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Introduction Joint model for PSA kinetics Dynamic prediction Discussion

Time-to-event analysis

l Events are things that happen at a particular time

l Can be adverse (death, tumor recurrence) or positive (cure)

l Can be observed or non-observed (le�-censoring)

l Known as "survival analysis" in Statistics

m Xi = survival time for individual i

m Ci = censoring time (last observation time)
m Ti = mi n(Xi ,Ci )

m δi = IXi ≤Ci
: vital status indicator =

{
1 i f death
0 i f censor ed

m hi (t ) = l i md t→0P (t < Ti ≤ t +d t |Ti > t )
m Si (t ) = P (Ti > t ) = exp(−∫ t

0 hi (u)du)

l Proportional hazard model to assess the e�ect of a covariate Z:
hi (t ) = h0(t )∗exp(β×Zi )

Jérémie Guedj Mechanistic joint models 2 / 21



Introduction Joint model for PSA kinetics Dynamic prediction Discussion

Modeling longitudinal and survival data

Longitudinal data

l yi : vector of longitudinal measurements
l can be described by a nonlinear model

Time-to-event data

l Ti : observed event time

l δi : event indicator

=
{

1 if event observed
0 if event not observed

Two objectives

1 To characterize the (non-linear) kinetics of a biomarker in presence of a
time-to-event

2 To characterize the impact of this kinetics on a time-to-event
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How to assess the impact of a kinetics on
time-to-event ?

l Cox Model with a time-dependent
covariate

m Treat PSA as piecewise constant function
hi (t ) = h0 ∗exp(β×PS Aobs

i (t ))

m Is not valid for endogenous variables
m Requires data at all event times
m May cause spurious estimates (Prentice,

Biometrika 1982)
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How to assess the impact of a kinetics on
time-to-event ?

l Two stage approach

m Fit the PSA kinetics and plug the
predictions

m h(t ) = h0 ∗exp(β×PS A
pr ed
i (t ))

m Reduces but does not eliminate all the bias
(Dafni, Biometrics 1998)

m Does not properly handle informative
censoring
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Informative censoring

The probability to not observe the biomarker depends on current
(unobserved) biomarker value

l "Poor responders" are more likely to
drop out or to experience the event

l "Good responders" are
overrepresented as time goes by

Ù Sample is not representative

l Some parameters of kinetics will be identi�ed only in survivors
Õ Bias on survival parameters

• Tends to underestimate the impact of the dynamics on survival 1

• Underestimate standard error of the estimates
• Immortality bias when using metrics derived 2

Õ Bias on longitudinal parameters
• Seems to be limited 3

• BUT unrealistic diagnostic plots and simulations, including VPC

1 Desmée et al. (2017) Biometrics; Bjornsson et al. (2016) AAPS
Journal
2 Mistry et al. (2017) Bioarxiv)

3 Guedj et al (2010) Biometrics; Desmée et al. (2017)
Biometrics; Bjornsson et al. (2016) AAPS Journal
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Joint model

Ô 2 submodels:

Longitudinal part: Nonlinear mixed-e�ect models (NLMEM)

yi (t ) = log(X (t ,ψi )+1)+εi (t )

■ X : process of interest (PSA) possibly non-linear
■ ψi : individual longitudinal parameters
■ ei (t ): residual error

Survival part: Hazard function for patient i :

hi (t |ψi ) = h0(t )exp(β× f (t ,ψi )) for t Ê 0
Si (t |ψi ) = P (Ti ≥ t ) = exp

[−∫ t
0 hi (u|ψi )du

]
l Link function f depends on ψi and longitudinal model (eg.,

l og [PS A(t ,ψi )])
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Parameter estimation

Simultaneous estimation of the longitudinal and survival parameters
by maximization of the joint likelihood 4

Joint log-likelihood for a patient i :

LLi (θ) = log
∫

p(yi |ηi ;θ){hi (Ti |ηi ;θ)δi Si (Ti |ηi ;θ)}p(ηi ;θ)dηi

where

l θ vector of longitudinal and survival parameters to estimate
l ηi vector of random e�ects
l p density function of the longitudinal processus
l No closed-form for the LLi if the process is nonlinear
l SAEM algorithm of Monolix extended to joint models 5

4 Rizopoulos et al (2009) J. R. Stat. Soc. 5 Mbogning et al (2015) JSCS
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Data illustration

596 metastatic hormono resistant
patients from the control arm of a
phase 3 clinical trial treated with
the standard �rst-line
chemotherapy: docetaxel every 3
weeks and oral prednisone 6

l A training dataset of 400
randomly selected patients

Ô Development of a mechanistic
joint model

l A validation dataset of the 196
remaining patients

Ô Individual dynamic prediction

6

6 Tannock et al. (2013) Lancet Oncol.
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Mechanistic model for PSA kinetics

S

R

PSA

p

p

g

d

d

δ

αS

αR

e(t)

PSA is produced by 2 types of cells 7:
l Sensitive cells (S)

l Resistant cells (R)

Treatment initiation at time t=0
Ô Inhibition of the proliferation of S

e(t ) =
{

0 i f t É 0
ε i f t > 0


dS
d t =αS (1− S+R

Nmax
)S + g (R −S)−dS

dR
d t =αR (1− S+R

Nmax
)R + g (S −R)−dR

dPS A
d t = pS +pR −δPS A

7 Seruga et al (2011) Nat. Rev. Clin. Oncol.
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Mechanistic model for PSA kinetics

S

R

PSA

p

p

g

d

d

δ

αS

αR

e(t) For the sake of identi�ability

l δ, p and g �xed

Initial conditions:
At baseline = time of �rst PSA measurement

l PS Ab
l Sb = δ

p PS Ab

l Rb = g
d−RF×(g+d) × δ

p PS Ab

→ 6 model parameters with random e�ects:
αS , RF = αR

αS
, RE = d

αR
, ε, PS Ab , Nmax


dS
d t =αS (1−e(t ))(1− S+R

Nmax
)S + g (R −S)−dS
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d t =αR (1− S+R
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Comparison of different link functions

Survival part: Hazard function for patient i :

hi (t |PS A(t ,ψi )) = h0(t )exp( f (t ,ψi )) for t Ê 0

l Weibull baseline hazard function h0(t ) = k
λ

( t
λ

)k−1

l Link function f depends on PSA kinetics of patient i

m No link: f = 0
m Initial PSA: f =β log(PS A(0,ψi )+1)
m PSA: f =β log(PS A(t ,ψi )+1)

m PSA slope: f =βd log(PS A(t ,ψi )+1)
d t

m Area under PSA: f =β∫ t
0 log(PS A(u,ψi )+1)du

m S+R: f =β log(S(t ,ψi ))+β′ log(R(t ,ψi ))

ß Selection by BIC
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Results: Model selection

BIC and parameters estimates (r.s.e.(%)) of PSA kinetics and survival in the 400 patients
of the training dataset

No link Initial PSA PSA PSA slope Area under
PSA S+R

BIC 14598 14582 14446 14581 14575 14421
αS 0.066 (3) 0.060 (3) 0.078 (3) 0.078 (3) 0.061 (3) 0.067 (3)
RF 0.9997 (0) 0.9996 (0) 0.9998 (0) 0.9998 (0) 0.9997 (0) 0.9998 (0)
RE 0.81 (1) 0.79 (1) 0.84 (1) 0.84 (0) 0.79 (1) 0.82 (1)
ε 0.42 (4) 0.46 (4) 0.35 (4) 0.35 (5) 0.47 (4) 0.43 (3)

PS Ab 22.2 (8) 22.2 (8) 22.0 (8) 22.5 (8) 22.2 (8) 21.9 (8)
Nmax 56 (4) 57 (4) 81 (4) 77 (4) 57 (4) 120 (4)
λ 885 (4) 1615 (8) 4259 (15) 920 (4) 1435 (7) 906 (7)
k 1.52 (5) 1.53 (3) 1.28 (2) 1.48 (2) 1.19 (2) 1 (-)
β - 0.21 (12) 0.40 (7) 17 (17) 0.00023 (8) 0.00032 (21)
β′ - - - - - 0.39 (7)

ß S+R model: f (t ,ψi ) =β log(S(t ,ψi ))+β′ log(R(t ,ψi )) with a constant
baseline hazard function (k = 1) provided the smaller BIC
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Individual fits of PSA and hazard functions
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Prediction in the validation sample

Assumption: true joint model is known
Ô Population parameters θ used as priors
Ô Individual EBEs ψ̂i estimated using only the PSA measurements

Ô Mean survival function = 1
N

∑N
i=1 Si (t |ψ̂i , θ̂)

Jérémie Guedj Mechanistic joint models 14 / 21
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Dynamic predictions of a new individual

Ô Predict Si (s + t |s) =P(Xi > s + t |Xi > s,Yi (s)) the conditional survival probability
up to the prediction horizon s + t with t > 0

Assumption: true joint model is known
(simpli�ed, no ODE)
Ô Population parameters θ used as priors

For `= 1, ...,L = 200:

1 Draw in the a posteriori distribution of the
individual parameters
ψ(`)

i ∼ {ψi |Xi > s,Yi (s),θ} using
Halmitonian Monte Carlo in Stan

2 Compute S`i (s + t |s)

3 Ŝi (s + t |s) = medi an{S(`)
i (s + t |s)}`=1,...,L

+ 95% prediction interval

8 9

8 Rizopoulos, CRC press (2012) 9 Stan development team, Version 2.8.0 (2015)Jérémie Guedj Mechanistic joint models 15 / 21
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Ô Predict Si (s + t |s) =P(Xi > s + t |Xi > s,Yi (s)) the conditional survival probability
up to the prediction horizon s + t with t > 0

Assumption: true joint model is known
(simpli�ed, no ODE)
Ô Population parameters θ used as priors

For `= 1, ...,L = 200:

1 Draw in the a posteriori distribution of the
individual parameters
ψ(`)

i ∼ {ψi |Xi > s,Yi (s),θ} using
Halmitonian Monte Carlo in Stan
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Dynamic predictions for 2 patients
Patient 1 died at 24 months - Patient 2 was censored at 24 months
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Discrimination and calibration metrics

Discrimination: ability of the model to distinguish patients of low
and high risk of death

ß Area under the ROC curve (AUC)
AUC (s, t ) =
P(Si (s + t |s) < S j (s + t |s)|1{Xi<s+t } = 1,1{X j <s+t } = 0, Xi > s, X j > s)

The higher the better

Calibration: ability of the model to predict future events

ß Brier score (BS)
BS(s, t ) = E[(1{X>s+t } −S(s + t |s))2|X > s]

The lower the better
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Time-dependent AUC and Brier score

l s is the time of observation
("landmark")

l Metrics improve when s increase

l Here, s = 12 months provides the
best tradeo� between

m Follow-up duration
m Prediction accuracy

• AUC (12, t ) ' 0.75 ∀t

• BS(12, t ) É 0.21 ∀t
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Conclusion

l Joint models are needed to:
m characterize longitudinal processes in presence of informative

dropout
m assess the relationship between a longitudinal process and

time-to-event data

l Has long been limited to linear models
l Still technical di�culties

m Likelihood calculation burden
m Intrinsic limitations of fully parametric models (baseline hazard,

model for the association)
m Landmarking, joint latent class models, Bayesian approaches ?
m Model evaluation
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Future of joint models

l Bene�t for clinical decision making needs to be demonstrated
m Clinical trial simulation, in particular from phase 2 to phase 3
m Increase the power of studies BUT limitations due to a fully

parametric model & issue of surrogacy
m Competitive risks (new lesions, dropout) 10

m Improvement of early detection of phase 3 failure (underpowered,
lack of e�cacy on biomarker)

l Bene�t for patient care
m May improve treatment individualization
m Inspired from what is proposed in pharmacokinetics
m Early detection of most at risk’s patient BUT assessment will

require head to head evaluation through randomized clinical trial

10 Krol et al (2018) Stat in Med
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