) Coliform, Plate Count E Coli, Plate Count Listeria Genus (by PCR) Mold Salmonella (by PCR) Yeast Therals / Metals Screen Analyte Arsenic Cadmium	< 10 <10 <10 Negative <10 Negative <10 Result ND ND	CFU/g CFU/g CFU/g CFU/g CFU/g Units ppb ppb	10 10
2 3 4 5 6 7 Mir 1 2 3 4	Aerobic Plate Count (APC) Coliform, Plate Count E Coli, Plate Count Listeria Genus (by PCR) Mold Salmonella (by PCR) Yeast Therals / Metals Screen Analyte Arsenic Cadmium Lead	< 10 <10 <10 Negative <10 Negative <10 Result ND ND ND	CFU/g CFU/g CFU/g CFU/g CFU/g Units ppb ppb ppb	10 10 10
2 3 4 5 6 7 Mir 1 2 3 4	Aerobic Plate Count (APC) Coliform, Plate Count E Coli, Plate Count Listeria Genus (by PCR) Mold Salmonella (by PCR) Yeast Terals / Metals Screen Analyte Arsenic Cadmium Lead Mercury	< 10 <10 <10 Negative <10 Negative <10 Result ND ND ND	CFU/g CFU/g CFU/g CFU/g CFU/g Units ppb ppb ppb	10 10 10
2 3 4 5 6 7 Mir 1 2 3 4 My	Aerobic Plate Count (APC) Coliform, Plate Count E Coli, Plate Count Listeria Genus (by PCR) Mold Salmonella (by PCR) Yeast Terals / Metals Screen Analyte Arsenic Cadmium Lead Mercury cotoxins Screen	< 10 <10 <10 Negative <10 Negative <10 Result ND ND ND ND ND	CFU/g CFU/g CFU/g CFU/g CFU/g Units ppb ppb ppb ppb ppb	10 10 10 5
2 3 4 5 6 7 Mir 1 2 3 4 My 1	Aerobic Plate Count (APC) Coliform, Plate Count E Coli, Plate Count Listeria Genus (by PCR) Mold Salmonella (by PCR) Yeast Terals / Metals Screen Analyte Arsenic Cadmium Lead Mercury cotoxins Screen Analyte	< 10 <10 <10 Negative <10 Negative <10 Result ND ND ND ND ND ND	CFU/g CFU/g CFU/g CFU/g CFU/g Units ppb ppb ppb ppb ppb	10 10 10 5
2 3 4 5 6 7 7 Mir 1 2 3 4 My 1 2	Aerobic Plate Count (APC) Coliform, Plate Count E Coli, Plate Count Listeria Genus (by PCR) Mold Salmonella (by PCR) Yeast Terals / Metals Screen Analyte Arsenic Cadmium Lead Mercury cotoxins Screen Analyte Aflatoxin B1	< 10 <10 <10 Negative <10 Negative <10 Result ND ND ND ND ND ND	CFU/g CFU/g CFU/g CFU/g CFU/g Units ppb ppb ppb ppb ppb	10 10 10 5 LOQ 5

**This analysis is outside the scope of OMIC USA operations and has been subcontracted to eurofins laboratory. Their report analysis is attached in its entirety. OMIC USA assumes no responsibility for its interpretations or use.

PAH'S Screen

Analyte	Result	Units	LOQ
1 *Acenaphthene	ND	ppm	43
2 *Acenaphthylene	ND	ppm	38
3 *Anthracene	ND	ppm	65
4 *Benz(a)anthracene	ND	ppm	49
5 *Benzo(a)pyrene	ND	ppm	32
6 *Benzo(b)fluoranthene	ND	ppm	38
7 *Benzo(g,h,i)perylene	ND	ppm	38
8 *Benzo(k)fluoranthene	ND	ppm	38
9 *Chrysene	ND	ppm	32
10 *Dibenzo(a,h)anthracene	ND	ppm	54
11 *Flouranthene	ND	ppm	43
12 *Fluorene	ND	ppm	70
13 *Indeno((1,2,3-cd)pyrene	ND	ppm	49
14 *Napthalene	ND	ppm	43
15 *Phenanthrene	ND	ppm	38
16 *Pyrene	ND	ppm	32
Solvent Screen			
Analyte	Result	Units	LOQ
1 Hexane	ND	ppb	10

🔅 eurofins

Lancaster Laboratories Environmental **Analysis Report**

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: AB82050 RICE BRAN WAX Composite Solid Rice Bran Wax

LL Sample # G5 7968745 LL Group # 1577323 Account # 30091

Project Name: Rice Bran Wax

Collected: 07/15/2015 13:45	by DF
-----------------------------	-------

Submitted: 07/16/2015 09:45 Reported: 07/28/2015 15:28 OMIC USA Inc. 3344 NW Industrial St Portland OR

No.	Analysis Name	CAS Number	As Received Result	As Received EDL	Dilution Factor
ioxi	ns/Furans	EPA 1613B modified	ng/kg	ng/kg	
12963	2378-TCDD	1746-01-6	< 0.155	0.155	1
2963		51207-31-9	< 0.102	0.102	1
2963	12378-PeCDD	40321-76-4	< 0.117	0.117	1
2963	12378-PeCDF	57117-41-6	< 0.0701	0.0701	1
2963	23478-PeCDF	57117-31-4	< 0.0638	0.0638	ī
2963	123478-HxCDD	39227-28-6	< 0.0605	0.0605	1
2963	123678-HxCDD	57653-85-7	< 0.0652	0.0652	ī
2963	123789-HxCDD	19408-74-3	< 0.0729	0.0729	1
2963	123478-HxCDF	70648-26-9	< 0.0547	0.0547	ī
2963	123678-HxCDF	57117-44-9	< 0.0565	0.0565	1
2963	123789-HxCDF	72918-21-9	< 0.0653	0.0653	ī
2963	234678-HxCDF	60851-34-5	< 0.0554	0.0554	1
2963	1234678-HpCDD	35822-46-9	< 0.0776	0.0776	1
2963	1234678-HpCDF	67562-39-4	< 0.0368	0.0368	1
2963	1234789-HpCDF	55673-89-7	< 0.0494	0.0494	1
2963	OCDD	3268-87-9	0.377	0.108	1
2963	OCDF	39001-02-0	< 0.172	0.172	1
	WHO2005 PCDD/F TI WHO2005 PCDD/F TI		0.000113 0.349		1
2963	WHO2005 PCDD/F TI	EQ Upper Bound n.a.	0.349	ng/kg	
.2963 HO 1	WHO2005 PCDD/F TI 2 PCBs	EQ Upper Bound n.a. BPA 1668 modified	0.349 ng/kg	ng/kg 0.165	1
2963 HO 1 2942	WHO2005 PCDD/F T 2 PCBs PCB77	EQ Upper Bound n.a. EPA 1668 modified 32598-13-3	0.349 ng/kg < 0.165	0.165	1
2963 HO J 2942 2942	WH02005 PCDD/F TI 2 PCBs PCB77 PCB81	EQ Upper Bound n.a. EPA 1668 modified 32598-13-3 70362-50-4	0.349 ng/kg < 0.165 0.395	0.165 0.179	1
2963 HO 1 2942 2942 2942	WH02005 PCDD/F T 2 PCBs PCB77 PCB81 PCB105	EQ Upper Bound n.a. EPA 1668 modified 32598-13-3 70362-50-4 32598-14-4	0.349 ng/kg < 0.165 0.395 3.28	0.165 0.179 0.169	1
2963 HO J 2942 2942 2942 2942	WH02005 PCDD/F T 2 PCBs PCB77 PCB81 PCB105 PCB114	EQ Upper Bound n.a. EPA 1668 modified 32598-13-3 70362-50-4 32598-14-4 74472-37-0	0.349 ng/kg < 0.165 0.395 3.28 0.449	0.165 0.179 0.169 0.204	1 1 1 1
HO J 2942 2942 2942 2942 2942 2942	WH02005 PCDD/F TI 2 PCBs PCB77 PCB81 PCB105 PCB105 PCB114 PCB118	EQ Upper Bound n.a. EPA 1668 modified 32598-13-3 70362-50-4 32598-14-4 74472-37-0 31508-00-6	0.349 ng/kg < 0.165 0.395 3.28 0.449 10.3	0.165 0.179 0.169 0.204 0.167	1 1 1 1 1
HO 1 2942 2942 2942 2942 2942 2942 2942 294	WH02005 PCDD/F T 2 PCBs PCB77 PCB81 PCB105 PCB114 PCB118 PCB123	EQ Upper Bound n.a. EPA 1668 modified 32598-13-3 70362-50-4 32598-14-4 74472-37-0 31508-00-6 65510-44-3	0.349 ng/kg < 0.165 0.395 3.28 0.449 10.3 < 0.167	0.165 0.179 0.169 0.204 0.167 0.167	1 1 1 1 1 1 1
12942 12942 12942 12942 12942 12942 12942 12942	WH02005 PCDD/F T 2 PCBs PCB77 PCB81 PCB105 PCB114 PCB118 PCB123 PCB126	EQ Upper Bound n.a. EPA 1668 modified 32598-13-3 70362-50-4 32598-14-4 74472-37-0 31508-00-6 65510-44-3 57465-28-8	0.349 ng/kg < 0.165 0.395 3.28 0.449 10.3 < 0.167 < 0.171	0.165 0.179 0.169 0.204 0.167 0.167 0.167	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2963 HO 1 2942 2942 2942 2942 2942 2942 2942 294	WH02005 PCDD/F T 2 PCBs PCB77 PCB81 PCB105 PCB114 PCB118 PCB123 PCB126 PCB156	EQ Upper Bound n.a. EPA 1668 modified 32598-13-3 70362-50-4 32598-14-4 74472-37-0 31508-00-6 65510-44-3 57465-28-8 38380-08-4	0.349 ng/kg < 0.165 0.395 3.28 0.449 10.3 < 0.167 < 0.171 < 0.174	0.165 0.179 0.169 0.204 0.167 0.167 0.167 0.171 0.144	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2963 HO 1 2942 2942 2942 2942 2942 2942 2942 294	WH02005 PCDD/F T 2 PCBs PCB77 PCB81 PCB105 PCB114 PCB123 PCB126 PCB156 PCB157	EQ Upper Bound n.a. EPA 1668 modified 32598-13-3 70362-50-4 32598-14-4 74472-37-0 31508-00-6 65510-44-3 57465-28-8 38380-08-4 69782-90-7	0.349 ng/kg < 0.165 0.395 3.28 0.449 10.3 < 0.147 < 0.167 < 0.144 < 0.126	0.165 0.179 0.169 0.204 0.167 0.167 0.171 0.144 0.126	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2963 HO 1 2942 2942 2942 2942 2942 2942 2942 294	WH02005 PCDD/F T 2 PCBs PCB77 PCB81 PCB105 PCB105 PCB114 PCB123 PCB126 PCB156 PCB157 PCB167	EQ Upper Bound n.a. EPA 1668 modified 32598-13-3 70362-50-4 32598-14-4 74472-37-0 31508-00-6 65510-44-3 57465-28-8 38380-08-4 69782-90-7 52663-72-6	0.349 ng/kg < 0.165 0.395 3.28 0.449 10.3 < 0.167 < 0.167 < 0.171 < 0.126 < 0.170	0.165 0.179 0.169 0.204 0.167 0.167 0.167 0.171 0.144 0.126 0.170	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2963 HO 1 2942 2942 2942 2942 2942 2942 2942 294	WH02005 PCDD/F T 2 PCBs PCB77 PCB81 PCB105 PCB114 PCB123 PCB126 PCB156 PCB157 PCB167 PCB169	EQ Upper Bound n.a. EPA 1668 modified 32598-13-3 70362-50-4 32598-14-4 74472-37-0 31508-00-3 57465-28-8 38380-08-4 69782-90-7 52663-72-6 32774-16-6	0.349 ng/kg < 0.165 0.395 3.28 0.449 10.3 < 0.167 < 0.167 < 0.171 < 0.144 < 0.126 < 0.170 < 0.120	0.165 0.179 0.169 0.204 0.167 0.167 0.171 0.144 0.126 0.170 0.120	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2963 HO 1 2942 2942 2942 2942 2942 2942 2942 294	WH02005 PCDD/F T 2 PCBs PCB77 PCB81 PCB105 PCB14 PCB123 PCB126 PCB156 PCB157 PCB167 PCB169 PCB189	EQ Upper Bound n.a. EPA 1668 modified 32598-13-3 70362-50-4 32598-14-4 74472-37-0 31508-00-6 65510-44-3 57465-28-8 38380-08-4 69782-90-7 52663-72-6 32774-16-6 39635-31-9	0.349 ng/kg < 0.165 0.395 3.28 0.449 10.3 < 0.167 < 0.167 < 0.171 < 0.144 < 0.126 < 0.170 < 0.120 < 0.0855	0.165 0.179 0.169 0.204 0.167 0.167 0.171 0.144 0.126 0.170 0.120 0.0855	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2963 HO 1 2942 2942 2942 2942 2942 2942 2942 294	WH02005 PCDD/F T 2 PCBs PCB77 PCB81 PCB105 PCB14 PCB123 PCB126 PCB156 PCB157 PCB167 PCB169 PCB189	EQ Upper Bound n.a. EPA 1668 modified 32598-13-3 70362-50-4 32598-14-4 74472-37-0 31508-00-3 57465-28-8 38380-08-4 69782-90-7 52663-72-6 32774-16-6	0.349 ng/kg < 0.165 0.395 3.28 0.449 10.3 < 0.167 < 0.167 < 0.171 < 0.144 < 0.126 < 0.170 < 0.120	0.165 0.179 0.169 0.204 0.167 0.167 0.171 0.144 0.126 0.170 0.120	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2963 HO 1 2942 2942 2942 2942 2942 2942 2942 294	WH02005 PCDD/F T 2 PCBs PCB77 PCB81 PCB105 PCB14 PCB123 PCB126 PCB156 PCB157 PCB167 PCB169 PCB189	EQ Upper Bound n.a. EPA 1668 modified 32598-13-3 70362-50-4 32598-14-4 74472-37-0 31508-00-6 65510-44-3 57465-28-8 38380-08-4 69782-90-7 52663-72-6 32774-16-6 39635-31-9 ts EPA 1668 modified	0.349 ng/kg < 0.165 0.395 3.28 0.449 10.3 < 0.167 < 0.167 < 0.171 < 0.144 < 0.126 < 0.170 < 0.120 < 0.0855	0.165 0.179 0.169 0.204 0.167 0.167 0.171 0.144 0.126 0.170 0.120 0.0855	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

General Sample Comments

WHO(2005)-PCDD/F + DLPCB TEQ (lower-bound) = 0.000654 pg/g WHO(2005)-PCDD/F + DLPCB TEQ (upper-bound) = 0.370 pg/g 🔅 eurofins

Lancaster Laboratories Environmental **Analysis Report**

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: AB82050 RICE BRAN WAX Composite Solid Rice Bran Wax

Project Name: Rice Bran Wax

Collected: 07/15/2015 13:45 by DF

Submitted: 07/16/2015 09:45 Reported: 07/28/2015 15:28

LL	Sample	#	G5	7968745
LL	Group	#	15	77323
Acc	count	#	300	091

OMIC USA Inc. 3344 NW Industrial St Portland OR

Laboratory Sample Analysis Record Method Trial# Batch# CAT Analysis Name Analysis Analyst Dilution Date and Time Factor No. 07/23/2015 21:56 Michael A Ziegler 1 12963 Solid Dioxins and Furans EPA 1613B modified 1 15204005 EPA 1668 modified 1 15204005 07/23/2015 20:32 Michael A Ziegler 1 12942 Solid WH012 + 6 Indicators 12961 Dioxins/Furans/PCBs in EPA 1613B modified 2 15204005 07/23/2015 08:10 Deborah M 1 Oil Zimmerman

: eurofins

Lancaster Laboratories Environmental

Explanation of Symbols and Abbreviations

The following defines common symbols and abbreviations used in reporting technical data:

RL	Reporting Limit	BMQL	Below Minimum Quantitation Level
N.D.	none detected	MPN	Most Probable Number
TNTC	Too Numerous To Count	CP Units	cobalt-chloroplatinate units
IU	International Units	NTU	nephelometric turbidity units
umhos/cm	micromhos/cm	ng	nanogram(s)
C	degrees Celsius	F	degrees Fahrenheit
meq	milliequivalents	lb.	pound(s)
g	gram(s)	kg	kilogram(s)
μg	microgram(s)	mg	milligram(s)
mL	milliliter(s)	L	liter(s)
m3	cubic meter(s)	μL	microliter(s)
		pg/L	picogram/liter
<	less than		
>	greater than		
ppm	aqueous liquids, ppm is usually take	en to be equivalent to mill	r kilogram (mg/kg) or one gram per million grams. For igrams per liter (mg/l), because one liter of water has a weight uivalent to one microliter per liter of gas.
ppb	parts per billion		
Dry weight basis			oisture content. This increases the analyte weight ample without moisture. All other results are reported on an

Laboratory Data Qualifiers:

B - Analyte detected in the blank

C - Result confirmed by reanalysis

E - Concentration exceeds the calibration range

- J (or G, I, X) estimated value ≥ the Method Detection Limit (MDL or DL) and the < Limit of Quantitation (LOQ or RL)
- P Concentration difference between the primary and confirmation column >40%. The lower result is reported.
- U Analyte was not detected at the value indicated

V - Concentration difference between the primary and confirmation column >100%. The reporting limit is raised due to this disparity and evident interference...

Additional Organic and Inorganic CLP qualifiers may be used with Form 1 reports as defined by the CLP methods. Qualifiers specific to Dioxin/Furans and PCB Congeners are detailed on the individual Analysis Report.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, ISO17025) unless otherwise noted under the individual analysis.

Measurement uncertainty values, as applicable, are available upon request.

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff.

This report shall not be reproduced except in full, without the written approval of the laboratory.

Times are local to the area of activity. Parameters listed in the 40 CFR Part 136 Table II as "analyze immediately" are not performed within 15 minutes.

WARRANTY AND LIMITS OF LIABILITY - In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL, LLC BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL AND (B) WHETHER EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Eurofins Lancaster Laboratories Environmental which includes any conditions that vary from the Standard Terms and Conditions, and Eurofins Lancaster Laboratories Environmental hereby objects to any conflicting terms contained in any acceptance or order submitted by client. 3344 NW Industrial Street Portland, Oregon 97210 USA Tel: (503) 223-1497 Fax: (503) 223-9436 e-mail: info@omicusa.com www.omicusa.com **OMIC USA Inc.**

A Member of OMIC Group of Companies Independent Analytical Laboratory

Report Date: July 28, 2015

Koster Keunen Inc.

1021 Echo Lake Road Watertown, CT 06795

ANALYTICAL REPORT

Sample ID :	B#20048		м	atrix: RICE BRAN WAX	224P
Date Received:	July 06, 2015				
Lab ID # :	AB81761				
Chemical Resid	lue				
Analyte		Result	Units	LOQ	
1 2,4-Dichlorob	enzophenone	ND	ppm	0.02	
2 2,6-Diisoprop		ND	ppm	0.04	
3 4,4-Dichlorob		ND	ppm	0.02	
4 Abamectin		ND	ppm	0.05	
5 Acephate		ND	ppm	0.1	
6 Acetamiprid		ND	ppm	0.05	
7 Acetochlor		ND	ppm	0.02	
8 Acibenzolar-S	S-methyl	ND	ppm	0.05	
9 Acrinathrin	, mouly.	ND	ppm	0.02	
10 Alachlor		ND	ppm	0.02	
11 Aldicarb		ND	ppm	0.05	
12 Aldicarb-sulfo	one	ND	ppm	0.05	
13 Aldicarb-sulfo		ND	ppm	0.1	
14 Aldrin		ND	ppm	0.02	
15 Allethrin		ND	ppm	0.2	
16 Ametryn		ND	ppm	0.05	
17 Amitraz		ND	ppm	0.05	
18 Anilofos		ND	ppm	0.05	
19 Atrazine		ND	ppm	0.02	
20 Azaconazole		ND	ppm	0.02	
21 Azamethipho	S	ND	ppm	0.05	
22 Azinphos-eth		ND	ppm	0.05	
23 Azinphos-me		ND	ppm	0.05	
24 Azoxystrobin		ND	ppm	0.05	
25 Benalaxyl		ND	ppm	0.02	
26 Bendiocarb		ND	ppm	0.05	
27 Benfluralin		ND	ppm	0.02	
28 Benfuresate		ND	ppm	0.02	
	Carbendazim)	ND	ppm	0.05	
30 Benoxacor	,	ND	ppm	0.02	
31 Bensulide		ND	ppm	0.05	
32 Bentazone		ND	ppm	0.02	

33	Benzobicyclon	ND	ppm	0.05
34	Benzofenap	ND	ppm	0.05
35	Benzyladenine	ND	ppm	0.05
36	BHC (alpha)	ND	ppm	0.02
37	BHC (beta)	ND	ppm	0.02
38	BHC (delta)	ND	ppm	0.02
39	Bifenazate	ND	ppm	0.05
40	Bifenox	ND	ppm	0.02
41	Bifenthrin	ND	ppm	0.02
42	Bioresmethrin (as Resmethrin)	ND	ppm	0.1
43	Bitertanol	ND	ppm	0.05
44	Boscalid	ND	ppm	0.02
45	Bromobutide	ND	ppm	0.02
46	Bromophos-ethyl	ND	ppm	0.05
47	Bromophos-methyl	ND	ppm	0.05
	Bromopropylate	ND	ppm	0.02
49	Bupirimate	ND	ppm	0.02
50	Buprofezin	ND	ppm	0.02
51	Butachlor	ND	ppm	0.02
52	Butafenacil	ND	ppm	0.02
	Butamifos	ND	ppm	0.02
	Butralin	ND	ppm	0.02
55	Butylate	ND		0.02
	Cadusafos	ND	ppm	0.02
57	Cafenstrole	ND	ppm	0.05
58		ND	ppm	0.05
59	Captan Carbaryl	ND	ppm	0.05
60	Carbendazim	ND	ppm	
61	Carbofuran	ND	ppm	0.05 0.05
		ND	ppm	
62	Carbophenothion		ppm	0.05
	Carboxin	ND	ppm	0.02
64	Carfentrazone-ethyl	ND	ppm	0.02
65	Carpropamid	ND	ppm	0.02
66	Chlorantraniliprole Chlorbenside	ND	ppm	0.05
67		ND	ppm	0.02
68 69	Chlorbufam Chlordane (cis)	ND ND	ppm	0.02
			ppm	
70 71	Chlordane (trans) Chlorethoxyfos	ND ND	ppm	0.02
			ppm	
	Chlorfenapyr Chlorfenson	ND ND	ppm	0.02
		ND	ppm	
	Chlorfenvinphos		ppm	0.05
	Chloridazon	ND	ppm	0.05
	Chlornitrofen	ND	ppm	0.02
77	Chlorobenzilate	ND	ppm	0.02
	Chloroneb	ND	ppm	0.02
	Chloroxuron	ND	ppm	0.05
80	Chlorpropham	ND	ppm	0.02
81	Chlorpyrifos	ND	ppm	0.05
82	Chlorpyrifos-methyl	ND	ppm	0.05
	Chlorthal-dimethyl	ND	ppm	0.02
84	Chlorthiofos	ND	ppm	0.05
85	Chlozolinate	ND	ppm	0.02

86	Chromafenozide	ND	ppm	0.05
87	Cinidon-ethyl	ND	ppm	0.05
88	Cinmethylin	ND	ppm	0.02
89	Clethodim	ND	ppm	0.02
90	Clodinafop-propargyl	ND	ppm	0.05
91	Clofentezine	ND	ppm	0.05
92	Clomazone	ND	ppm	0.02
93	Clomeprop	ND	ppm	0.05
94	Cloquintocet-mexyl	ND	ppm	0.05
95	Clothianidin	ND	ppm	0.05
96	CPMC (Etrofol)	ND	ppm	0.05
	Cumyluron	ND	ppm	0.05
98	Cyanazine	ND	ppm	0.05
99	Cyanophenphos	ND	ppm	0.05
	Cyanophos	ND	ppm	0.05
	Cyazofamid	ND	ppm	0.05
	Cycloate	ND	ppm	0.02
	Cyflufenamid	ND	ppm	0.02
	Cyfluthrin	ND	ppm	0.02
	Cyhalofop-butyl	ND	ppm	0.02
	Cyhalothrin (gamma)	ND	ppm	0.02
	Cyhalothrin (lambda)	ND	ppm	0.02
	Cymoxanil	ND		0.02
	Cypermethrin	ND	ppm	0.02
	Cyproconazole	ND	ppm ppm	0.02
111	Cyprodinil	ND		0.02
112	Daimuron	ND	ppm ppm	0.05
113		ND		0.03
	DDE	ND	ppm	
115		ND	ppm	0.02
			ppm	0.02
116	Deltamethrin	ND	ppm	0.02
117	Demeton O & S	ND	ppm	0.05
	Demeton-S-methyl	ND	ppm	0.05
	Desmedipham	ND	ppm	0.1
120	Diafenthiuron	ND	ppm	0.1
121	Dialifos Di-allate	ND ND	ppm	0.05 0.02
122	Diazinon	ND	ppm	
123	Dichlobenil	ND	ppm	0.05
	Dichlofenthion (ECP)	ND	ppm	
120		ND	ppm	0.05
120		ND	ppm	
	Dichlorvos	ND	ppm	0.02
120		ND	ppm	0.05
			ppm	0.05
	Diclocymet	ND	ppm	0.02
131	Diclofop-methyl	ND	ppm	0.02
132		ND	ppm	0.05
	Dicloran	ND	ppm	0.02
134		ND	ppm	0.05
	Dieldrin	ND	ppm	0.02
	Diethofencarb	ND	ppm	0.02
137		ND	ppm	0.02
138	Difenzoquat	ND	ppm	0.05

Diflubenzuron	ND	ppm	0.05
Diflufenican	ND		0.02
Dimepiperate	ND		0.02
	ND		0.05
Dimethenamid	ND		0.02
Dimethoate	ND		0.05
Dimethylyinphos			0.05
			0.05
			0.05
			0.05
			0.02
			0.02
			0.02
			0.02
			0.02
			0.05
			0.05
			0.05
			0.02
			0.02
			0.02
			0.04
			0.02
			0.05
			0.02
			0.02
			0.04
			0.02
			0.05
			0.05
			0.02
			0.025
			0.1
			0.05
			0.02
		50.00	0.02
			0.02
			0.02
			0.05
			0.02
			0.02
			0.05
			0.05
			0.02
			0.05
			0.05
		and the second se	0.05
			0.05
			0.05
			0.05
			0.05
			0.02
Fenoxycarb	ND	ppm	0.05
	Diflufenican Dimepiperate Dimethametryn Dimethenamid Dimethoate Dimethoate Dimethylvinphos Diniconazole Dinotefuran Dioxathion Diphenamid Diphenylamine Disulfoton Disulfoton-sulfone Dithiopyr Diuron Edifenphos Emamectin-benzoate Endosulfan (alpha) Endosulfan (beta) Endosulfan (beta) Endosulfan (beta) Endosulfan (beta) Endosulfan (beta) Endosulfan (beta) Endosulfan sulfate Endrin EPN Epoxiconazole EPTC Esfenvalerate Esprocarb Ethalfluralin Ethion Ethiprole Ethofumesate Ethoprophos Ethoxyquin	DiflufenicanNDDimepiperateNDDimethametrynNDDimethenamidNDDimethoateNDDimethylvinphosNDDinotefuranNDDioxathionNDDipotefuranNDDipotefuranNDDipotefuranNDDipotefuranNDDipotefuranNDDipotefuranNDDipotefuranNDDipotefuranNDDipotefuranNDDipotefuranNDDipotefuranNDDipotefuranNDDipotefuranNDDipotefuranNDDipotefuranNDDifufonNDDisulfotonNDDisulfotonNDEndrenylamNDEdifenphosNDEndosulfan (alpha)NDEndosulfan-sulfateNDEpoxiconazoleNDEpoxiconazoleNDEthafluralinNDEthafluralinNDEthornonNDEthoprophosNDEthoprophosNDEthoprophosNDEtopenzanidNDEtominosNDEtominosNDEtominosNDEtominosNDEtominosNDEtominosNDEtominosNDEtominosNDEnamiphos-sulfoneNDFenamiphosNDFenamiphos-sulfoneNDFentonionND<	DiffufenicanNDppmDimepiperateNDppmDimetheametrynNDppmDimetheametrynNDppmDimetheametrynNDppmDimetheateNDppmDimetheateNDppmDimetheateNDppmDineteranNDppmDinotefuranNDppmDioxathionNDppmDiphenylamineNDppmDisulfotonNDppmDisulfoton-sulfoneNDppmDiuronNDppmEdifenphosNDppmEndosulfan (alpha)NDppmEndosulfan (beta)NDppmEndosulfan sulfateNDppmEpoxiconazoleNDppmEpoxiconazoleNDppmEthaffuralinNDppmEthorpohosNDppmEthorpohosNDppmEthorpohosNDppmEthoronNDppmEthorpohosNDppmEthorpohosNDppmEthorpohosNDppmEthorpohosNDppmEthorpohosNDppmEthorpohosNDppmEthorpohosNDppmEthorpohosNDppmEthorpohosNDppmEthorpohosNDppmEthorpohosNDppmEthorpohosNDppmEthorpohosNDppm

192 Fenpropathrin ND ppm 0.02 193 Fenpropimorph ND ppm 0.02 194 Fenpryoximate ND ppm 0.05 195 Fensulfothion ND ppm 0.05 196 Fentizzamide ND ppm 0.05 198 Fernizzamide ND ppm 0.05 198 Fernizzamide ND ppm 0.05 200 Fernizzne E ND ppm 0.05 201 Fipronil ND ppm 0.05 202 Fluazifop-butyl ND ppm 0.05 203 Fluazifop-butyl ND ppm 0.05 204 Fluzzinam ND ppm 0.05 205 Fluzzinam ND ppm 0.02 206 Fluzinamite ND ppm 0.02 207 Fluzinamite ND ppm 0.02 210 Fluzinfani							
193 Fenpropimorph ND ppm 0.02 194 Fenproximate ND ppm 0.05 195 Fensultation ND ppm 0.05 196 Fentrizzamide ND ppm 0.05 197 Fentrazamide ND ppm 0.05 197 Fentrazamide ND ppm 0.05 200 Ferinzone E ND ppm 0.05 200 Ferinzone Z ND ppm 0.05 201 Fijoroli ND ppm 0.05 203 Fluacrypyrim ND ppm 0.05 204 Fluazifop-butyl ND ppm 0.05 205 Fluacinam ND ppm 0.05 206 Fluacinam ND ppm 0.05 206 Fluctioxonil ND ppm 0.05 206 Fluctioxonil ND ppm 0.05 2105 Fluctioxonil<	-	192	Fenpropathrin	ND	ppm	0.02	1
194 Fensulfathion ND ppm 0.05 195 Fensulfathion ND ppm 0.05 196 Fenthion ND ppm 0.05 197 Fentrazamide ND ppm 0.04 198 Ferinzone Z ND ppm 0.05 200 Ferinzone Z ND ppm 0.01 201 Filmzone Z ND ppm 0.02 203 Fluacrypyrin ND ppm 0.02 204 Fluacrypyrin ND ppm 0.02 205 Fluazinam ND ppm 0.02 206 Fluazinam ND ppm 0.02 207 Fluazinam ND ppm 0.02 208 Flufenacet ND ppm 0.02 209 Fluazinam ND ppm 0.02 210 Fluazinam ND ppm 0.02 210 Fluazinace ND		193	Fenpropimorph	ND		0.02	
195 Fensulfothion ND ppm 0.05 196 Fenthion ND ppm 0.05 197 Fentrazamide ND ppm 0.05 198 Fentrazamide ND ppm 0.05 198 Fentrazamide ND ppm 0.05 199 Fentrazone Z ND ppm 0.05 201 Fipronil ND ppm 0.05 203 Fluazripo-methyl ND ppm 0.02 205 Fluazripo-putyl ND ppm 0.05 206 Fluazriporthinate ND ppm 0.05 207 Fludioxonil ND ppm 0.05 208 Fluoreneuron ND ppm 0.02 210 Fluoreneuron ND ppm 0.02 211 Fluisizable ND ppm 0.05 212 Fluisizable ND ppm 0.05 213 Fluat				ND			
196 Fentrazamide ND ppm 0.05 197 Fertrazamide ND ppm 0.05 198 Ferrvalerate ND ppm 0.05 200 Ferinzone E ND ppm 0.05 201 Fironil ND ppm 0.01 202 Flazorypyrin ND ppm 0.02 203 Fluazipop-methyl ND ppm 0.02 204 Fluazinop-methyl ND ppm 0.02 205 Fluazinam ND ppm 0.02 206 Fluazinam ND ppm 0.05 206 Fluazinam ND ppm 0.02 207 Fluazinam ND ppm 0.05 210 Fluidencet ND ppm 0.02 210 Fluidinacet ND ppm 0.02 211 Fluidinacet-methyl ND ppm 0.05 2121 Fluidinacet-m				ND	ppm		
198 Fernvalerate ND ppm 0.04 199 Ferinzone E ND ppm 0.05 200 Ferinzone Z ND ppm 0.05 201 Fipronil ND ppm 0.01 202 Fluacryprim ND ppm 0.02 203 Fluacrypyrim ND ppm 0.05 204 Fluazinam ND ppm 0.05 205 Fluazinam ND ppm 0.02 206 Fludioxonil ND ppm 0.02 206 Fludioxonil ND ppm 0.02 206 Fludipinconazole ND ppm 0.02 210 Fludipinconazole ND ppm 0.05 211 Fluidiacet-methyl ND ppm 0.05 212 Fludianide ND ppm 0.05 213 Fludianide ND ppm 0.05 214 Fluthiacet-me		196	Fenthion	ND		0.05	
198 Fernazone Z ND ppm 0.04 199 Fernazone Z ND ppm 0.05 200 Ferinzone Z ND ppm 0.01 201 Fipronil ND ppm 0.02 203 Fluacrypyrim ND ppm 0.02 204 Fluazifop-butyl ND ppm 0.02 205 Fluazinam ND ppm 0.02 206 Fludioxonil ND ppm 0.02 207 Fludioxonil ND ppm 0.02 208 Flufenacet ND ppm 0.02 209 Fludioxonil ND ppm 0.02 211 Fludioxonil ND ppm 0.02 2121 Fludioxonil ND ppm 0.02 211 Fludioxonil ND ppm 0.02 213 Flusuifanide ND ppm 0.02 214 Fluthiacet-methyl <td></td> <td>197</td> <td>Fentrazamide</td> <td>ND</td> <td>ppm</td> <td>0.05</td> <td></td>		197	Fentrazamide	ND	ppm	0.05	
199 Ferimzone E ND ppm 0.05 200 Feirmzone Z ND ppm 0.05 201 Fipronil ND ppm 0.02 203 Fluacrypyrin ND ppm 0.02 203 Fluacrypyrin ND ppm 0.02 204 Fluazinam ND ppm 0.02 205 Fluazinam ND ppm 0.02 206 Fluzinam ND ppm 0.02 207 Fludioxonil ND ppm 0.02 208 Flurenacet ND ppm 0.02 201 Fludiencote ND ppm 0.02 211 Fludioxonil ND ppm 0.02 2121 Flusilazole ND ppm 0.02 213 Flusulfamide ND ppm 0.05 214 Flutiacol ND ppm 0.05 215 Flutidanil ND<		198	Fenvalerate	ND			
200 Ferimzone Z ND ppm 0.05 201 Fipronil ND ppm 0.01 202 Fluacrypyrim ND ppm 0.02 203 Fluacrypyrim ND ppm 0.02 204 Fluazifop-butyl ND ppm 0.02 205 Fluazifop-butyl ND ppm 0.02 206 Flucythrinate ND ppm 0.02 207 Fludioxonil ND ppm 0.02 208 Fluometuron ND ppm 0.02 211 Fludiaconazole ND ppm 0.05 212 Flusilazole ND ppm 0.05 213 Flusalfamide ND ppm 0.05 214 Fluthiacet-methyl ND ppm 0.05 215 Flutiafol ND ppm 0.05 216 Flutiafol ND ppm 0.05 217 Fluvali		199	Ferimzone E	ND		0.05	
201 Fipronil ND ppm 0.01 202 Fluacrypyrim ND ppm 0.02 203 Fluacrypyrim ND ppm 0.02 204 Fluazrypyrim ND ppm 0.02 205 Fluazinam ND ppm 0.02 206 Fludioxonil ND ppm 0.02 207 Fludioxonil ND ppm 0.02 208 Fludioxonil ND ppm 0.02 209 Fludioxonil ND ppm 0.02 201 Fludioxonil ND ppm 0.02 203 Fludioxonil ND ppm 0.02 210 Fludinect-methyl ND ppm 0.02 211 Fluitiacet-methyl ND ppm 0.05 214 Fluthiacet-methyl ND ppm 0.02 216 Flutiafol ND ppm 0.05 217 Flutalani		200	Ferimzone Z	ND			
202 Flamprop-methyl ND ppm 0.02 203 Fluacrypyrin ND ppm 0.05 204 Fluazifop-butyl ND ppm 0.05 205 Fluzzinam ND ppm 0.02 206 Fluzzinam ND ppm 0.02 207 Fludioxonil ND ppm 0.02 207 Fludioxonil ND ppm 0.02 208 Fluometuron ND ppm 0.02 211 Fludioxonil ND ppm 0.02 211 Fluzilazole ND ppm 0.02 211 Fluzilazole ND ppm 0.05 212 Fluzilazole ND ppm 0.05 213 Fluzulfamide ND ppm 0.02 214 Fluthiacet-methyl ND ppm 0.02 215 Flutiafol ND ppm 0.02 216 Flutriafol </td <td></td> <td>201</td> <td>Fipronil</td> <td>ND</td> <td></td> <td></td> <td></td>		201	Fipronil	ND			
203 Fluacrypyrim ND ppm 0.05 204 Fluazifop-butyl ND ppm 0.02 205 Fluazifop-butyl ND ppm 0.02 206 Flucythninate ND ppm 0.02 207 Fludioxonil ND ppm 0.05 208 Flucythninate ND ppm 0.05 209 Fludioxonil ND ppm 0.02 210 Fluguinconazole ND ppm 0.05 211 Fluguinconazole ND ppm 0.05 212 Flusulfamide ND ppm 0.05 213 Flusulfamide ND ppm 0.05 214 Fluthiacet-methyl ND ppm 0.02 215 Flutolanil ND ppm 0.02 216 Flutvalinate ND ppm 0.02 217 Fluxulinate ND ppm 0.02 218				ND		0.02	
204 Fluazifop-butyl ND ppm 0.02 205 Fluazinam ND ppm 0.05 206 Flucythrinate ND ppm 0.05 207 Fluditoxonil ND ppm 0.02 209 Fluditoxnil ND ppm 0.02 209 Fluditoxnil ND ppm 0.02 209 Fluditoxnil ND ppm 0.02 210 Fluditoconazole ND ppm 0.02 211 Fluditoconazole ND ppm 0.02 213 Flusulfamide ND ppm 0.02 214 Flutiafol ND ppm 0.02 215 Flutolanil ND ppm 0.02 216 Flutiafol ND ppm 0.02 217 Fluvalinate ND ppm 0.05 219 Forchorfenuron ND ppm 0.05 221 Fhalide <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
205 Fluazinam ND ppm 0.05 206 Flucythrinate ND ppm 0.02 207 Fludioxonil ND ppm 0.02 208 Fludenacet ND ppm 0.02 209 Fluometuron ND ppm 0.05 210 Fluguinconazole ND ppm 0.02 211 Fluidone ND ppm 0.02 211 Fluidiacel ND ppm 0.02 213 Flusulfamide ND ppm 0.05 214 Fluthiacet-methyl ND ppm 0.05 215 Flutolanil ND ppm 0.02 216 Fluvalinate ND ppm 0.02 217 Fluvalinate ND ppm 0.02 218 Fonofos ND ppm 0.02 219 Forchlorfenuron ND ppm 0.02 214 Fulaizele							
206 Flucythrinate ND ppm 0.02 207 Fludioxonil ND ppm 0.05 208 Flufenacet ND ppm 0.02 209 Fluometuron ND ppm 0.02 211 Fluxilaconazole ND ppm 0.02 211 Fluxilaconazole ND ppm 0.02 211 Fluxilacet-methyl ND ppm 0.02 213 Fluxilfamide ND ppm 0.05 214 Fluthiacet-methyl ND ppm 0.02 215 Flutolanil ND ppm 0.02 216 Flutriafol ND ppm 0.02 217 Fluxilinate ND ppm 0.02 218 Fonofos ND ppm 0.02 219 Forchlorfenuron ND ppm 0.02 221 Futilazole ND ppm 0.02 222 Fur							
207 Fludioxonil ND ppm 0.05 208 Flufenacet ND ppm 0.02 209 Fluometuron ND ppm 0.02 201 Fluquinconazole ND ppm 0.02 211 Flusilazole ND ppm 0.02 213 Flusulfamide ND ppm 0.02 213 Flusulfamide ND ppm 0.02 214 Flutniacet-methyl ND ppm 0.02 215 Flutolanil ND ppm 0.02 216 Flutriafol ND ppm 0.02 217 Flutolanil ND ppm 0.02 218 Fonofos ND ppm 0.02 219 Forchlorfenuron ND ppm 0.05 210 Fosthiazate ND ppm 0.02 221 Furametyr ND ppm 0.02 222 Furametyr							
208FlufenacetNDppm0.02209FluometuronNDppm0.05210FluquinconazoleNDppm0.05211FlusilazoleNDppm0.05212FlusilazoleNDppm0.05213FlusulfamideNDppm0.05214Fluthiacet-methylNDppm0.02215FlutolanilNDppm0.02216FlutriafolNDppm0.02217FluvalinateNDppm0.02218FonofosNDppm0.05219ForchlorfenuronNDppm0.05219ForchlorfenuronNDppm0.02222FurathiccarbNDppm0.02223FurathiccarbNDppm0.02224FurilazoleNDppm0.02225HalfenproxNDppm0.02226HaloxyfopNDppm0.02228HeptachlorNDppm0.02230HexachlorobenzeneNDppm0.02231HexaconazoleNDppm0.05233HexathlorobenzeneNDppm0.05234ImazalilNDppm0.05235Imazalithabenz-methyl-esterNDppm0.05236InibencinazoleNDppm0.05236InibenfideNDppm0.05 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
209 Fluometuron ND ppm 0.05 210 Fluquinconazole ND ppm 0.02 211 Fluridone ND ppm 0.05 212 Flusulfamide ND ppm 0.02 213 Flusulfamide ND ppm 0.05 214 Fluthiacet-methyl ND ppm 0.05 215 Flutolanil ND ppm 0.02 216 Flutriafol ND ppm 0.02 217 Fluvalinate ND ppm 0.02 218 Fonchorfenuron ND ppm 0.02 219 Forchlorfenuron ND ppm 0.02 221 Fithalide ND ppm 0.02 222 Forshiazate ND ppm 0.02 223 Furathiocarb ND ppm 0.02 224 Furilacole ND ppm 0.02 225 Halfenpro							
210 Fluquinconazole ND ppm 0.02 211 Fluridone ND ppm 0.05 212 Flusilazole ND ppm 0.02 213 Flusulfamide ND ppm 0.02 214 Flusilazole ND ppm 0.05 214 Flutniacet-methyl ND ppm 0.02 216 Flutniacet-methyl ND ppm 0.02 216 Flutniate ND ppm 0.05 217 Fluvalinate ND ppm 0.05 218 Fonofos ND ppm 0.05 219 Forchlorfenuron ND ppm 0.05 220 Forshiazate ND ppm 0.02 221 Furathicarb ND ppm 0.02 222 Furathicarb ND ppm 0.02 223 Furathicarb ND ppm 0.02 224 Halfenpro							
211FluridoneNDppm0.05212FlusulfamideNDppm0.02213FlusulfamideNDppm0.05214Fluthiacet-methylNDppm0.05215FlutolanilNDppm0.05216FlutriafolNDppm0.02216FlutriafolNDppm0.05217FluvalinateNDppm0.05218FonofosNDppm0.05219ForchlorfenuronNDppm0.05220FosthiazateNDppm0.02221FutalideNDppm0.02222FurametpyrNDppm0.02223FurathiocarbNDppm0.02224FurilazoleNDppm0.02225HalfenproxNDppm0.02226HaloxyfopNDppm0.02226Haloxyfop-methylNDppm0.02228Heptachlor-epoxideNDppm0.02231HexaconazoleNDppm0.05232HexazinoneNDppm0.05233Inazamethabenz-methyl-esterNDppm0.05234ImazaliNDppm0.05235Imazamethabenz-methyl-esterNDppm0.05236InibenconazoleNDppm0.05236InibenconazoleNDppm0.05 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
212FlusulfamideNDppm0.02213FlusulfamideNDppm0.05214Fluthiacet-methylNDppm0.05215FlutolanilNDppm0.02216FlutriafolNDppm0.02217FluvalinateNDppm0.02218FonofosNDppm0.05219ForchlorfenuronNDppm0.05220FosthiazateNDppm0.05221FthalideNDppm0.02222FurametpyrNDppm0.02223FurathiocarbNDppm0.02225HalfenproxNDppm0.02226HaloxyfopNDppm0.02226Haloxyfop-methylNDppm0.02226Haloxyfop-methylNDppm0.02228HeptachlorNDppm0.02230HexachlorobenzeneNDppm0.02231HexaconazoleNDppm0.05232HexazinoneNDppm0.05233Imazamethabenz-methyl-esterNDppm0.05234Inazamethabenz-methyl-esterNDppm0.05235Inazamethabenz-methyl-esterNDppm0.05236InabenfideNDppm0.05237ImidaclopridNDppm0.05238InabenfideND							
213FlusulfamideNDppm0.05214Fluthiacet-methylNDppm0.05215FlutolanilNDppm0.02216FlutriafolNDppm0.05217FluvalinateNDppm0.05218FonofosNDppm0.05219ForchlorfenuronNDppm0.05220FosthiazateNDppm0.05221FthalideNDppm0.05222FurathiocarbNDppm0.02223FurathiocarbNDppm0.02224FurilazoleNDppm0.02225HalfenproxNDppm0.02226HaloxyfopNDppm0.02225HalfenproxNDppm0.02226Haloxyfop-methylNDppm0.02228HeptachlorNDppm0.02229Heptachlor-epoxideNDppm0.02231HexachlorobenzeneNDppm0.02233HexathiazoxNDppm0.05234Imazamethabenz-methyl-esterNDppm0.05235Imazamethabenz-methyl-esterNDppm0.05236InabenfideNDppm0.05237ImidaclopridNDppm0.05238InabenfideNDppm0.05239IndoxacarbNDppm0.05							
214Fluthiacet-methylNDppm0.05215FlutolanilNDppm0.02216FlutriafolNDppm0.05217FluvalinateNDppm0.02218FonofosNDppm0.05219ForchlorfenuronNDppm0.05220FosthiazateNDppm0.05221FithalideNDppm0.02222FurametpyrNDppm0.02223FurathiocarbNDppm0.02224FurilazoleNDppm0.02225HalfenproxNDppm0.02226HaloxyfopNDppm0.02226HaloxyfopNDppm0.02226HaloxyfopNDppm0.02226HaloxyfopNDppm0.02226HaloxyfopNDppm0.02226HaloxyfopNDppm0.02227Heyachlor-methylNDppm0.02228HeptachlorNDppm0.02230HexachlorobenzeneNDppm0.02231HexaconazoleNDppm0.05232ImazalilNDppm0.05233ImazalilNDppm0.05234InabenfideNDppm0.05235InabenfideNDppm0.05236InibenconazoleND							
215FlutolanilNDppm0.02216FlutriafolNDppm0.05217FluvalinateNDppm0.02218FonofosNDppm0.05219ForchlorfenuronNDppm0.05220FosthiazateNDppm0.02221FthalideNDppm0.02222FurametpyrNDppm0.02223FurathiocarbNDppm0.02225HalfenproxNDppm0.02226HaloxyfopNDppm0.02225HalfenproxNDppm0.02226HaloxyfopNDppm0.02227HaloxyfopNDppm0.02228HeptachlorNDppm0.02229Heptachlor-epoxideNDppm0.02230HexacnazoleNDppm0.02231HexaconazoleNDppm0.05232Imazamethabenz-methyl-esterNDppm0.05233InibenconazoleNDppm0.05234InazamidaNDppm0.05235Inazamethabenz-methyl-esterNDppm0.05236InibenconazoleNDppm0.05237ImidaclopridNDppm0.05238InabenfideNDppm0.05239IndoxacarbNDppm0.05 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>							
216FlutriafolNDppm0.05217FluvalinateNDppm0.02218FonofosNDppm0.05219ForchlorfenuronNDppm0.05220FosthiazateNDppm0.05221FthalideNDppm0.02222FurametpyrNDppm0.02223FurathiocarbNDppm0.02224FurilazoleNDppm0.02225HalfenproxNDppm0.02226HaloxyfopNDppm0.02226HaloxyfopNDppm0.02226HaloxyfopNDppm0.02226Haloxyfop-methylNDppm0.02228HeptachlorNDppm0.02229Heptachlor-epoxideNDppm0.02231HexaconlorobenzeneNDppm0.02233HexatiliNDppm0.05234ImazalilNDppm0.05235Imazamethabenz-methyl-esterNDppm0.05236ImibenconazoleNDppm0.05237ImidaclopridNDppm0.05238InabenfideNDppm0.05239IndoxacarbNDppm0.05234InsbenfideNDppm0.05234InsbenfideNDppm0.05234							
217FluvalinateNDppm0.02218FonofosNDppm0.05219ForchlorfenuronNDppm0.05220FosthiazateNDppm0.05221FthalideNDppm0.02222FurametpyrNDppm0.02223FurathiocarbNDppm0.02224FurilazoleNDppm0.02225HalfenproxNDppm0.02226HaloxyfopNDppm0.02226HaloxyfopNDppm0.02228HeptachlorNDppm0.02229HeptachlorNDppm0.02230HexachlorobenzeneNDppm0.02231HexaconazoleNDppm0.02233HexathlorobenzeneNDppm0.05234ImazalilNDppm0.05235Imazanethabenz-methyl-esterNDppm0.05236InibenconazoleNDppm0.05238InabenfideNDppm0.05239IndoxacarbNDppm0.05241IprobenfosNDppm0.05242IprovalicarbNDppm0.05243IsazophosNDppm0.05243IsazophosNDppm0.05243IsazophosNDppm0.05243Isazop							
218FonofosNDppm0.05219ForchlorfenuronNDppm0.05220FosthiazateNDppm0.05221FthalideNDppm0.02222FurametpyrNDppm0.02223FurathiocarbNDppm0.02224FurilacoleNDppm0.02225HalfenproxNDppm0.02226HaloxyfopNDppm0.02226Haloxyfop-methylNDppm0.02228HeptachlorNDppm0.02229Heptachlor-epoxideNDppm0.02230HexachlorobenzeneNDppm0.02231HexaconazoleNDppm0.05232HexazinoneNDppm0.05233HexythiazoxNDppm0.05234ImazalilNDppm0.05235Imazamethabenz-methyl-esterNDppm0.05236ImibenconazoleNDppm0.05237ImidaclopridNDppm0.05238InabenfideNDppm0.05239IndoxacarbNDppm0.05240IprobenfosNDppm0.05241IprodioneNDppm0.05243 <tdisazohos< td="">NDppm0.05243<tdisazohos< td="">NDppm0.05243Is</tdisazohos<></tdisazohos<>							
219ForchlorfenuronNDppm0.05220FosthiazateNDppm0.05221FthalideNDppm0.02222FurametpyrNDppm0.02223FurathiocarbNDppm0.02224FurilazoleNDppm0.02225HalfenproxNDppm0.02226HaloxyfopNDppm0.02226Haloxyfop-methylNDppm0.02228HeptachlorNDppm0.02229Heptachlor-epoxideNDppm0.02230HexaconazoleNDppm0.02231HexaconazoleNDppm0.05232HexazinoneNDppm0.05233HexythiazoxNDppm0.05234ImazaliiNDppm0.05235Imazamethabenz-methyl-esterNDppm0.05238InabenfideNDppm0.05239IndoxacarbNDppm0.05240IprobenfosNDppm0.05241IprodioneNDppm0.05243IsazophosNDppm0.05243IsazophosNDppm0.05243IsazophosNDppm0.05243IsazophosNDppm0.05243IsazophosNDppm0.05243Isazophos							
220FosthiazateNDppm0.05221FthalideNDppm0.02222FurametpyrNDppm0.02223FurathiocarbNDppm0.05224FurilazoleNDppm0.02225HalfenproxNDppm0.02226HaloxyfopNDppm0.02226Haloxyfop-methylNDppm0.02228HeptachlorNDppm0.02229Heptachlor-epoxideNDppm0.02230HexachlorobenzeneNDppm0.02231HexaconazoleNDppm0.05232HexathlaroxNDppm0.05233HexythiazoxNDppm0.05234ImazalilNDppm0.05235Imazamethabenz-methyl-esterNDppm0.05236InibenconazoleNDppm0.05237ImidaclopridNDppm0.05238InabenfideNDppm0.05240IprobenfosNDppm0.05241IprodioneNDppm0.05242IprovalicarbNDppm0.05243IsazophosNDppm0.05243IsazophosNDppm0.05							
221FthalideNDppm0.02222FurametpyrNDppm0.02223FurathiocarbNDppm0.05224FurilazoleNDppm0.02225HalfenproxNDppm0.02226HaloxyfopNDppm0.01227Haloxyfop-methylNDppm0.02228HeptachlorNDppm0.02229Heptachlor-epoxideNDppm0.02230HexachlorobenzeneNDppm0.02231HexaconazoleNDppm0.02233HexythiazoxNDppm0.05234ImazalilNDppm0.05235Imazamethabenz-methyl-esterNDppm0.05236ImibenconazoleNDppm0.05237ImidaclopridNDppm0.05238InabenfideNDppm0.05240IprobenfosNDppm0.05241IprodioneNDppm0.05242IprovalicarbNDppm0.05243IsazophosNDppm0.05243IsazophosNDppm0.05243IsazophosNDppm0.05243IsazophosNDppm0.05243IsazophosNDppm0.05							
222FurametpyrNDppm0.02223FurathiocarbNDppm0.05224FurilazoleNDppm0.02225HalfenproxNDppm0.02226HaloxyfopNDppm0.01227Haloxyfop-methylNDppm0.02228HeptachlorNDppm0.02229Heptachlor-epoxideNDppm0.02230HexachlorobenzeneNDppm0.02231HexaconazoleNDppm0.02233HexythiazoxNDppm0.05234ImazalilNDppm0.05235Imazamethabenz-methyl-esterNDppm0.05236ImibenconazoleNDppm0.05237ImidaclopridNDppm0.05238InabenfideNDppm0.05240IprobenfosNDppm0.05241IprodioneNDppm0.05242IprovalicarbNDppm0.05243IsazophosNDppm0.05243IsazophosNDppm0.05							
223FurathiocarbNDppm0.05224FurilazoleNDppm0.02225HalfenproxNDppm0.02226HaloxyfopNDppm0.01227Haloxyfop-methylNDppm0.02228HeptachlorNDppm0.02229Heptachlor-epoxideNDppm0.02230HexachlorobenzeneNDppm0.02231HexaconazoleNDppm0.05232HexatinoneNDppm0.05233HexythiazoxNDppm0.05234ImazalilNDppm0.05235Imazamethabenz-methyl-esterNDppm0.05236InibenconazoleNDppm0.05237ImidaclopridNDppm0.05238InabenfideNDppm0.05239IndoxacarbNDppm0.05241IprobenfosNDppm0.05241IprovalicarbNDppm0.05243IsazophosNDppm0.05							
224FurilazoleNDppm0.02225HalfenproxNDppm0.02226HaloxyfopNDppm0.01227Haloxyfop-methylNDppm0.02228HeptachlorNDppm0.02229Heptachlor-epoxideNDppm0.02230HexachlorobenzeneNDppm0.02231HexaconazoleNDppm0.02233HexythiazoxNDppm0.05234ImazaliiNDppm0.05235Imazamethabenz-methyl-esterNDppm0.05236ImibenconazoleNDppm0.05237ImidaclopridNDppm0.05238InabenfideNDppm0.05239IndoxacarbNDppm0.05240IprobenfosNDppm0.05241IprodioneNDppm0.05243IsazophosNDppm0.05243IsazophosNDppm0.05							
225HalfenproxNDppm0.02226HaloxyfopNDppm0.01227Haloxyfop-methylNDppm0.02228HeptachlorNDppm0.02229Heptachlor-epoxideNDppm0.02230HexachlorobenzeneNDppm0.02231HexaconazoleNDppm0.02233HexathlorobenzeneNDppm0.02234ImazaneNDppm0.05235Imazanethabenz-methyl-esterNDppm0.05236ImibenconazoleNDppm0.05237ImidaclopridNDppm0.05238InabenfideNDppm0.05239IndoxacarbNDppm0.05240IprobenfosNDppm0.05241IprodioneNDppm0.05243IsazophosNDppm0.05243IsazophosNDppm0.05							
226HaloxyfopNDppm0.01227Haloxyfop-methylNDppm0.02228HeptachlorNDppm0.02229Heptachlor-epoxideNDppm0.02230HexachlorobenzeneNDppm0.02231HexaconazoleNDppm0.02233HexathlorobenzeneNDppm0.02234HexazinoneNDppm0.05235ImazalilNDppm0.05236ImibenconazoleNDppm0.05237ImidaclopridNDppm0.05238InabenfideNDppm0.05239IndoxacarbNDppm0.05240IprobenfosNDppm0.05241IprodioneNDppm0.05243IsazophosNDppm0.05243IsazophosNDppm0.05							
227Haloxyfop-methylNDppm0.02228HeptachlorNDppm0.02229Heptachlor-epoxideNDppm0.02230HexachlorobenzeneNDppm0.02231HexaconazoleNDppm0.02232HexazinoneNDppm0.02233HexythiazoxNDppm0.02234ImazalilNDppm0.05235Imazamethabenz-methyl-esterNDppm0.05236ImibenconazoleNDppm0.05237ImidaclopridNDppm0.05239IndoxacarbNDppm0.05240IprobenfosNDppm0.05241IprodioneNDppm0.05243IsazophosNDppm0.05243IsazophosNDppm0.05							
228HeptachlorNDppm0.02229Heptachlor-epoxideNDppm0.02230HexachlorobenzeneNDppm0.02231HexaconazoleNDppm0.05232HexazinoneNDppm0.02233HexythiazoxNDppm0.02234ImazalilNDppm0.05235Imazamethabenz-methyl-esterNDppm0.05236ImibenconazoleNDppm0.05237ImidaclopridNDppm0.05238InabenfideNDppm0.05239IndoxacarbNDppm0.05240IprobenfosNDppm0.05241IprodioneNDppm0.05243IsazophosNDppm0.05243IsazophosNDppm0.05							
229Heptachlor-epoxideNDppm0.02230HexachlorobenzeneNDppm0.02231HexaconazoleNDppm0.05232HexazinoneNDppm0.02233HexythiazoxNDppm0.02234ImazalilNDppm0.05235Imazamethabenz-methyl-esterNDppm0.05236ImibenconazoleNDppm0.05237ImidaclopridNDppm0.05238InabenfideNDppm0.05239IndoxacarbNDppm0.05240IprobenfosNDppm0.05241IprodioneNDppm0.05243IsazophosNDppm0.05243IsazophosNDppm0.05							
230HexachlorobenzeneNDppm0.02231HexaconazoleNDppm0.05232HexazinoneNDppm0.02233HexythiazoxNDppm0.05234ImazalilNDppm0.05235Imazamethabenz-methyl-esterNDppm0.05236ImibenconazoleNDppm0.05237ImidaclopridNDppm0.05238InabenfideNDppm0.05239IndoxacarbNDppm0.05240IprobenfosNDppm0.05241IprodioneNDppm0.05243IsazophosNDppm0.05243IsazophosNDppm0.05							
231HexaconazoleNDppm0.05232HexazinoneNDppm0.02233HexythiazoxNDppm0.05234ImazalilNDppm0.05235Imazamethabenz-methyl-esterNDppm0.05236ImibenconazoleNDppm0.05237ImidaclopridNDppm0.05238InabenfideNDppm0.05239IndoxacarbNDppm0.05240IprobenfosNDppm0.05241IprodioneNDppm0.05242IprovalicarbNDppm0.05243IsazophosNDppm0.05							
232HexazinoneNDppm0.02233HexythiazoxNDppm0.05234ImazalilNDppm0.05235Imazamethabenz-methyl-esterNDppm0.05236ImibenconazoleNDppm0.05237ImidaclopridNDppm0.05238InabenfideNDppm0.05239IndoxacarbNDppm0.05240IprobenfosNDppm0.05241IprodioneNDppm0.05242IprovalicarbNDppm0.05243IsazophosNDppm0.05					1912		
233HexythiazoxNDppm0.05234ImazalilNDppm0.05235Imazamethabenz-methyl-esterNDppm0.05236ImibenconazoleNDppm0.05237ImidaclopridNDppm0.05238InabenfideNDppm0.05239IndoxacarbNDppm0.05240IprobenfosNDppm0.05241IprodioneNDppm0.05242IprovalicarbNDppm0.05243IsazophosNDppm0.05							
234ImazalilNDppm0.05235Imazamethabenz-methyl-esterNDppm0.05236ImibenconazoleNDppm0.05237ImidaclopridNDppm0.05238InabenfideNDppm0.05239IndoxacarbNDppm0.05240IprobenfosNDppm0.05241IprodioneNDppm0.05242IprovalicarbNDppm0.05243IsazophosNDppm0.05							
235Imazamethabenz-methyl-esterNDppm0.05236ImibenconazoleNDppm0.05237ImidaclopridNDppm0.05238InabenfideNDppm0.05239IndoxacarbNDppm0.05240IprobenfosNDppm0.05241IprodioneNDppm0.05242IprovalicarbNDppm0.05243IsazophosNDppm0.05							
236ImibenconazoleNDppm0.05237ImidaclopridNDppm0.05238InabenfideNDppm0.05239IndoxacarbNDppm0.05240IprobenfosNDppm0.05241IprodioneNDppm0.05242IprovalicarbNDppm0.05243IsazophosNDppm0.05							
237ImidaclopridNDppm0.05238InabenfideNDppm0.05239IndoxacarbNDppm0.05240IprobenfosNDppm0.05241IprodioneNDppm0.05242IprovalicarbNDppm0.05243IsazophosNDppm0.05							
238InabenfideNDppm0.05239IndoxacarbNDppm0.05240IprobenfosNDppm0.05241IprodioneNDppm0.05242IprovalicarbNDppm0.05243IsazophosNDppm0.05							
239 Indoxacarb ND ppm 0.05 240 Iprobenfos ND ppm 0.05 241 Iprodione ND ppm 0.05 242 Iprovalicarb ND ppm 0.05 243 Isazophos ND ppm 0.05							
240 lprobenfos ND ppm 0.05 241 lprodione ND ppm 0.05 242 lprovalicarb ND ppm 0.05 243 lsazophos ND ppm 0.05							
241 Iprodione ND ppm 0.05 242 Iprovalicarb ND ppm 0.05 243 Isazophos ND ppm 0.05							
242IprovalicarbNDppm0.05243IsazophosNDppm0.05							
243 Isazophos ND ppm 0.05							
		244	iooodi bopiloo	ND	Phil	0.00	

-	245	Isofenphos	ND	ppm	0.05
	246	Isofenphos-methyl	ND	ppm	0.05
	247	Isoprocarb	ND	ppm	0.05
	248	Isoprothiolane	ND	ppm	0.02
	249	Isotianil	ND	ppm	0.02
	250	Isouron	ND	ppm	0.05
	251	Isoxadifen-ethyl	ND	ppm	0.02
	252	Isoxaflutole	ND	ppm	0.05
	253	Isoxathion	ND	ppm	0.05
	254	Kresoxim-methyl	ND	ppm	0.02
	255	Lenacil	ND	ppm	0.05
	256	Lindane	ND	ppm	0.02
	257	Linuron	ND	ppm	0.05
	258	Malathion	ND	ppm	0.05
	259	Mandipropamid	ND	ppm	0.05
	260	Mecarbam	ND	ppm	0.05
	261	Mefenacet	ND	ppm	0.05
	262	Mefenpyr-Diethyl	ND	ppm	0.05
	263	Mepanipyrim	ND	ppm	0.02
	264	Mephosfolan	ND	ppm	0.05
	265	Mepronil	ND	ppm	0.02
	266	Metalaxyl	ND	ppm	0.02
	267	Metconazole	ND	ppm	0.02
	268	Methabenzthiazuron	ND	ppm	0.05
	269	Methacrifos	ND	ppm	0.05
	270	Methamidophos	ND	ppm	0.05
	271	Methidathion	ND	ppm	0.05
	272	Methiocarb	ND	ppm	0.05
	273	Methomyl	ND	ppm	0.05
	274	Methoprene	ND	ppm	0.02
	275	Methoxychlor	ND	ppm	0.02
	276	Methoxyfenozide	ND	ppm	0.05
	277	Metolachlor	ND	ppm	0.02
	278	Metominostrobin	ND	ppm	0.02
	279	Metribuzin	ND	ppm	0.02
	280	Mevinphos	ND	ppm	0.05
	281	Mirex	ND	ppm	0.02
	282	Molinate	ND	ppm	0.02
	283	Monocrotophos	ND	ppm	0.05
	284	Monolinuron	ND	ppm	0.05
		Myclobutanil	ND	ppm	0.02
	286		ND	ppm	0.05
	287		ND	ppm	0.02
	288		ND	ppm	0.02
	289		ND	ppm	0.05
	290		ND	ppm	0.02
	291		ND	ppm	0.02
		Norflurazon	ND	ppm	0.02
		Novaluron	ND	ppm	0.05
	294		ND	ppm	0.05
		Omethoate	ND	ppm	0.05
		o-Phenylphenol	ND ND	ppm	0.1 0.02

298	Oryzalin	ND	ppm	0.05
	Oxadiazon	ND	ppm	0.02
300	Oxadixyl	ND	ppm	0.1
301	Oxamyl	ND	ppm	0.05
302	Oxaziclomefone	ND	ppm	0.05
303	Oxpoconazole-fumarate	ND	ppm	0.1
304	Oxycarboxin	ND	ppm	0.05
305	Oxydemeton-methyl	ND	ppm	0.05
	Oxyfluorfen	ND	ppm	0.02
307	Paclobutrazol	ND	ppm	0.02
308	Parathion	ND	ppm	0.05
309	Parathion-methyl	ND	ppm	0.05
310	Pebulate	ND	ppm	0.02
311	Penconazole	ND	ppm	0.02
312	Pencycuron	ND	ppm	0.05
313	Pendimethalin	ND	ppm	0.02
314	Pentoxazone	ND	ppm	0.02
315	Permethrin	ND	ppm	0.02
316	Perthane	ND	ppm	0.02
317	Phenmedipham	ND	ppm	0.05
318	Phenothiol	ND	ppm	0.02
319	Phenothrin	ND	ppm	0.02
320	Phenthoate	ND	ppm	0.05
321	Phorate	ND	ppm	0.05
322	Phorate-sulfone	ND	ppm	0.05
323	Phosalone	ND	ppm	0.05
324	Phosmet	ND	ppm	0.05
325	Phosphamidon	ND	ppm	0.05
326	Phoxim	ND	ppm	0.05
327	Picolinafen	ND	ppm	0.05
328	Piperonyl-butoxide	ND	ppm	0.02
329	Piperophos	ND	ppm	0.05
330	Pirimicarb	ND	ppm	0.02
331	Pirimioxyphos	ND	ppm	0.05
332	Pirimiphos-ethyl	ND	ppm	0.05
333	Pirimiphos-methyl	ND	ppm	0.05
334	Pretilachlor	ND	ppm	0.02
335	Prochloraz	ND	ppm	0.02
336	Procymidone	ND	ppm	0.02
337	Profenofos	ND	ppm	0.05
	Prohydrojasmon	ND	ppm	0.1
	Prometryn	ND	ppm	0.02
	Propachlor	ND	ppm	0.02
341	Propanil	ND	ppm	0.02
	Propaphos	ND	ppm	0.05
	Propargite	ND	ppm	0.05
	Propazine	ND	ppm	0.02
	Propetamphos	ND	ppm	0.05
	Propiconazole	ND	ppm	0.02
	Propoxur	ND	ppm	0.05
	Propyzamide	ND	ppm	0.05
	Prothiofos	ND	ppm	0.05
350	Pyraclofos	ND	ppm	0.05

		ANALIIICAL	REFUR		
351	Pyraclonil	ND	ppm	0.02	
352	Pyraclostrobin	ND	ppm	0.05	
353	Pyraflufen-ethyl	ND	ppm	0.02	
354	Pyrazolynate	ND	ppm	0.05	
355	Pyrazophos	ND	ppm	0.05	
356	Pyrazoxyfen	ND	ppm	0.05	
357	Pyrethrins	ND	ppm	0.25	
358	Pyributicarb	ND	ppm	0.02	
	Pyridaben	ND	ppm	0.02	
	Pyridafenthion	ND	ppm	0.05	
	Pyrifenox	ND	ppm	0.02	
	Pyriftalid	ND	ppm	0.05	
	Pyrimethanil	ND	ppm	0.02	
	Pyrimidifen	ND	ppm	0.02	
	Pyriminobac-methyl	ND	ppm	0.02	
	Pyriproxyfen	ND	ppm	0.02	
	Pyroquilon	ND		0.02	
	Quinalphos	ND	ppm	0.02	
	Quinoclamine		ppm		
		ND	ppm	0.05	
	Quinoxyfen	ND	ppm	0.05	
371	Quintozene	ND	ppm	0.02	
	Quizalofop-ethyl	ND	ppm	0.02	
	Salithion	ND	ppm	0.05	
	Sethoxydim	ND	ppm	0.05	
	Silafluofen	ND	ppm	0.02	
	Simazine	ND	ppm	0.02	
	Simeconazole	ND	ppm	0.05	
	Simetryn	ND	ppm	0.02	
	Spinosad	ND	ppm	0.05	
	Spiromesifen	ND	ppm	0.1	
381	Sulfotep	ND	ppm	0.05	
382	Sulprofos	ND	ppm	0.05	
383	ТСМТВ	ND	ppm	0.05	
384	Tebuconazole	ND	ppm	0.02	
385	Tebufenozide	ND	ppm	0.1	
386	Tebufenpyrad	ND	ppm	0.02	
387	Tebupirimfos	ND	ppm	0.05	
388	Tebuthiuron	ND	ppm	0.05	
389	Tecnazene	ND	ppm	0.02	
390	Tefluthrin	ND	ppm	0.02	
391	Terbacil	ND	ppm	0.05	
392	Terbufos	ND	ppm	0.05	
393	Terbutryn	ND	ppm	0.02	
	Tetrachlorvinphos	ND	ppm	0.05	
	Tetraconazole	ND	ppm	0.02	
	Tetradifon	ND	ppm	0.02	
	Tetrahydrophthalimide	ND	ppm	0.1	
	Tetramethrin	ND	ppm	0.02	
	Thenylchlor	ND	ppm	0.02	
	Thiabendazole	ND	ppm	0.02	
	Thiacloprid	ND		0.05	
	Thiamethoxam	ND	ppm	0.05	
			ppm		
403	Thiazopyr	ND	ppm	0.02	

404	Thidiazuron	ND	ppm	0.05	
405	Thifluzamide	ND	ppm	0.02	
406	Thiobencarb	ND	ppm	0.02	
407	Thiometon	ND	ppm	0.02	
408	Tiadinil	ND	ppm	0.05	
409	Tolclofos-methyl	ND	ppm	0.05	
410	Tralomethrin	ND	ppm	0.02	
411	Triadimefon	ND	ppm	0.02	
412	Triadimenol	ND	ppm	0.05	
413	Tri-allate	ND	ppm	0.02	
414	Triazophos	ND	ppm	0.05	
415	Tribuphos	ND	ppm	0.05	
416	Trichlamide	ND	ppm	0.02	
417	Trichlorfon	ND	ppm	0.05	
418	Tricyclazole	ND	ppm	0.05	
419	Tridiphane	ND	ppm	0.02	
420	Trifloxystrobin	ND	ppm	0.05	
421	Triflumizole	ND	ppm	0.02	
422	Triflumuron	ND	ppm	0.05	
423	Trifluralin	ND	ppm	0.02	
424	Triforine	ND	ppm	0.05	
425	Triticonazole	ND	ppm	0.05	
426	Uniconazole-P	ND	ppm	0.05	
427	Vinclozolin	ND	ppm	0.02	
428	XMC	ND	ppm	0.05	
429	Xylylcarb	ND	ppm	0.05	
430	Zoxamide	ND	ppm	0.05	
Per	sistent Organic Pollutants				
	Analyte	Result			
1	**Dioxins/Furans/WHO-12 PCBs	Completed - see attac	hed eurofins	Analysis Reno	rt
				Analysis Ropo	
INITC	crobiological Tests				
	Analyte	Result	Units		
1	Aerobic Plate Count (APC)	<10	CFU/g		
	Coliform, Plate Count	<10	CFU/g		
	E Coli, Plate Count	<10	CFU/g		
4	Listeria Genus (by PCR)	Negative			
5	Mold	<10	CFU/g		
6	Salmonella (by PCR)	Negative			
7	Yeast	<10	CFU/g		
Mir	nerals / Metals Screen				
	Analyte	Result	Units	LOQ	
	Arsenic	ND	ppb	10	
2	Cadmium	ND	ppb	10	
3	Lead	10	ppb	10	
4	Morount	ND	anh	E	

**This analysis is outside the scope of OMIC USA operations and has been subcontracted to eurofins laboratory. Their report analysis is attached in its entirety. OMIC USA assumes no responsibility for its interpretations or use.

ND

ppb

5

Negative = < 10 CFU/g; CFU=Colony Forming Unit; ppb=parts per billion (mcg/Kg or mcg/L); ppm=parts per million (mg/Kg or mg/L) LOQ= Limit of Quantification; ND=Not Detected; N/A=Not Applicable; Trace=Qualitative result < LOQ; * = Analysis subcontracted

4 Mercury

Mycotoxins Screen

Analyte	Result	Units	LOQ
1 Aflatoxin B1	ND	ppb	5.0
2 Aflatoxin B2	ND	ppb	5.0
3 Aflatoxin G1	ND	ppb	5.0
4 Aflatoxin G2	ND	ppb	5.0
PAH'S Screen			
Analyte	Result	Units	LOQ
1 *Acenaphthene	ND	ppm	140
2 *Acenaphthylene	ND	ppm	130
3 *Anthracene	ND	ppm	220
4 *Benz(a)anthracene	ND	ppm	160
5 *Benzo(a)pyrene	ND	ppm	110
6 *Benzo(b)fluoranthene	ND	ppm	130
7 *Benzo(g,h,i)perylene	ND	ppm	130
8 *Benzo(k)fluoranthene	ND	ppm	130
9 *Chrysene	ND	ppm	110
10 *Dibenzo(a,h)anthracene	ND	ppm	180
11 *Flouranthene	ND	ppm	140
12 *Fluorene	ND	ppm	230
13 *Indeno((1,2,3-cd)pyrene	ND	ppm	160
14 *Napthalene	ND	ppm	140
15 *Phenanthrene	ND	ppm	130
16 *Pyrene	ND	ppm	110
Solvent Screen			
Analyte	Result	Units	LOQ
1 Hexane	ND	ppb	10

🔅 eurofins

Lancaster Laboratories Environmental **Analysis Report**

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

REVISED

Sample Description: AB81761:Rice Bran Wax Composite Solid OMIC USA INC LL Sample # G5 7957463 LL Group # 1574979 Account # 30091

Project Name: OMIC USA

Collected: 07/06/2015 10:00 by DF

Submitted: 07/08/2015 08:10 Reported: 07/27/2015 11:00 OMIC USA Inc. 3344 NW Industrial St Portland OR

No.	Analysis Name	CAS Number	As Received Result	As Received EDL	Dilution Factor
Dioxi	ns/Furans H	EPA 1613B modified	ng/kg	ng/kg	
12963	2378-TCDD	1746-01-6	< 0.112	0.112	1
12963	2378-TCDF	51207-31-9	< 0.0576	0.0576	1
12963	12378-PeCDD	40321-76-4	< 0.0818	0.0818	1
12963	12378-PeCDF	57117-41-6	< 0.0375	0.0375	1
12963	23478-PeCDF	57117-31-4	< 0.0367	0.0367	1
12963	123478-HxCDD	39227-28-6	< 0.0430	0.0430	1
12963	123678-HxCDD	57653-85-7	< 0.0441	0.0441	1
12963	123789-HxCDD	19408-74-3	< 0.0469	0.0469	1
12963	123478-HxCDF	70648-26-9	< 0.0392	0.0392	ī
12963	123678-HxCDF	57117-44-9	< 0.0381	0.0381	1
12963	123789-HxCDF	72918-21-9	< 0.0434	0.0434	1
12963	234678-HxCDF	60851-34-5	< 0.0367	0.0367	1
12963	1234678-HpCDD	35822-46-9	< 0.0339	0.0339	ĩ
12963	1234678-HpCDF	67562-39-4	< 0.0306	0.0306	1
12963	1234789-HpCDF	55673-89-7	< 0.0315	0.0315	1
12963	OCDD	3268-87-9	< 0.0703	0.0703	ĩ
12963	OCDF	39001-02-0	0.277	0.0723	î
/F T	oxic Equivalents H	BER IVIJD MOUTITED	ng/kg	ng/kg	
12963	WHO2005 PCDD/F TEQ Lo WHO2005 PCDD/F TEQ Up	ower Bound n.a.	0.0000830 0.242		1 1
12963 12963	WHO2005 PCDD/F TEQ Lo WHO2005 PCDD/F TEQ U	ower Bound n.a. opper Bound n.a.	0.0000830	ng/kg	
12963 12963 HO 1	WHO2005 PCDD/F TEQ Lo WHO2005 PCDD/F TEQ UF 2 PCBs	ower Bound n.a. opper Bound n.a. BPA 1668 modified	0.0000830 0.242 ng/kg	ng/kg	1
12963 12963 HO 1 12942	WHO2005 PCDD/F TEQ Lo WHO2005 PCDD/F TEQ UE 2 PCBs I PCB77	ower Bound n.a. opper Bound n.a. EPA 1668 modified 32598-13-3	0.0000830 0.242 ng/kg < 0.0845	ng/kg 0.0845	1
12963 12963 HO 1 12942 12942	WHO2005 PCDD/F TEQ LC WHO2005 PCDD/F TEQ UP 2 PCBs I	ower Bound n.a. pper Bound n.a. BPA 1668 modified 32598-13-3 70362-50-4	0.0000830 0.242 ng/kg < 0.0845 0.164	ng/kg 0.0845 0.0864	1 1 1
HO 1 12963 HO 1 12942 12942 12942	WHO2005 PCDD/F TEQ LC WHO2005 PCDD/F TEQ UP 2 PCBs I PCB77 PCB81 PCB105	ower Bound n.a. pper Bound n.a. BPA 1668 modified 32598-13-3 70362-50-4 32598-14-4	0.0000830 0.242 ng/kg < 0.0845 0.164 6.15	ng/kg 0.0845 0.0864 0.0927	1 1 1
12963 12963 HO 1 12942 12942 12942 12942	WHO2005 PCDD/F TEQ LC WHO2005 PCDD/F TEQ UP 2 PCBs I PCB77 PCB81 PCB105 PCB114	bwer Bound n.a. pper Bound n.a. BPA 1668 modified 32598-13-3 70362-50-4 32598-14-4 74472-37-0	0.0000830 0.242 ng/kg < 0.0845 0.164 6.15 0.503	ng/kg 0.0845 0.0864 0.0927 0.106	1 1 1 1
HO 1 12963 HO 1 12942 12942 12942 12942 12942	WHO2005 PCDD/F TEQ LC WHO2005 PCDD/F TEQ UF 2 PCBs I PCB77 PCB81 PCB105 PCB114 PCB118	bwer Bound n.a. pper Bound n.a. BPA 1668 modified 32598-13-3 70362-50-4 32598-14-4 74472-37-0 31508-00-6	0.0000830 0.242 ng/kg < 0.0845 0.164 6.15 0.503 36.9	ng/kg 0.0845 0.0864 0.0927 0.106 0.0984	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
12963 12963 HO 1 12942 12942 12942 12942 12942 12942 12942	WH02005 PCDD/F TEQ LC WH02005 PCDD/F TEQ UP 2 PCBs I PCB17 PCB105 PCB118 PCB123	bwer Bound n.a. pper Bound n.a. BPA 1668 modified 32598-13-3 70362-50-4 32598-14-4 74472-37-0 31508-00-6 65510-44-3	0.0000830 0.242 ng/kg < 0.0845 0.164 6.15 0.503 36.9 < 0.0989	ng/kg 0.0845 0.0864 0.0927 0.106 0.0984 0.0989	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
12963 12963 HO 1 12942 12942 12942 12942 12942 12942 12942 12942	WH02005 PCDD/F TEQ LC WH02005 PCDD/F TEQ UP 2 PCBs I PCB17 PCB105 PCB114 PCB123 PCB126	bwer Bound n.a. pper Bound n.a. BPA 1668 modified 32598-13-3 70362-50-4 32598-14-4 74472-37-0 31508-00-6 65510-44-3 57465-28-8	0.0000830 0.242 ng/kg < 0.0845 0.164 6.15 0.503 36.9 < 0.0989 0.332	ng/kg 0.0845 0.0864 0.0927 0.106 0.0984 0.0989 0.0849	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
12963 12963 HO 1 12942 12942 12942 12942 12942 12942 12942 12942	WHO2005 PCDD/F TEQ LC WHO2005 PCDD/F TEQ UP 2 PCBs I PCB17 PCB15 PCB114 PCB123 PCB126 PCB156	bwer Bound n.a. pper Bound n.a. BPA 1668 modified 32598-13-3 70362-50-4 32598-14-4 74472-37-0 31508-00-6 65510-44-3 57465-28-8 38380-08-4	0.0000830 0.242 ng/kg < 0.0845 0.164 6.15 0.503 36.9 < 0.0989 0.332 5.53	ng/kg 0.0845 0.0864 0.0927 0.106 0.0984 0.0989 0.0849 0.0765	1 1 1 1 1 1 1 1 1
12963 12963 HO 1 12942 12942 12942 12942 12942 12942 12942 12942 12942	WH02005 PCDD/F TEQ LC WH02005 PCDD/F TEQ UP 2 PCBs I PCB77 PCB81 PCB105 PCB114 PCB118 PCB123 PCB126 PCB156 PCB157	Dwer Bound n.a. pper Bound n.a. BPA 1668 modified 32598-13-3 70362-50-4 32598-14-4 74472-37-0 31508-00-6 65510-44-3 57465-28-8 38380-08-4 69782-90-7	0.0000830 0.242 ng/kg < 0.0845 0.164 6.15 0.503 36.9 < 0.0989 0.332 5.53 0.655	ng/kg 0.0845 0.0864 0.0927 0.106 0.0984 0.0989 0.0849 0.0765 0.0736	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
12963 12963 HO 1 12942 12942 12942 12942 12942 12942 12942 12942 12942	WH02005 PCDD/F TEQ LC WH02005 PCDD/F TEQ UP 2 PCBs I PCB17 PCB105 PCB105 PCB118 PCB123 PCB123 PCB126 PCB156 PCB157 PCB167	bwer Bound n.a. pper Bound n.a. BPA 1668 modified 32598-13-3 70362-50-4 32598-14-4 74472-37-0 31508-00-6 65510-44-3 57465-28-8 38380-08-4 69782-90-7 52663-72-6	0.0000830 0.242 ng/kg < 0.0845 0.164 6.15 0.503 36.9 < 0.0989 0.332 5.53 0.655 4.48	ng/kg 0.0845 0.0864 0.0927 0.106 0.0984 0.0989 0.0849 0.0736 0.0736 0.0901	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
12963 12963 12942 12942 12942 12942 12942 12942 12942 12942 12942 12942 12942	WH02005 PCDD/F TEQ LC WH02005 PCDD/F TEQ UP 2 PCBs I PCB77 PCB81 PCB105 PCB114 PCB118 PCB123 PCB126 PCB156 PCB157	Dwer Bound n.a. pper Bound n.a. BPA 1668 modified 32598-13-3 70362-50-4 32598-14-4 74472-37-0 31508-00-6 65510-44-3 57465-28-8 38380-08-4 69782-90-7	0.0000830 0.242 ng/kg < 0.0845 0.164 6.15 0.503 36.9 < 0.0989 0.332 5.53 0.655	ng/kg 0.0845 0.0864 0.0927 0.106 0.0984 0.0989 0.0849 0.0765 0.0736	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
12963 12963 IHO 1 12942 12942 12942 12942 12942 12942 12942 12942 12942 12942 12942	WH02005 PCDD/F TEQ LC WH02005 PCDD/F TEQ UP 2 PCBs I PCB17 PCB105 PCB105 PCB114 PCB118 PCB123 PCB126 PCB157 PCB157 PCB167 PCB169	Dwer Bound n.a. pper Bound n.a. BPA 1668 modified 32598-13-3 70362-50-4 32598-14-4 74472-37-0 31508-00-6 65510-44-3 57465-28-8 38380-08-4 69782-90-7 52663-72-6 32774-16-6 39635-31-9	0.0000830 0.242 ng/kg < 0.0845 0.164 6.15 0.503 36.9 < 0.0989 0.332 5.53 0.655 4.48 < 0.0710	ng/kg 0.0845 0.0864 0.0927 0.106 0.0984 0.0989 0.0849 0.0765 0.0736 0.0901 0.0710	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
12963 12963 IHO 1 12942 12942 12942 12942 12942 12942 12942 12942 12942 12942 12942	WH02005 PCDD/F TEQ LC WH02005 PCDD/F TEQ UP 2 PCBs I PCB77 PCB11 PCB105 PCB114 PCB123 PCB126 PCB156 PCB157 PCB167 PCB169 PCB189	bwer Bound n.a. pper Bound n.a. BPA 1668 modified 32598-13-3 70362-50-4 32598-14-4 74472-37-0 31508-00-6 65510-44-3 57465-28-8 38380-08-4 69782-90-7 52663-72-6 32774-16-6 39635-31-9 BPA 1668 modified	0.0000830 0.242 ng/kg < 0.0845 0.164 6.15 0.503 36.9 < 0.0989 0.332 5.53 0.655 4.48 < 0.0710 0.493	ng/kg 0.0845 0.0864 0.0927 0.106 0.0984 0.0989 0.0849 0.0765 0.0736 0.0901 0.0710 0.0442	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

General Sample Comments

WHO(2005)-PCDD/F + DLPCB TEQ (lower-bound) = 0.0350 pg/g WHO(2005)-PCDD/F + DLPCB TEQ (upper-bound) = 0.279 pg/g 🔅 eurofins

Lancaster Laboratories Environmental **Analysis Report**

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

REVISED

Sample Description: AB81761:Rice Bran Wax Composite Solid OMIC USA INC

Project Name: OMIC USA

Collected: 07/06/2015 10:00 by DF

Submitted: 07/08/2015 08:10 Reported: 07/27/2015 11:00

LL Sample	Ŧ	G5 7957463
LL Group	#	1574979
Account	#	30091

OMIC USA Inc. 3344 NW Industrial St Portland OR

Laboratory Sample Analysis Record Method CAT Analysis Name Trial# Batch# Analysis Analyst Dilution No. Date and Time Factor 12963 Solid Dioxins and Furans EPA 1613B modified 1 15190001 07/10/2015 22:52 Joseph D Anderson 1 12942 Solid WH012 + 6 EPA 1668 modified 1 15190001 07/10/2015 19:23 Joseph D Anderson 1 Indicators 12961 Dioxins/Furans/PCBs in EPA 1613B modified 1 15190001 07/09/2015 06:25 Ginelle L McQuaid 1 oil

eurofins 🔅

Lancaster Laboratories Environmental

Explanation of Symbols and Abbreviations

The following defines common symbols and abbreviations used in reporting technical data:

RL	Reporting Limit	BMQL	Below Minimum Quantitation Level
N.D.	none detected	MPN	Most Probable Number
TNTC	Too Numerous To Count	CP Units	cobalt-chloroplatinate units
IU	International Units	NTU	nephelometric turbidity units
umhos/cm	micromhos/cm	ng	nanogram(s)
C	degrees Celsius	F	degrees Fahrenheit
meq	milliequivalents	lb.	pound(s)
g	gram(s)	kg	kilogram(s)
μg	microgram(s)	mg	milligram(s)
mL	milliliter(s)	Ĺ	liter(s)
m3	cubic meter(s)	μL	microliter(s)
		pg/L	picogram/liter
<	less than		
>	greater than		
ppm	aqueous liquids, ppm is usually tak	en to be equivalent to mill	kilogram (mg/kg) or one gram per million grams. For igrams per liter (mg/l), because one liter of water has a weight juivalent to one microliter per liter of gas.
ppb	parts per billion		
Dry weight basis			pisture content. This increases the analyte weight ample without moisture. All other results are reported on an

Laboratory Data Qualifiers:

B - Analyte detected in the blank

C - Result confirmed by reanalysis

E - Concentration exceeds the calibration range

- J (or G, I, X) estimated value ≥ the Method Detection Limit (MDL or DL) and the < Limit of Quantitation (LOQ or RL)
- P Concentration difference between the primary and confirmation column >40%. The lower result is reported.
- U Analyte was not detected at the value indicated

V - Concentration difference between the primary and confirmation column >100%. The reporting limit is raised due to this disparity and evident interference...

Additional Organic and Inorganic CLP qualifiers may be used with Form 1 reports as defined by the CLP methods. Qualifiers specific to Dioxin/Furans and PCB Congeners are detailed on the individual Analysis Report.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, ISO17025) unless otherwise noted under the individual analysis.

Measurement uncertainty values, as applicable, are available upon request.

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff.

This report shall not be reproduced except in full, without the written approval of the laboratory.

Times are local to the area of activity. Parameters listed in the 40 CFR Part 136 Table II as "analyze immediately" are not performed within 15 minutes.

WARRANTY AND LIMITS OF LIABILITY - In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL, LLC BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL AND (B) WHETHER EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Eurofins Lancaster Laboratories Environmental which includes any conditions that vary from the Standard Terms and Conditions, and Eurofins Lancaster Laboratories Environmental hereby objects to any conflicting terms contained in any acceptance or order submitted by client.

APPENDIX C

Stability Testing Results

Stability Data for Wax 224 Rice Bran Wax

Batch	Date tested	Acid Value								
11935	1/28/09	4.6	8/24/11	4.8	6/12/13	4.9				
13115	2/17/10	5.3	9/14/11	5.5	9/26/12	6.1	6/28/13	5.9	2/24/15	5.5
15010	9/9/11	6.7	6/3/13	6.2	9/10/15	6.8			1	
16139	7/9/12	6.1	6/11/13	6.4	12/4/14	6.4	9/2/15	6.1		1212
17399	6/3/13	8.5	6/11/15	8.3						

APPENDIX D

Intake Assessment Report

Estimated Daily Intake of Rice Bran Wax

FEBRUARY 27, 2017

Innovative solutions Sound science

@ 2008 ToxStrategies. Inc. All rights reserved.

145

Estimated Daily Intake of Rice Bran Wax

FEBRUARY 27, 2017

PREPARED FOR:

J.M. Smucker Co. 1 Strawberry Lane Orrville, Ohio 44667

PREPARED BY:

ToxStrategies, Inc. 9390 Research Blvd Suite 100 Austin, Texas 78759

Table of Contents

List of Tables	4
List of Acronyms and Abbreviations	5
1.0 Executive Summary	6
2.0 Data 2.1 Proposed Uses and Use Levels of Rice Bran Wax 2.2 Market Share Data 2.3 Dietary Survey Data 2.4 Recipe Data	6 6 7 7
 3.0 Methods 3.1 Identification of Foods and Their Components to Which Rice Bran Wax Could Be Added 3.2 Estimation of Individual Intake of Rice Bran Wax for Individual Survey Participants Market Share Assessment Intake Assessment 3.3 Calculation of Population Statistics Describing Rice Bran Wax Estimated Daily Intake 	7 8 8 8 9 10
4.0 Results	10
5.0 References	11
Appendix: List of Food Codes	12

List of Tables

Table 1. Proposed use and use level of rice bran wax	6
Table 2. Worldwide sales for Granola Based Bars using IRI MultiOutlet database	8
Table 3. Estimated daily intake for rice bran wax (g/day and g/kg BW/day) at a 3% use level	10

List of Acronyms and Abbreviations

ARS	Agricultural Research Service
CDC	Centers for Disease Control and Prevention
EDI	estimated daily intake
FNDDS	Food and Nutrient Database for Dietary Studies
g/day	grams per day
g/kg BW/day	grams per kilogram body weight per day
NHANES	National Health and Nutrition Examination Survey
USDA	United States Department of Agriculture
WWEIA	What We Eat in America

1.0 Executive Summary

ToxStrategies, Inc. (ToxStrategies) has conducted an intake assessment to estimate the mean and 90th percentile daily intake of the ingredient rice bran wax based on its new proposed use in foods. The proposed use of rice bran wax is as a texturizing agent soley in peanut butter in barform products, allowing peanut butter to be the primary ingredient in nutritional/snack bars with a similar form and texture to granola bars and nutritional/energy bars. It was assumed for the purpose of this estimate that such unique bars would replace 10% of the bars currently consumed, reflecting a very high assumed future market share, in order to produce conservative (high) estimates of potential rice bran wax consumption.

A use level of 3% of rice bran wax in nutritional/snack bars was assessed. Analyzing dietary survey data from the National Health and Nutrition Examination Survey (NHANES) at a 3% use level and for a 10% market share of the foods yielded a *per user* mean (sd) and 90th percentile (sd) estimated daily intake (EDI) of rice bran wax for the US population ages 2+ of 0.077 (0.047) and 0.207 (0.245) g/day, respectibely. Adjusted for body weight (BW), the *per user* mean (sd) and 90th percentile (sd) EDI of rice bran wax for the US population ages 2+ was 0.0013 (0.0009) and 0.0029 (0.0037) g/kg BW/day, respectively.

2.0 Data

To calculate the EDI of rice bran wax, information about its proposed use in a new peanut butter nutritional/snack bar was combined with up-to-date, publicly available marketing and dietary intake survey data. Data sources are described in the following sections.

2.1 Proposed Uses and Use Levels of Rice Bran Wax

J.M. Smucker Co. proposes to use rice bran wax at the following use level in a peanut butterbased nutritional/snack bar (Table 1).

Table 1. Proposed use and use level of rice bran wax

Food Category	Proposed Technical Use of Rice Bran Wax	Proposed Use Level (%)	
Nutritional/snack bar	Texturizing agent	3	

2.2 Market Share Data

Market share was assessed using the Information Resources, Inc. (IRI) Worldwide database to gather annual sales data for granola-based bars (including those with peanut butter¹) using the Total MultiOutlet sales for 2016. The IRI-defined category "Granola Based Bars" is composed of segments such as all family cereal or breakfast bars, cookies & biscuits in the granola aisle,

¹ Granola-based bars include peanut butter as a consumer attribute designated as "SuperFlavor" by the IRI database.

kids' cereal bars, and mainstream fiber bars; this category most accurately captures the market in which peanut butter-based bars would be sold.

2.3 Dietary Survey Data

Dietary survey data were obtained from What We Eat in America (WWEIA), the dietary interview portion of NHANES. NHANES is carried out in two-year cycles by the Centers for Disease Control and Prevention (CDC) in order to characterize the general health and nutritional status of children and adults across the US. The five most recent biennials for which dietary intake data are available were included in this analysis (2003-2004, 2005-2006, 2007-2008, 2009-2010, and 2011-2012).

The first day of the WWEIA dietary questionnaire was administered in person, in conjunction with the participants' interviews and examinations for the other NHANES lifestyle and laboratory assessments. The second day of the survey was collected via a phone interview at some point three to ten days after the first survey day. Data collected during the dietary interview includes foods as consumed by the participant, encoded by a US Department of Agriculture (USDA) food code, and amount eaten.

Respondents who provided complete records for both days were designated reliable by WWEIA, and only those respondents were considered in this analysis (N = 2,683). A small percentage of participants (< 0.1%) did not provide body weight information and were therefore excluded from the statistics estimating intake on a per kilogram body weight basis.

2.4 Recipe Data

Recipe data were obtained from the Food and Nutritional Data for Dietary Studies (FNDDS), released by the Agricultural Research Service (ARS) of USDA as a companion to NHANES WWEIA. For each food, the most recent available recipe was applied (*i.e.*, foods reported in the 2009-2010 WWEIA survey were analyzed using recipes from the 2011-2012 release of FNDDS, if possible). As the contents of FNDDS are continually updated and refined, this method ensures that EDI estimates reflect the most up-to-date information about foods consumed in the US.

3.0 Methods

To estimate the intake of rice bran wax from its proposed use, ToxStrategies performed the following steps:

- Step 1: Identified foods and their components to which rice bran wax could be added
- Step 2: Estimated individual intake of rice bran wax for individual survey participants
- Step 3: Estimated population statistics estimating intake of rice bran wax

Details of each step are provided in the following sections.

3.1 Identification of Foods and Their Components to Which Rice Bran Wax Could Be Added

To identify the new foods that are proposed to contain rice bran wax, ToxStrategies performed a thorough search of food codes reported in WWEIA. Food code descriptions from WWEIA and associated ingredients listed in FNDDS were queried for keywords pertaining to nutritional/snack bars and breakfast bars/tarts. In order to generate the most conservative estimate, J.M. Smucker Co. assumed that 10% of all of these foods would be replaced by the new peanut butter products stiffened with rice bran wax. Food codes included in the analysis are listed in the appendix.

In some cases, the future peanut butter bar component would not replace the entire food (*e.g.*, it would replace only the bar portion of a bar covered in a chocolate or yogurt coating). Relevant proportions of each food were determined by reviewing the recipe for that food item from FNDDS, with further development by ToxStrategies. An asterisk in the appendix indicates that the nutrition bar was a fraction of the total food by weight; in these cases, the use level of rice bran wax was applied to less than 100% of the reported food.

3.2 Estimation of Individual Intake of Rice Bran Wax for Individual Survey Participants

Market Share Assessment

The total Granola Based Bars sales during 2016 were $28,055,568 \text{ EU}^2$. Ten items were identified that launched in the last year and for which dollar share information for the segment was reported. Of these, the best-selling newly-launched bar (Product 9 in Table 2) had reported sales of 280,705 EU, approximately 1% of the total sales for the entire category during that same year. For comparison, the best-selling J.M. Smucker bar (Product 15) reported sales of 72,186 EU after its first year, accounting for about 0.25% of total sales.

	UPC	Consistency	SuperFlavor	Sales (EU) ^B
Total Granola-Based Bar Sales 2016 ^A				28,055,568
Granola-Based Bars Launched in 2016 ^A				
Product 1	1600046675	SOFT	ALL OTHER	25,164
Product 2	1862710474	CHEWY	HONEY/MAPLE	6,901
Product 3	1862710468	CRUNCHY	NUT	13,302
Product 4	1862710466	CHEWY	DARK CHOCOLATE	16,060
Product 5	1862710478	CHEWY	DARK CHOCOLATE	18,346
Product 6	1862710167	CHEWY	CHOCOLATE	62,884
Product 7	1600043269	CRUNCHY	CINNAMON	143,245
Product 8	1600047196	CHEWY	NUT	91,417
Product 9	1600043268	CRUNCHY	OATS/SEEDS/GRAIN	280,705
Product 10	3000056031	CHEWY	NUT	32,664

 2 1 EU = 9 pounds

Product 11 (JMS brand) ^C	5150024447	CHEWY	CHOCOLATE	5,566
Product 12 (JMS brand) ^C	5150024449	CHEWY	CHOCOLATE	11,333
JMS Peanut Butter Granola-Based B	lars ^D			
Product 13 (JMS brand)	5150021004	CHEWY	PEANUT BUTTER	55,909
Product 14 (JMS brand)	5150021015	CHEWY	PEANUT BUTTER	25,695
Product 15 (JMS brand)	5150021007	CHEWY	PEANUT BUTTER	72,186

^A52 weeks ending December 25, 2016 unless otherwise noted

^B1 EU = 9 pounds

^CPartial year sales, June-December 2016 only

^DSales at end of first year after launching

Based on the available market share data for 2016 presented here, and using the best-selling bar as the most conservative comparator, the maximum potential market share of the newly proposed bar to contain rice bran wax is estimated to be 1%. This is 4-fold higher than the 0.25% market share that has been demonstrated for J.M. Smucker-specific bar products. Taking this approach makes the conservative assumption that the best-selling bar will be replaced completely with the newly proposed bar containing rice bran wax. To add a further layer of conservatism, we increased this estimate by a factor of 10 and assumed an estimated market share of 10%, as described below.

Intake Assessment

All individuals participating in NHANES who consumed any of the identified foods were included in this assessment. A conservative market share of 10% of the foods was assumed in simulations, i.e. for each of 5,000 simulations, 10% of the foods were designated as containing rice bran wax to the 3 % use level requested. This approach was taken to ensure that the higher exposure to rice bran wax in consumers who ate a particular food frequently was captured in the population distribution of potential consumption.

Only those respondents designated as reliable were included in this assessment. Both days of the NHANES WWEIA dietary interviews from the five biennials (2003-2012) were analyzed. Participants' consumption of the rice bran wax was averaged over the two response days, *i.e.*, (Day1 consumption + Day2 consumption)/2. Raw consumption of rice bran wax was calculated using the grams of the relevant food consumed as reported in NHANES, multiplied by the proportion of the food that was relevant to the technical use of rice bran wax (see Section 3.1), multiplied by its proposed use level. For example, for the food "53714300 Granola bar, high fiber, coated with non-chocolate yogurt coating", the relevant proportion of that food (the bar only), was 0.78, and the use level was 0.03. Thus, for a survey participant who consumed 28.3g (1 oz.) of this food, approximately 0.66g, or (28.3 * 0.78 * 0.03), of rice bran wax would be consumed.

For the calculations of intake per kilogram body weight, individuals' own body weights as reported in NHANES were used rather than any general assumption of adults' or children's body weights, reflecting the true population distribution of g/kg BW consumption.

3.3 Calculation of Population Statistics Describing Rice Bran Wax Estimated Daily Intake

To ensure that the most up-to-date data on consumption were used for this analysis, the five most recent NHANES biennials for which there are published dietary survey data available were used: 2003-2004, 2005-2006, 2007-2008, 2009-2010, and 2011-2012. The dietary and sample weighting data from the five biennials were combined according to the NHANES analytic guidelines for combining surveys. From the combined dataset we estimated survey design weighted descriptive statistics for the population consumption per day. Population statistics were estimated using the 'survey' package (Lumley, 2004) in the R 3.1.2 environment for statistical computing (R Core Team, 2015) using the appropriate adjustment to sampling weights for combining biennials, then incorporating survey sampling units and strata from the survey design to ensure that sub-populations and areas were correctly represented.

The market share simulations generated distributions of the population descriptive statistics (mean, 90th percentile) and were calculated for consumers of the nutritional/snack bars. Means and standard deviations of these statistics are provided, broken down by age range and body weight adjustment.

4.0 Results

Table 3 presents the EDI for rice bran wax in grams per day (g/day) and in grams per kilogram body weight per day (g/kg BW/day) for the following age groups in the US populations: 2 years and older, 2 to 5 years, 6 to 18 years, and 19 years and older. The "number of users" refers to the number of survey participants in a given age group who consumed at least one of the identified food items.

	Number of Users	La Charles Ton A	ber User (day)	EDI per User (g/kg BW/day)*	
Nutrition/snack bar	NHANES 2003-2012	Mean (sd)	90th Percentile (sd)	Mean	90th Percentile
US Population, Ages 2+					
Rice bran wax consumption	2683	0.077 (0.047)	0.207 (0.245)	0.0013 (0.0009)	0.0029 (0.0037)
US Population, Ages 2-5					
Rice bran wax consumption	253	0.058 (0.046)	0.190 (0.217)	0.0034 (0.0029)	0.0104 (0.0126)
US Population, Ages 6-18					
Rice bran wax consumption	844	0.063 (0.043)	0.176 (0.221)	0.0016 (0.0012)	0.0038 (0.0052)
US Population, Ages 19+					

	Number of Users	EDI per User (g/day)		EDI per User (g/kg BW/day)*	
Nutrition/snack bar	NHANES 2003-2012	Mean (sd)	90th Percentile (sd)	Mean	90th Percentile
Rice bran wax consumption	1586	0.082 (0.051)	0.225 (0.260)	0.0011 (0.0007)	0.0028 (0.0033)

* Body weight was not reported for < 0.1% of survey participants. Users with missing body weight data were excluded from this analysis.

5.0 References

Agricultural Research Service, United States Department of Agriculture (USDA). 2009-2010. Food and Nutrient Database for Dietary Studies. Available at: <u>http://www.ars.usda.gov/Services/docs.htm?docid=12068</u>. Last accessed April 1, 2015.

Agricultural Research Service, United States Department of Agriculture (USDA). 2011-2012. Food and Nutrient Database for Dietary Studies. Available at: http://www.ars.usda.gov/Services/docs.htm?docid=12068. Last accessed April 1, 2015.

Centers for Disease Control and Prevention (CDC). 2009-2010. National Health and Nutrition Examination Survey. Available at: <u>http://wwwn.cdc.gov/nchs/nhanes/search/nhanes09_10.aspx</u>. Last accessed April 1, 2015.

Centers for Disease Control and Prevention (CDC). 2011-2012. National Health and Nutrition Examination Survey. Available at: <u>http://wwwn.cdc.gov/nchs/nhanes/search/nhanes11_12.aspx</u>. Last accessed April 1, 2015.

Lumley, T. 2004. Analysis of complex survey samples. Journal of Statistical Software, 9(1), 1-19.

R Core Team. 2015. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL <u>http://www.R-project.org/</u>.

Appendix: List of Food Codes

dans in		Food Codes		alura a	Main food description
2003- 2004	2005- 2006	2007- 2008	2009- 2010	2011- 2012	
NA	NA	41435000	41435000	NA	Fiber One Fulfill Bar
41435110	41435110	41435110	41435110	53720700	High protein bar, candy-like, soy and milk base
NA	NA	41435120	41435120	53720800	Zone Perfect Classic Crunch nutrition bar
NA	NA	41435300	41435300	53720100	Balance Original Bar
NA	NA	41435500	41435500	53720200	Clif Bar
NA	NA	41435700	41435700	53720610	South Beach Living High Protein Cereal Ba
NA	NA	41435710	41435710	53720600	South Beach Living Meal Replacement Bar
42202000	42202000	42202000	42202000	42202000	Peanut butter
42202010	42202010	42202010	42202010	42202010	Peanut butter, low sodium
NA	42202100	42202100	42202100	42202100	Peanut butter, reduced sodium and reduced sugar
NA	42202130	42202130	42202130	42202130	Peanut butter, reduced sugar
42202150	42202150	42202150	42202150	42202150	Peanut butter, reduced fat
42202200	42202200	42202200	42202200	42202200	Peanut butter, vitamin and mineral fortified
42203000	42203000	42203000	42203000	42203000	Peanut butter and jelly*
53234000	53234000	53234000	53234000	53234000	Cookie, peanut butter
53234010	53234010	53234010	53234010	NA	Cookie, peanut butter, with oatmeal
53234100	53234100	53234100	53234100	53234100	Cookie, peanut butter, with chocolate
53234250	53234250	53234250	53234250	53234250	Cookie, peanut butter with rice cereal (no- bake)
53235000	53235000	53235000	53235000	53235000	Cookie, peanut
53235500	53235500	53235500	53235500	53235500	Cookie, with peanut butter filling, chocolate coated
53530000	53530000	53530000	53530000	53530000	Breakfast tart*
53530010	53530010	53530010	53530010	53530010	Breakfast tart, lowfat*
53540000	53540000	53540000	53540000	53714500	Breakfast bar, NFS
53540200	53540200	53540200	53540200	53714520	Breakfast bar, cereal crust with fruit filling, lowfat*
NA	NA	53540300	53540300	53710400	Fiber One Chewy Bar
NA	NA	53540400	53540400	53710500	Kellogg's Nutri-Grain Cereal Bar
NA	NA	53540402	53540402	53710502	Kellogg's Nutri-Grain Yogurt Bar
NA	NA	53540404	53540404	53710504	Kellogg's Nutri-Grain Fruit and Nut Bar
53540500	53540500	53540500	53540500	53714510	Breakfast bar, date, with yogurt coating*
53540600	53540600	53540600	53540600	53710600	Milk 'n Cereal bar
NA	53540700	53540700	53540700	53710700	Kellogg's Special K bar
NA	NA	53540800	53540800	53710800	Kashi GOLEAN Chewy Bars
NA	NA	53540802	53540802	53710802	Kashi TLC Chewy Granola Bar

NA	NA	53540804	53540804	53710804	Kashi GOLEAN Crunchy Bars
NA	NA	53540806	53540806	53710806	Kashi TLC Crunchy Granola Bar
NA	NA	NA	53540900	53710900	Nature Valley Chewy Trail Mix Granola Bar
NA	NA	NA	53540902	53710902	Nature Valley Chewy Granola Bar with Yogurt Coating*
NA	NA	NA	53540904	53710904	Nature Valley Sweet and Salty Nut Granola Bar
NA	NA	NA	53540906	53710906	Nature Valley Crunchy Granola Bar
NA	NA	NA	53541000	53711000	Quaker Chewy Granola Bar
NA	NA	NA	53541002	53711002	Quaker Chewy 90 Calorie Granola Bar
NA	NA	NA	53541004	53711004	Quaker Chewy 25% Less Sugar Granola Bar
NA	NA	NA	53541006	53711006	Quaker Chewy Dipps Granola Bar
53541200	53541200	53541200	53541200	53729000	Meal replacement bar
NA	NA	NA	53541300	53720400	Slim Fast Original Meal Bar
NA	NA	53542000	53542000	53712000	Snack bar, oatmeal
NA	NA	NA	53542100	53712100	Granola bar, NFS
NA	NA	NA	53542200	53712200	Granola bar, lowfat, NFS
53542210	53542210	53542210	53542210	53712210	Granola bar, nonfat
NA	NA	NA	53543000	53713000	Granola bar, reduced sugar, NFS
53543100	53543100	53543100	53543100	53713100	Granola bar, peanuts, oats, sugar, wheat germ
NA	NA	53544200	53544200	53714200	Granola bar, chocolate-coated, NFS*
53544210	53544210	53544210	53544210	53714210	Granola bar, with coconut, chocolate-coated*
53544220	53544220	53544220	53544220	53714220	Granola bar with nuts, chocolate-coated*
NA	NA	53544230	53544230	53714230	Granola bar, oats, nuts, coated with non- chocolate coating*
53544250	53544250	53544250	53544250	53714250	Granola bar, coated with non-chocolate coating*
53544300	53544300	53544300	53544300	53714300	Granola bar, high fiber, coated with non- chocolate yogurt coating*
53544400	53544400	53544400	53544400	53714400	Granola bar, with rice cereal*
NA	NA	53544410	53544410	53711100	Quaker Granola Bites
53544450	53544450	53544450	53544450	53720300	PowerBar (fortified high energy bar)
54327950	54327950	54327950	54327950	54327950	Crackers, cylindrical, peanut-butter filled
54328100	54328100	54328100	54328100	54328100	Cracker, sandwich-type, peanut butter filled
NA	54328110	54328110	54328110	54328110	Cracker, sandwich-type, peanut butter filled, reduced fat
91732000	91732000	91732000	91732000	91732000	Peanut bar
91732100	91732100	91732100	91732100	91732100	Planters Peanut Bar
91733000	91733000	91733000	91733000	91733000	Peanut brittle
91733200	91733200	91733200	91733200	91733200	Peanut Bar, chocolate covered candy*
91734100	91734100	91734100	91734100	91734100	Reese's Peanut Butter Cup
91734200	91734200	91734200	91734200	91734200	Reese's Pieces
NA	91734300	91734300	91734300	91734300	Reese's Sticks

91734400	91734400	91734400	91734400	91734400	Reese's Fast Break
NA	NA	91734450	91734450	91734450	Reese's Crispy Crunchy Bar
NA	91780010	91780010	91780010	53720510	Snickers Marathon Energy bar
NA	91781010	91781010	91781010	53720500	Snickers Marathon Protein bar

* Rice bran wax was present in a subcomponent of the food item. See section 3.1 of this report.

>

EXHIBIT I

Report of the Expert Panel

OPINION OF AN EXPERT PANEL ON THE SAFETY AND GENERALLY RECOGNIZED AS SAFE (GRAS) STATUS OF RICE BRAN WAX FOR USE IN SPECIFIED FOOD PRODUCTS

Introduction

An independent panel of experts (Expert Panel), qualified by scientific training and experience to evaluate the safety of food and food ingredients, was requested by The J. M. Smucker Company (Smucker) to determine the safety and Generally Recognized as Safe (GRAS) status of the use of rice bran wax as an ingredient for use in a specified food for human consumption. Rice bran wax is intended for use as a texturizing agent in peanut butter used in nutrition and granola-type snack bar products. The intended use of rice bran wax is solely in the peanut butter used in these bar products and will allow peanut butter to be the primary ingredient in nutritional/snack bars with a similar form and texture to granola bars and nutritional/energy bars. The rice bran wax ingredient is manufactured in accordance with current Good Manufacturing Practice (cGMP) and meets the proposed specifications.

A detailed review based on the existing scientific literature (through June 2017) on the safety of rice bran wax was conducted by ToxStrategies, Inc. (ToxStrategies) and is summarized in the attached dossier. The Expert Panel members independently reviewed the dossier prepared by ToxStrategies and other pertinent information and convened on July 12, 2017 via teleconference. Based on their independent, critical evaluation of all of the available information and discussions during the July 12, 2017 teleconference, the Expert Panel unanimously concluded that the intended uses described herein for Smucker's rice bran wax ingredient, meeting appropriate food-grade specifications as described in the supporting dossier (**GRAS Determination of Rice Bran Wax for Use in Specified Food Products**) and manufactured according to cGMP, is safe, suitable, and GRAS based on scientific procedures. A summary of the basis for the Expert Panel's conclusion is provided below.

Summary and Basis for GRAS Determination

Description

Rice bran wax (CAS No. 8016-60-2) is a hard, crystalline vegetable wax obtained from rice husks. It primarily consists of high molecular weight monoesters ranging from C48 to C64. Rice bran wax is typically yellow to light brown in color with a melting point of 75 - 85.5°C. The rice bran wax that is the subject of this safety evaluation is processed from rice bran oil obtained from rice husks, and is not hydrogenated.

Manufacturing Process

The starting material, crude rice bran wax, is weighed and added to a clean melt tank and melted. During this process, settling separates out the non-rice bran wax solids. Next, the melted rice bran wax is transferred to a tank containing one or more safe and suitable decoloring agents, and the wax is mixed and recirculated in the tank. Prior to continuing on to the filter process, a filter medium consisting of common and approved processing

aids used in food manufacturing processes is added. Once the filtering medium is adequately incorporated, the mixture is sent through the filter press and then back into the tank until the wax becomes clear. Once the wax is clear, a sample is collected and sent to the laboratory for aesthetics (color and odor) testing. If the wax does not meet aesthetics specifications, it is pumped into another tank, and cooling water is turned on, a safe and suitable decoloring agent is added, and the temperature is raised in a controlled manner in order to remove the decoloring agent. A sample is again collected and tested for compliance with aesthetic (color/odor) specifications. If the wax meets the aesthetic specification (either with the first or second lab result), it is filtered through a cartridge filter and sent on to the pastillating step (i.e., process of pelleting into uniform half spheres). If the wax is tested twice and fails, it is discarded. Once pastillated, the wax is sampled for quality testing, packaged, and labeled. The finished ingredient that passes all quality control measures is released for sale and placed into inventory. If a sample fails established quality parameters, the wax is discarded.

Analytical (chemical and microbiological) results for the rice bran wax product confirm that the finished product meets the proposed analytical specifications as demonstrated by the consistency of production, the lack of impurities and contaminants (e.g., heavy metals, pesticides, mycotoxins, polychlorinated dibenzo-p-dioxins, polychlorinated dibenzofurans, and dioxin-like polychlorinated biphenyls), and is stable for two years from the date of manufacture, if stored under proper conditions.

Rice Bran Wax and Related Data Considered in the Safety Assessment

The majority (87%–98%) of the rice bran wax components are monoesters; the remaining components (2-13% total) of the rice bran wax product consist of free longchain fatty alcohols, free long-chain fatty acids, or triglycerides from rice bran oil. The long-chain fatty acid esters present in plant-based waxes such as rice bran wax are generally thought to be poorly absorbed in the gastrointestinal tract (EFSA, 2012a,b) as uptake of wax esters decreases as chain length and hydrophobicity increase (Hargrove et al., 2004). While some toxicological data are available for rice bran wax, information on its main constituents and other plant-based waxes with similar chemical structures, and thus similar potential for absorption, were also evaluated as part of the GRAS assessment. These oils and waxes are composed of the same primary monoester constituents as rice bran wax, and have been shown to have the same absorption, metabolism, and excretion properties. A similar approach has been taken for the evaluation of other plant-based waxes. In 2007, the European Food Safety Authority (EFSA, 2007) applied a similar approach for beeswax, bridging safety data from main constituents and other similar waxes. The EFSA Panel on Food additives, Flavourings, Processing aids and Materials in Contact with Food (AFC) concluded that "the use of beeswax as an additive for the existing food uses and the proposed new food use is not of safety concern." EFSA also applied a similar approach to candelilla wax in their 2012 assessment (EFSA, 2012c).

In the current assessment, toxicity studies conducted on carnauba wax, candelilla wax, beeswax, lanolin wax, and jojoba oil/wax were identified and deemed suitable for inclusion in the safety assessment of rice bran wax and considered by the Expert Panel in its evaluation. Jojoba wax consists almost entirely of long-chain monoesters (97%), and is therefore directly comparable to the primary component of rice bran wax (87%–98%)

monoesters), providing toxicological data specific to this fraction. Carnauba wax, candelilla wax, beeswax, and lanolin wax also have a large fraction of these monoesters and so provide additional safety information related to these components. Importantly, minor components present in rice bran wax (e.g., free fatty alcohols, free fatty acids) are present in one or more of these waxes at higher concentrations, thus providing additional safety information on these constituents. However, these waxes also contain various other constituents not relevant to rice bran wax that may impart toxicities of their own or may be of unknown toxicity. As such, these other waxes are considered appropriate and conservative comparators to rice bran wax, which is purer and consists almost exclusively of esters or their fatty acid and alcohol components.

In addition, chain length and saturation have been shown to predict physio-chemical behavior of waxes and oils, including their potential for toxicity (EFSA, 2007; Maru et al., 2012; Smith et al., 1996). As demonstrated by Smith et al. (1996), the potential for toxicity of waxes decreases with increasing chain length. Of the waxes evaluated in this GRAS assessment, rice bran wax contains the longest alcohol and acid chain lengths and has one of the largest monoester fraction (comparable to jojoba) and thus would be the least bioavailable, positioning it to have the least potential for toxicity. Thus, any negative findings in safety studies conducted with carnauba wax, candelilla wax, beeswax, lanolin wax, or jojoba wax can be confidently extended to rice bran wax.

Taken together, the available data on these various waxes provides sufficient information to assess the safety of rice bran wax and its constituents for its intended use.

History of Use

Rice, brown rice, and their derivatives have a long history of human consumption, with rice cultivation documented back to prehistoric times, starting in Asia and eventually spreading across Europe around the sixth century (Burlando and Cornara, 2014). Currently, rice is produced on most continents and serves as a dietary staple for many populations across the world (Burlando and Cornara, 2014). Once harvested, the rice is hulled and the resulting brown rice can be further processed to generate derivatives such as rice bran oil, rice bran extract, and hydrolyzed rice protein. As referenced in the manufacturing process outlined above, rice bran wax comes from the bran, which is the part between the husk and endosperm of rice, and is a byproduct of bran oil (Burlando and Cornara, 2014; Andersen, 2006; Sabale et al., 2007). Rice bran wax is used in food as a release agent, brightener, coatings for confectioneries, chocolates, cakes, and tablets, treatment of vegetables and fruits and as a plasticizing material for chewing gum base. Rice bran wax (CAS No. 8016-60-2) has been approved for use in various food applications in the US. It is permitted as a direct human food additive (21 CFR \$172.890) when used in candy (maximum 50 ppm as a coating), fresh fruits and fresh vegetables (maximum 50 ppm as a coating), and chewing gum (maximum 2.5% in gum when used as a plasticizing material in chewing gum base, 21CFR §172.615). It is also permitted as an indirect food additive as Type VIII in table 1 of 176.170(c), at a maximum level of 1.0 percent by weight of the polymer. After reviewing the available safety data, the Cosmetic Ingredient Review (CIR) Expert Panel concluded that ricederived ingredients, including rice bran wax, are safe as cosmetic ingredients (e.g., 1% in lipstick) in the practices of use and concentrations as described in their safety assessment (Andersen, 2006). In addition, rice bran wax is eligible for use as an active ingredient or

excipient in listed medicines in Australia, with no restrictions (Australian Government, 2007).

Intended Use and Intake Assessment

The proposed use of rice bran wax is as a texturizing agent solely in peanut butter that is used in bar-form products, allowing peanut butter to be the primary ingredient in bar products that include cereal bars, breakfast bars, cookies and biscuits, nutritional bars, and energy snack bars with similar form and texture.

The US FDA's Office of Food Additive Safety, in the Center for Food Safety and Applied Nutrition, has performed a dietary exposure estimate of rice bran wax intake from nutritional and energy bars based on its new proposed use in foods using two different approaches (FDA, 2017). The outcome of this assessment was made available to ToxStrategies for review in response to a Freedom of Information Act request (FOI Request No. 2017-4008). While some of the data used in this assessment are proprietary, and therefore not available to the Expert Panel for review, they are appropriate for consideration as "other information available to FDA."

The first intake estimate determined by FDA was based on two-day average intake data obtained from the "What We Eat in America" (WWEIA) National Health and Nutrition Examination Survey (NHANES). The estimates prepared by FDA based on NHANES data for the Estimated Dietary Intake (EDI) of rice bran wax were 0.01 and 0.03 g/kg-bw/day, respectively, for the mean and 90th percentile in the population aged 2+ years. However, as stated by FDA (2017) in its memorandum, the available information suggests that the bars included in the assessment are eaten infrequently. As such, the two-day survey data "are likely to significantly overestimate the actual consumption." In order to prepare a more appropriate estimate of intake, FDA conducted a second assessment using longer term survey data, which more accurately reflect intake of these bars. To do so, 10- to 14-day dietary recall data from the NPD Group, Inc.'s, "National Eating Trends-Nutrient Intake Database" (NET-NID) were used. Using the longer-term survey data, FDA estimated the daily average mean and 90th percentile dietary intakes of rice bran wax to be 0.003 and 0.005 g/kg-bw/day, respectively, for ages 2+ years. For the 2- to 5-year-old population, the EDIs of rice bran wax were determined to be 0.007 and 0.014 g/kg-bw/day, respectively. Importantly, the analysis by FDA included any and all bars, and as such, is very conservative when applied to the types of bars containing peanut butter that are the focus of this GRAS determination. As such, the results of the FDA intake assessment will overestimate of the actual consumption of rice bran wax as intended for use.

In addition, ToxStrategies, Inc. (ToxStrategies), has conducted an intake assessment incorporating market share to provide supplemental information related to the mean and 90th percentile daily intake of the ingredient rice bran wax. The results of this intake estimate were similar to that of the FDA described above. The background exposure to rice bran wax from its approved uses in gum, candy, and fresh fruit and fresh vegetables is estimated to be approximately 100 mg/day, about half of which is estimated to come from fresh fruit/vegetables and the other half from chewing gum. This estimate is based on reported consumption levels for chewing gum (approximately 30 mg/kg/day for a 60 kg individual or 1.8 g gum/day), candy (mean intake of approximately 40 g candy/day), and fresh fruit and fresh vegetables (approximately 900 g fruits and vegetables/day)

(Revolymer Limited, 2011; Cook, 2011; Orlich et al., 2014; Shumow et al., 2012). Given the approved 2.5% maximum use level of rice bran wax in chewing gum, the background exposure estimates for rice bran wax from its use in chewing gum would be higher for heavy users of chewing gum (estimated to be on the order of 2-3x) as compared to mean intake estimates. Therefore, the background exposure to rice bran wax from current approved uses is estimated to be as high as 200 - 300 mg/day.

We believe this background exposure estimate is extremely conservative given that other waxes are more commonly used as confectionery coatings (e.g., carnauba wax) and as a coating for fruits and vegetables and alternative waxes and plasticizers are approved and used in chewing gum base in the USA. In addition, it is generally acknowledged that waxes and plasticizers in gum base remain with the gum cud during chewing and are not released and subsequently ingested.

Safety Data

Brown rice and its derivatives, such as rice bran wax, have a long history of human consumption, with rice cultivation documented back to prehistoric times (Burlando and Cornara, 2014). Rice bran wax has been approved for use in various food applications in the US and is permitted as a direct human food additive when used in candy, fruits and vegetables, and chewing gum (21CFR §172.890).

The safety of of rice bran wax was evaluated based on preclinical safety studies of rice bran wax and other compositionally similar waxes and constituents of these waxes. Rice bran wax consists primarily of high-molecular-weight monoesters ranging from C48 to C64 (87%–98%); the remaining components of the rice bran wax product consist of free long-chain fatty alcohols, free long-chain fatty acids, and triglycerides. While some toxicological data are available for rice bran wax, information on its main constituents and other plant-based waxes with similar chemical structures, and thus similar potential for absorption, was also evaluated as part of this safety assessment. Studies conducted on carnauba wax, candelilla wax, beeswax, lanolin wax, and jojoba wax were identified and deemed suitable for inclusion in the safety assessment of rice bran wax and were considered by the Expert Panel in its evaluation. Taken together, the available data presented here allow for sufficient evaluation of the safety of rice bran wax.

Subchronic toxicity and/or reproductive/developmental toxicity studies were identified for carnauba wax and candelilla wax. In each of the studies with carnauba wax, the NOAEL was the highest dose level administered and ranged from 250 to 10,800 mg/kg-bw/day, the highest of which was a concentration of 10% (equivalent to 8,800 and 10,200 mg/kg-bw/day in males and females, respectively) administered in the diet of rats for 90 days. Chronic studies with candelilla wax were also identified, and the NOAELs in these studies were also the highest dose tested, up to 2,400 mg/kg-bw-day.

The history of use in foods of other vegetable-based waxes, in particular carnauba wax, provides additional information relevant to the safety assessment of rice bran wax. Hargrove et al. (2004) reviewed the intake of wax worldwide and noted that the intake in some populations can average as high as 4 g/day. Rice bran wax has been approved for use in various food applications in the US. It is permitted as a direct human food additive (21 CFR §172.890) when used in candy (maximum 50 ppm as a coating), fresh fruits and fresh vegetables (maximum 50 ppm as a coating), and chewing gum (maximum 2.5% in gum when used as a plasticizing material in chewing gum base, 21CFR §172.615). It is also permitted as an indirect food additive as Type VIII in Table 1of 176.170(c), at a maximum level of 1.0 percent by weight of the polymer. Carnauba wax is similarly permitted as a GRAS direct human food ingredient, with no limitation other than cGMP, in baked goods and baking mixes, chewing gum, confections and frostings, fresh fruits and fruit juices, gravies and sauces, processed fruits and fruit juices, and soft candy (21 CFR § 184.1978). The FDA has listed carnauba wax, beeswax, and candelilla wax as GRAS as a direct food substances for human consumption with no specific limitation other than good manufacturing practice (21 CFR § 184.1978; 1973; and 1976, respectively). Candelilla wax is also considered GRAS by the Flavor & Extract Manufacturer's Association (GRAS No. 3479; Oser and Ford, 1977).

As noted above, FDA has also conducted an intake assessment of rice bran wax using the NET-NID 10-14-day survey data, which reflect a more accurate estimation of the long-term consumption of the bar products intended to contain the rice bran wax product (FDA, 2017). Margins of Exposure (MOEs) for rice bran wax for its intended use in bars were calculated based on the EDIs determined by FDA. Estimated mean and 90th percentile intakes of rice bran wax of 0.003 g/kg-bw/day and 0.005 g/kg-bw/day, respectively, were calculated (assuming a 3% use level) for the U.S. population ages 2 and over. This provides margins of exposure of approximately 223× and 134×, respectively, for mean and 90th percentile intakes when compared to the lowest NOAEL reported in the 2-generation study with carnauba wax (Parent et al., 1983). When considering the population with the highest EDI, ages 2–5 years, the estimated mean and 90th percentile intakes of rice bran wax were 0.007 g/kg/day and 0.014 g/kg/day, respectively. This provides margins of exposure of approximately 26. This provides margins of the bran way (Parent et al., 1983). When considering the population with the highest EDI, ages 2–5 years, the estimated mean and 90th percentile intakes of rice bran way were 0.007 g/kg/day and 0.014 g/kg/day, respectively. This provides margins of exposure of approximately 96× and 48×, respectively. This provides margins of exposure of approximately 96× and 48×, respectively. This provides margins of exposure of approximately 96× and 48×, respectively. This provides margins of exposure of approximately 96× and 48×, respectively. This provides margins of exposure of approximately 96× and 48×, respectively. This provides margins of exposure of approximately 96× and 48×, respectively. This provides margins of exposure of approximately 96× and 48×, respectively. This provides margins of exposure of approximately 96× and 48×, respectively.

More importantly, all EDIs calculated by FDA are at or near the JECFA ADI for carnauba wax of 0-7 mg/kg-bw/day. Only the 90th percentile in the 2-5-year age group had an EDI marginally above the JECFA ADI. However, an EDI marginally above the ADI for the 90th percentile of only one age group – 2-5 year olds – is of limited concern given the inherent over-conservatism in both the EDI calculations (i.e., inclusion of any/all bar types) and the basis of the ADI determination. An ADI, as determined by JECFA, is "an estimate of the amount of the additive, expressed on a body weight basis, that can be ingested daily over a lifetime without appreciable health risk (notionally "zero" risk). JECFA does not make a quantitative estimate of risk at an intake corresponding to the ADI, but concludes that the risk is so small as to be negligible from a public health point of view"¹. JECFA goes on to state that this evaluation "can be considered to be mainly the hazard characterization step". In other words, the ADI is not a threshold above which the risk of health effects will suddenly be of concern. In addition, the ADI for carnauba wax

http://www.fao.org/docrep/008/ae922e/ae922e05.htm

was developed assuming ingestion over a lifetime. The EDI for the age group in question, 2-5 years, is a transient time period that has limited relevance to a lifetime exposure.

The analysis as presented in this GRAS assessment demonstrates that all EDIs for rice bran wax are at or near the most relevant ADI. Together with the supporting safety data, the available information demonstrates the rice bran wax product to be safe for the intended use described herein.

General Recognition of the Safety of Rice Bran Wax

The intended use of rice bran wax has been determined to be safe through scientific procedures as set forth in 21 CFR§170.3(b), thus satisfying the so-called "technical" element of the GRAS determination and this is based on the following:

- □ The rice bran wax that is the subject of this notification is a high melting point vegetable wax obtained from rice husks. The rice bran wax product is manufactured consistent with current cGMP for food (21 CFR Part 110). The raw materials and processing aids used in the manufacturing process are food grade and/or approved for use in food.
- □ Brown rice, and its derivatives have a long history of human consumption with rice cultivation documented back to prehistoric times. Importantly, the known history of use of rice bran wax in food such as candy, chewing gum, and fresh fruit and vegetables (21 CFR § 172.890 and 21 CFR § 172.615) is also supportive of its safe use in food and specifically the intended use and use levels specified in this dossier.
- Rice bran wax consists primarily of high-molecular-weight monoesters ranging from C48 to C64 (87%–98% A); the remaining components of the rice bran wax product consist of free long-chain fatty alcohols, free long-chain fatty acids, or rice bran oil. While some toxicological data are available for rice bran wax, information on its main constituents and other plant-based waxes with similar chemical structures, and thus similar potential for absorption, was also evaluated as part of the GRAS assessment. Studies conducted on carnauba wax, candelilla wax, beeswax, lanolin wax, and jojoba wax were identified and deemed suitable for inclusion in the safety assessment of rice bran wax.
- □ Subchronic toxicity and/or reproductive/developmental toxicity studies were identified for carnauba wax, candelilla wax, and jojoba oil. In each of the published studies on carnauba wax, the NOAEL was the highest dose level administered and ranged from 250 to 10,800 mg/kg/day, the highest of which was a concentration of 10% (equivalent to 8,800 and 10,200 mg/kg-bw/day in males and females, respectively) administered in the diet of rats for 90 days. Chronic studies with candelilla wax were also identified, and the NOAELs in these studies were also the highest dose tested, up to 2,400 mg/kg-bw-day.
- □ Given that rice bran wax contains little to no protein, which is the component responsible for imparting any allergic potential, rice bran wax is not likely to pose an allergenic risk.
- There is no concern with arsenic as the intake of total and inorganic arsenic from the intended use of rice bran wax is negligible and would not be expected to contribute to the background dietary intake.
- □ The intake analysis conducted by FDA resulted in EDIs below the JECFA ADI for carnauba wax of 0–7 mg/kg-bw/day, apart from the 90th percentile of

the 2- to 5-year-old age group. More accurate intake frequency data (e.g., surveys of longer durations) or a lower market share factor would likely result in an EDI for this group below the ADI. Regardless, an EDI marginally above the ADI for the 90th percentile of only one age group—2- to 5-year–olds—is of limited concern given the inherent over-conservatism in both the EDI calculations (i.e., incorporates any and all bar types) and the basis of the JECFA ADI determination developed for a lifetime exposure.

□ The publicly available scientific literature on the consumption and safety of both rice bran wax and carnauba wax is sufficient to support the safety and GRAS determination relative to the intended use and use level of rice bran wax as a texturizing agent in peanut butter used as an ingredient in nutrition and granola-type bar products.

We, the undersigned members of the Expert Panel, have individually and collectively critically reviewed the published and ancillary information pertinent to the identification, use, and safety of Smucker's rice bran wax product as described in the safety dossier titled **GRAS Determination of Rice Bran Wax for Use in Specified Food Products**. We conclude that the rice bran wax ingredient produced under the conditions described in the attached dossier and meeting the proposed specifications is safe.

We further unanimously conclude that the intended use of the rice bran wax as a texturizing agent in peanut butter used in nutrition and granola-type bar products at a maximum level of 3%, meeting the specifications described above, is Generally Recognized as Safe (GRAS) based on scientific procedures and that other experts qualified to assess the safety of foods and food additives, and critically evaluating the same information, would concur with these conclusions.

Michael Carakostas, DVM, PhD Consultant MC Scientific Consulting LLC Date

Stanley M. Tarka, Jr., PhD, F.A.T.S. Consultant Tarka Group, Inc.

Thomas Vollmuth, PhD Consultant Vollmuth and Associates, LLC Date

Date

We, the undersigned members of the Expert Panel, have individually and collectively critically reviewed the published and ancillary information pertinent to the identification, use, and safety of Smucker's rice bran wax product as described in the safety dossier titled **GRAS Determination of Rice Bran Wax for Use in Specified Food Products**. We conclude that the rice bran wax ingredient produced under the conditions described in the attached dossier and meeting the proposed specifications is safe.

We further unanimously conclude that the intended use of the rice bran wax as a texturizing agent in peanut butter used in nutrition and granola-type bar products at a maximum level of 3%, meeting the specifications described above, is Generally Recognized as Safe (GRAS) based on scientific procedures and that other experts qualified to assess the safety of foods and food additives, and critically evaluating the same information, would concur with these conclusions.

(b) (6)

Michael Carakostas, DVM, PhD Consultant MC Scientific Consulting LLC

Stanley M. Tarka, Jr., PhD, F.A.T.S. Consultant Tarka Group, Inc.

Date

1/12/17

Thomas Vollmuth, PhD Consultant Vollmuth and Associates, LLC Date

We, the undersigned members of the Expert Panel, have individually and collectively critically reviewed the published and ancillary information pertinent to the identification, use, and safety of Smucker's rice bran wax product as described in the safety dossier titled **GRAS Determination of Rice Bran Wax for Use in Specified Food Products**. We conclude that the rice bran wax ingredient produced under the conditions described in the attached dossier and meeting the proposed specifications is safe.

We further unanimously conclude that the intended use of the rice bran wax as a texturizing agent in peanut butter used in nutrition and granola-type bar products at a maximum level of 3%, meeting the specifications described above, is Generally Recognized as Safe (GRAS) based on scientific procedures and that other experts qualified to assess the safety of foods and food additives, and critically evaluating the same information, would concur with these conclusions.

Michael Carakostas, DVM, PhD Consultant MC Scientific Consulting LLC b) (6)

Stanley M. Tarka, Jr., PhD, F.A.T.S. Consultant Tarka Group, Inc. Date

why nor

Thomas Vollmuth, PhD Consultant Vollmuth and Associates, LLC Date

We, the undersigned members of the Expert Panel, have individually and collectively critically reviewed the published and ancillary information pertinent to the identification, use, and safety of Smucker's rice bran wax product as described in the safety dossier titled **GRAS Determination of Rice Bran Wax for Use in Specified Food Products**. We conclude that the rice bran wax ingredient produced under the conditions described in the attached dossier and meeting the proposed specifications is safe.

We further unanimously conclude that the intended use of the rice bran wax as a texturizing agent in peanut butter used in nutrition and granola-type bar products at a maximum level of 3%, meeting the specifications described above, is Generally Recognized as Safe (GRAS) based on scientific procedures and that other experts qualified to assess the safety of foods and food additives, and critically evaluating the same information, would concur with these conclusions.

Michael Carakostas, DVM, PhD Consultant MC Scientific Consulting LLC Date

Stanley M. Tarka, Jr., PhD, F.A.T.S. Consultant Tarka Group, Inc. Date

7/10/2017

Thomăs Vollmuth, PhD Consultant Vollmuth and Associates, LLC

10

11

References

Andersen, FA. 2006. Amended final report on the safety assessment of oryza sativa (rice) bran oil, oryza sativa (rice) germ oil, rice bran acid, oryza sativa (rice) bran wax, hydrogenated rice bran wax, oryza sativa (rice) bran extract, oryza sativa (rice) extract, oryza sativa (rice) germ powder, oryza sativa (rice) starch, oryza sativa (rice) bran, hydrolyzed rice bran extract, hydrolyzed rice bran protein, hydrolyzed rice extract, and hydrolyzed rice protein. International Journal of Toxicology, 25(Suppl 2), 91-120.

Australian Government. 2007. Australian Therapeutic Goods Administration (TGA). Substances that may be used in Listed medicines in Australia.

Burlando, B, Cornara, L. 2014. Therapeutic properties of rice constituents and derivatives (Oryza sativa L.): a review update. Trends in Food Science & Technology, 40(1), 82-98.

Cook, R. 2011. Tracking demographics and US fruit and vegetable consumption patterns. Department of Agricultural and Resource Economics, University of California, Davis.

European Food Safety Authority (EFSA). 2007. Beeswax (E 901) as a glazing agent and as carrier for flavours. Scientific Opinion of the Panel on Food additives, Flavourings, Processing aids and Materials in Contact with Food (AFC). The EFSA Journal (2007) 615, 1-28.

European Food Safety Authority (EFSA). 2012a. Scientific Opinion on the evaluation of the substances currently on the list in the Annex to Commission Directive 96/3/EC as acceptable previous cargoes for edible fats and oils – Part III of III. EFSA Journal 2012;10(12):2984.

European Food Safety Authority (EFSA). 2012b. Scientific Opinion on the re-evaluation of carnauba wax (E 903) as a food additive. EFSA Journal 2012;10(10):2880.

European Food Safety Authority (EFSA). 2012c. Scientific opinion on the re-evaluation of candelilla wax (E 902) as a food additive. EFSA Journal 10(11):2946.

Food and Drug Administration (US FDA). 2017. Memorandum: Dietary exposure estimate to rice bran wax. To: Administrative File, GRN 000655 in response to FOI Request No. 2017-4008.

Hargrove, JL, Greenspan, P, Hartle, DK. 2004. Nutritional significance and metabolism of very long chain fatty alcohols and acids from dietary waxes. Experimental Biology and Medicine, 229(3), 215-226.

Maru, AD, Surawase, RK, Bodhe, PV. 2012. Studies on Physico-Chemical Properties of Rice Bran Wax and its Comparison with Carnauba Wax. International Journal of Pharmaceutical and Phytopharmacological Research. 1(4), 203-207.

Orlich, MJ, Jaceldo-Siegl, K, Sabaté, J, Fan, J, Singh, PN, Fraser, GE. 2014. Patterns of

food consumption among vegetarians and non-vegetarians. British Journal of Nutrition, 112(10), pp.1644-1653.

Oser, BL, Ford, RA. 1977. Recent progress in the consideration of flavoring ingredients under the food additives amendment. 10. GRAS substances. Food Technol. 31(1):65–74.

Parent, RA, Re, TA, Babish, JG, Cox, GE, Voss, KA, Becci PJ. 1983. Reproduction and subchronic feeding study of carnauba wax in rats. Food and Chemical Toxicology 21:89-93.

Revolymer Limited. 2011. GRN No. 374; Maleated isoprenyl polymer with methoxypolyethylene glycol (MIP-MPEG). http://www.fda.gov/downloads/Food/IngredientsPackagingLabeling/GRAS/NoticeInvent

ory/ucm269568.pdf

Rowland, IR, Butterworth, KR, Gaunt, IF, Grasso, P, Gangolli, SD. 1982. Short-term toxicity study of carnauba wax in rats. Food and Chemical Toxicology 20, 467-471.

Sabale, V, Sabale, PM, Lakhotiya, CL. 2007. In vitro studies on rice bran wax as skin moisturizer. Indian J Pharmaceut Sci. 69(2):215.

Shumow L, Barraj LM, Murphy MM, Bi X, Bodor AR. 2012. Candy consumption in the United States. FASEB Journal 26:1005.3 (abstract).

Smith, JH, Mallett, AK, Priston, RA, Brantom, PG, Worrell, NR, Sexsmith, C, Simpson, BJ. 1996. Ninety-day feeding study in Fischer-344 rats of highly refined petroleumderived food-grade white oils and waxes. Toxicol Pathol. 24(2):214–230.