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TIME-TO-EVENT ANALYSIS

e Events are things that happen at a particular time

e Can be adverse (death, tumor recurrence) or positive (cure)
e Can be observed or non-observed (left-censoring)

e Known as "survival analysis" in Statistics

O X; = survival time for individual i

O C; = censoring time (last observation time)

o T;=min(X;,C;)

1 ifdeath

0 ifcensored

o hi()=limg_oP(t<Ti<t+dt|T; >1t)
o Si(t)=P(T; > 1) =exp(— [y hi(wdu)

O 8 =Ix;<c;: vital status indicator = {

e Proportional hazard model to assess the effect of a covariate Z:
hi(2) = ho(t) = exp(f x Z;)
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MODELING LONGITUDINAL AND SURVIVAL DATA

Longitudinal data

e y;: vector of longitudinal measurements

e can be described by a nonlinear model
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MODELING LONGITUDINAL AND SURVIVAL DATA

Longitudinal data

e y;: vector of longitudinal measurements

e can be described by a nonlinear model

Time-to-event data

T;: observed event time

® §;: event indicator
_ [ 1 ifevent observed
“ 1 0 ifevent not observed
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MODELING LONGITUDINAL AND SURVIVAL DATA

PSA
+

Longitudinal data +

e y;: vector of longitudinal measurements + + +

e can be described by a nonlinear model +

Time-to-event data

T;: observed event time

® §;: event indicator
_ [ 1 ifevent observed
“ 1 0 ifevent not observed

5

Time since treatment initiation Ti

TWwO OBJECTIVES

@ To characterize the (non-linear) kinetics of a biomarker in presence of a
time-to-event

® To characterize the impact of this kinetics on a time-to-event
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How TO ASSESS THE IMPACT OF A KINETICS ON

TIME-TO-EVENT ?

e Cox Model with a time-dependent
covariate

O Treat PSA as piecewise constant function
hi(t) = hg * exp(B x PSA?bS(t))

O Is not valid for endogenous variables

O Requires data at all event times

O May cause spurious estimates (Prentice,
Biometrika 1982)
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How TO ASSESS THE IMPACT OF A KINETICS ON
TIME-TO-EVENT ?

e Two stage approach . ]';

O Fit the PSA kinetics and plug the ;oo_ ;
predictions %mo_ _‘g

O h(1) = ho*exp(p x PSAY"* (1) :

O Reduces but does not eliminate all the bias “7 i
(Dafni, Biometrics 1998) I 1 W ! -

O Does not properly handle informative ’ " enortesment ‘
censoring

JEREMIE GUED] MECHANISTIC JOINT MODELS 4/21



INTRODUCTION JOINT MODEL FOR PSA KINETICS DYNAMIC PREDICTION DiscussioN
000@e00 0000000 0000

INFORMATIVE CENSORING

The probability to not observe the biomarker depends on current
(unobserved) biomarker value
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e "Poor responders” are more likely to —
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INFORMATIVE CENSORING

The probability to not observe the biomarker depends on current
(unobserved) biomarker value

e "Poor responders” are more likely to —
drop out or to experience the event
e "Good responders" are
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INFORMATIVE CENSORING

The probability to not observe the biomarker depends on current
(unobserved) biomarker value

e "Poor responders" are more likely to
drop out or to experience the event :
e "Good responders"” are
overrepresented as time goes by
= Sample is not representative ; o

e Some parameters of kinetics will be identified only in survivors

— Bias on survival parameters
 Tends to underestimate the impact of the dynamics on survival 1
* Underestimate standard error of the estimates
* Immortality bias when using metrics derived 2
— Bias on longitudinal parameters
« Seems to be limited 3
» BUT unrealistic diagnostic plots and simulations, including VPC

1 Desmée et al. (2017) Biometrics; Bjornsson et al. (2016) AAPS 3 Guedj et al (2010) Biometrics; Desmée et al. (2017)
Tournal BRiometrics: Biornsson et al. (2016) AAPS Tournal
JEREMIE GUEDJ MECHANISTIC JOINT MODELS 5/21




INTRODUCTION JOINT MODEL FOR PSA KINETICS DYNAMIC PREDICTION DISCUSSION
000080 0000000 0000

JOINT MODEL

= 2 submodels:

LoNGITUDINAL PART: Nonlinear mixed-effect models (NLMEM)

yi() =log(X(t,w;) +1) +€i(0)

= X: process of interest (PSA) possibly non-linear
» ¥;: individual longitudinal parameters
m e;(1): residual error

SurvIvAL PART: Hazard function for patient i:

hi(tly;) = ho(t)exp(B x f(t, ;) fort=0
Si(tly) = P(T; = 1) = exp [~ [y hi(uly)du]

e Link function f depends on 1/; and longitudinal model (eg.,
log[PSA(t,w;)])
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PARAMETER ESTIMATION

Simultaneous estimation of the longitudinal and survival parameters
by maximization of the joint likelihood *

Joint log-likelihood for a patient i:
LL;(0) =log [ p(yi|n:;0){hi (TiIn:;0)% S: (TiIni; 0} pmi;0)dn;

where

0 vector of longitudinal and survival parameters to estimate
7n; vector of random effects

p density function of the longitudinal processus

No closed-form for the LL; if the process is nonlinear
SAEM algorithm of Monolix extended to joint models °

4 Rizopoulos et al (2009) J. R. Stat. Soc. 5 Mbogning et al (2015) JSCS
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DATA ILLUSTRATION

DISCUSSION

596 metastatic hormono resistant
patients from the control arm of a
phase 3 clinical trial treated with
the standard first-line
chemotherapy: docetaxel every 3
weeks and oral prednisone 6

PSA (ng.mL™")

Treatment

Days since the treatment initiation
e A training dataset of 400 Kaplan-Meier curve in the 400 patients
. from the training dataset

randomly selected patients -

- Development of a mechanistic

joint model %
3 Treatment
e A validation dataset of the 196 initiation -
P : I Median
remaining patients . 656.days

- . c e Days since treatment initiation
-> Individual dynamic prediction Y

6 Tannock et al. (2013) Lancet Oncol.
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d PSA is produced by 2 types of cells 7:
T ° SIe)nsitive cele (Silp
as C S p @ Resistant cells (R)
g ._6>
p

aR

48 —as1- )5+ g(R-9)-ds
4B = ap(1- §H)R+g(S-R) - dR
PSA

—adr =pS+pR—6PSA

7 Seruga et al (2011) Nat. Rev. Clin. Oncol.
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MECHANISTIC MODEL FOR PSA KINETICS

e(t Td PSA is produced bY 2 types of cells 7:
e Sensitive cells (S{
as S p @ Resistant cells (R)
g @ J Treatment initiation at time t=0
=> Inhibition of the proliferation of S
P
aR 0 ifr<0
elt) = € i f >0

48 —ag(l-e()(1- FR)S+ g(R- ) - dS
4B — ap(1- B )R+ g(S-R) - dR
dPSA — pS+ pR—6PSA

7 Seruga et al (2011) Nat. Rev. Clin. Oncol.
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MECHANISTIC MODEL FOR PSA KINETICS
e(t Td For the sake of identifiability
e §, pand g fixed

Initial conditions:
At baseline = time of first PSA measurement

e PSAy
o S,=5Psa,
_ g 5
® Rp= gpruggray X pPSAb

48 —ag(l—e() (- RS+ g(R- ) - dS
‘ji—_aR(l— AR )R+g(S R -dR
dESA —pS+pR 5PSA
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MECHANISTIC MODEL FOR PSA KINETICS
e(t Td For the sake of identifiability
e §, pand g fixed

Initial conditions:
At baseline = time of first PSA measurement

[ PSAb
o S,=5Psa,
_ g 5
® Rp= gpruggray X pPSAb

— 6 model parameters with random effects:
aS, RF: Z_f:’ RE: a;dR’ £, PSAI?: Nmax

48 —ag(l—e() (- RS+ g(R- ) - dS

4R — qp(1- 2R )R+ g(S-R - dR

Nmax

4ESA = pS+pR—-G5PSA
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COMPARISON OF DIFFERENT LINK FUNCTIONS

Survival PART: Hazard function for patient i:
hi((|PSA(t,v1) = ho(1) exp(f (t,¥1)) fort=0
e Weibull baseline hazard function hg(t) = % (%)k_l
e Link function f depends on PSA kinetics of patient i

= Selection by BIC
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Survival PART: Hazard function for patient i:
hi(t|PSA(t,v;)) = ho(t) exp(f (¢, ¥1) fort=0

e Weibull baseline hazard function hg(f) = % (%)k_l
e Link function f depends on PSA kinetics of patient i

o Nolink: f=0

o Initial PSA: f = Blog(PSA(0,w;) +1)
o PSA: f = Blog(PSA(t,y;) +1)

o PSA slope: f = ﬁ—dlog(})ssit’w")ﬂ)

= Selection by BIC
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COMPARISON OF DIFFERENT LINK FUNCTIONS

Survival PART: Hazard function for patient i:
hi(t|PSA(t,v;)) = ho(t) exp(f (¢, ¥1) fort=0

e Weibull baseline hazard function hg(f) = % (%)k_l

e Link function f depends on PSA kinetics of patient i
o Nolink: f=0

> Initial PSA: f = Blog(PSA(0,y;) +1)

PSA: f = Blog(PSA(f,y;) +1)

PSA slope: [ = ﬁ—dlog(})ssit’w”“)

Area under PSA: f = B [ log(PSA(u, ;) + du

o O O

o

= Selection by BIC
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COMPARISON OF DIFFERENT LINK FUNCTIONS

Survival PART: Hazard function for patient i:
hi(t|PSA(t,v;)) = ho(t) exp(f (¢, ¥1) fort=0

e Weibull baseline hazard function hg(f) = % (%)k_l

e Link function f depends on PSA kinetics of patient i
o Nolink: f=0

> Initial PSA: f = Blog(PSA(0,y;) +1)

PSA: f = Blog(PSA(f,y;) +1)

PSA slope: [ = ﬁ—dlog(})ssit’w”“)

Area under PSA: f = B [ log(PSA(u, ;) + du
S+R: f = Blog(S(t,y)) + B'log(R(t,v1))

o o0 O 0 O

= Selection by BIC
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DISCUSSION

BIC and parameters estimates (r.s.e.(%)) of PSA kinetics and survival in the 400 patients
of the training dataset

Area under

No link Initial PSA PSA PSA slope PSA S+R

BIC 14598 14582 14446 14581 14575 14421
ag 0.066 (3) 0.060 (3) 0.078 (3) 0.078 (3) 0.061 (3) 0.067 (3)
RE  0.9997 (0) 0.9996 (0) 0.9998 (0) 0.9998 (0) 0.9997 (0) 0.9998 (0)
RE 0.81 (1) 0.79 (1) 0.84 (1) 0.84 (0) 0.79 (1) 0.82 (1)

€ 0.42 (4) 0.46 (4) 0.35 (4) 0.35 (5) 0.47 (4) 0.43 (3)
PSA,  22.2(8) 22.2 (8) 22.0 (8) 22.5 (8) 22.2 (8) 21.9 (8)
Nmax 56 (4) 57 (4) 81 (4) 77 (4) 57 (4) 120 (4)
1 335 (4) 1615 (8) 4259 (15) 920 (4) 1435 (7) 906 (7)
k 1.52 (5) 153 (3) 1.28 (2) 1.48 (2) 1.19 (2) 1()

i - 0.21 (12) 0.40 (7) 17 (17) 0.00023 (8) 0.00032 (21)
B - - - - - 0.39 (7)
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RESULTS: MODEL SELECTION

BIC and parameters estimates (r.s.e.(%)) of PSA kinetics and survival in the 400 patients
of the training dataset

No link Initial PSA PSA PSA slope Are;S“:der S+R

BIC 14598 14582 14446 14581 14575 14421
a5 0.066 (3) 0.060 (3) 0.078 (3) 0.078 (3) 0.061 (3) 0.067 (3)
RE 09997 (0) 09996 (0)  0.9998 (0)  0.9998 (0) 0.9997 (0) 0.9998 (0)
RE 0.81 (1) 0.79 (1) 0.84 (1) 0.84 (0) 0.79 (1) 0.82 (1)

€ 0.42 (4) 0.46 (4) 0.35 (4) 0.35 (5) 0.47 (4) 0.43 (3)
PSA,  22.2(8) 22.2 (8) 22.0 (8) 22.5 (8) 22.2 (8) 21.9 (8)
Npax 56 (4) 57 (4) 81 (4) 77 (4) 57 (4) 120 (4)
1 885 (4) 1615 (8) 4259 (15) 920 (4) 1435 (7) 906 (7)

k 1.52 (5) 153 (3) 1.28 (2) 1.48 (2) 1.19(2) 10)

i - 0.21 (12) 0.40 (7) 17 (17) 0.00023 (8) 0.00032 (21)
i - - - - - 0.39 (7)

= S+R model: f(t,1;) = Blog(S(t,v;)) + B'log(R(¢,v;)) with a constant
baseline hazard function (k = 1) provided the smaller BIC
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INDIVIDUAL FITS OF PSA AND HAZARD FUNCTIONS
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PREDICTION IN THE VALIDATION SAMPLE

Assumption: true joint model is known
=> Population parameters 6 used as priors
- Individual EBEs {r; estimated using only the PSA measurements

= Mean survival function = % }:fil S,-(th?l-,é)

Survival

0.0 02 04 06 08 1.0

0 500 1000 1500

Time since treatment initiation (days)
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DYNAMIC PREDICTIONS OF A NEW INDIVIDUAL

Assumption: true joint model is known
(simplified, no ODE)

=> Population parameters 0 used as priors
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DYNAMIC PREDICTIONS OF A NEW INDIVIDUAL

Assumption: true joint model is known

K K <
(simplified, no ODE) e1Yi(s)
3
=> Population parameters 0 used as priors +
%

©

2

2
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Xi >s

Landmark time s
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DYNAMIC PREDICTIONS OF A NEW INDIVIDUAL

=> Predict S;(s+ t|s) = P(X; > s+ t|X; > 5,%;(s)) the conditional survival probability
up to the prediction horizon s+ ¢ with £>0 J

Assumption: true joint model is known

. . <
(simplified, no ODE) $1Yi(s)
=> Population parameters 0 used as priors \

©

2

2

a

Xi >s

Landmark time s
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DYNAMIC PREDICTIONS OF A NEW INDIVIDUAL

=> Predict S;(s+ t|s) = P(X; > s+ t|X; > 5,%;(s)) the conditional survival probability
up to the prediction horizon s+ ¢ with £>0 J

Assumption: true joint model is known
(simplified, no ODE)

PSA

Y;(s)
=> Population parameters 0 used as priors \
For¢=1,...,L=200:

@ Draw in the a posteriori distribution of the
individual parameters

v'O ~ i1X; > 5,9;(5),0} using

Halmitonian Monte Carlo in Stan

Survival

Xi >s
® Compute Sf(s+ tls)

Landmark time s
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DYNAMIC PREDICTIONS OF A NEW INDIVIDUAL

=> Predict S;(s+ t|s) = P(X; > s+ t|X; > 5,%;(s)) the conditional survival probability

up to the prediction horizon s+ ¢ with £>0

DISCUSSION

J

Assumption: true joint model is known
(simplified, no ODE)

=> Population parameters 0 used as priors
For¢=1,...,L=200:

@ Draw in the a posteriori distribution of the
individual parameters
v'O ~ i1X; > 5,9;(5),0} using
Halmitonian Monte Carlo in Stan

® Compute Sf(s+ tls)
@ 3(s+1ls) = medianis\" (s + tls) ooy, 1
+ 95% prediction interval
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DYNAMIC PREDICTIONS FOR 2 PATIENTS

PATIENT 1 DIED AT 24 MONTHS - PATIENT 2 WAS CENSORED AT 24 MONTHS
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DYNAMIC PREDICTIONS FOR 2 PATIENTS

PATIENT 1 DIED AT 24 MONTHS - PATIENT 2 WAS CENSORED AT 24 MONTHS
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DISCRIMINATION AND CALIBRATION METRICS

Discrimination: ability of the model to distinguish patients of low
and high risk of death

Calibration: ability of the model to predict future events
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DISCRIMINATION AND CALIBRATION METRICS

Discrimination: ability of the model to distinguish patients of low
and high risk of death

= Area under the ROC curve (AUC)

AUC(s, 1) =

P(Si(s+t]s) <Sj(s+ bl px;<s+n = L Lixj<s4 = 0,Xi > 5, X > 3)
The higher the better

Calibration: ability of the model to predict future events

JEREMIE GUEDJ MECHANISTIC JOINT MODELS 17/ 21



L FOR PSA KINETICS DYNAMIC PREDICTION
0000

DISCRIMINATION AND CALIBRATION METRICS

Discrimination: ability of the model to distinguish patients of low
and high risk of death

= Area under the ROC curve (AUC)

AUC(s, 1) =
P(Si(s+t]s) <Sj(s+ bl px;<s+n = L Lixj<s4 = 0,Xi > 5, X > 3)

The higher the better

Calibration: ability of the model to predict future events

= Brier score (BS)
BS(s,8) =E[(Lixss+1 — S(s+ £]9))%1 X > ]

The lower the better
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CONCLUSION

e Joint models are needed to:

o characterize longitudinal processes in presence of informative
dropout

o assess the relationship between a longitudinal process and
time-to-event data

e Has long been limited to linear models
e Still technical difficulties

o Likelihood calculation burden

o Intrinsic limitations of fully parametric models (baseline hazard,
model for the association)

o Landmarking, joint latent class models, Bayesian approaches ?

o Model evaluation
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FUTURE OF JOINT MODELS

e Benefit for clinical decision making needs to be demonstrated

o Clinical trial simulation, in particular from phase 2 to phase 3

o Increase the power of studies BUT limitations due to a fully
parametric model & issue of surrogacy

o Competitive risks (new lesions, dropout) 1°

o Improvement of early detection of phase 3 failure (underpowered,
lack of efficacy on biomarker)

e Benefit for patient care

O May improve treatment individualization

o Inspired from what is proposed in pharmacokinetics

o Early detection of most at risk’s patient BUT assessment will
require head to head evaluation through randomized clinical trial

10 Krol et al (2018) Stat in Med
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