Eversense® Continuous Glucose Monitoring (CGM) System

March 29, 2018

Senseonics, Inc.

Clinical Chemistry and Clinical Toxicology Device Panel

Introduction

Mukul Jain, PhD

Chief Operating Officer

Senseonics, Inc.

Eversense Continuous Glucose Monitoring (CGM) System

90-day Implantable Sensor subcutaneous

Removable Transmitter worn over skin

Mobile Application handheld device

Proposed Indication for Use

- For continually measuring glucose levels in adults (age ≥ 18) with diabetes for operating life of sensor
- System provides:
 - Real-time glucose readings
 - Glucose trend information
 - Alerts for detection and prediction of episodes of low blood glucose (hypoglycemia) and high blood glucose (hyperglycemia)
- Adjunctive device to complement, not replace, information obtained from standard home blood glucose monitoring devices

System Components: Sensor

- Inserted into upper arm
- Lasts up to 90 days
- Measures glucose every 5 min
- Silicone collar containing 1.75 mg dexamethasone acetate (DXA)
 - Reduce inflammation around sensor

Sensor Technology Based on Fluorescence

System Components: Transmitter

- Calculates glucose values and trends
- Worn externally over inserted sensor
- Secured with adhesive patch
- Vibrates for alerts and notifications
- Rechargeable

System Components: Mobile Medical Application

- Displays glucose information from transmitter
 - Values and trends
 - Alerts and notifications
- Runs on smartphone
- Reminds user to calibrate (2x/day)
- Option to upload data to Senseonics' Data Management System

Multiple Alert Types to Ensure Safety

Threshold

Identify glucose levels below or above pre-set values

Predictive

 Signal when alert level is expected to be crossed in immediate future (e.g. 10 minutes prior)

Rate of change

 Identify rising or falling glucose exceeding pre-set rate of change

Vibratory, Visual, and Audio Alerts

- Transmitter vibrates whether mobile app is active or in vicinity
- Unique vibration patterns
- Audible alert AND visual message on handheld device

Sensor Inserted in Upper Arm During Simple, Office-Based Procedure

- Sensor inserted/removed by HCP
- Brief, office-based procedure
- Custom insertion tools
- Procedure:
 - Skin anesthetized and disinfected
 - Small incision in upper arm
 - Blunt dissector creates subcutaneous pocket
 - Sensor transferred to pocket
 - Similar removal procedure

Eversense System Regulatory Status

- CE Mark received May 2016
- Available in 14 countries
- 1686 patients commercially
 - 2386 insertions
 - Up to 7 sequential sensors
- PMA submitted to FDA in October 2016

Clinical Program: 2224 Patients

FDA Discussion Topics: Design Changes

- Design changes since PRECISE II
 - Transmitter
 - Glucose algorithm
 - Sensor end cap
 - Blunt dissector tool
- Study results establish Eversense is safe and effective
- Changes are incremental in nature
 - Continuous improvement in design

Design Changes: Transmitter

Generation 1
PRECISE II + PRECISION

- More ergonomic design
 - Thinner
 - Lighter
 - Less obtrusive
- Water-resistant
- Passed verification and validation testing
- Extensive EU commercial experience

Design Changes: Glucose Algorithm

- Glucose algorithm updated to improve performance in
 - Early sensor wear
 - Hypoglycemic range
- Raw sensor data independent of algorithm in transmitter

- Algorithm developed with data from EU pivotal study (PRECISE)
- Post hoc processing of US data collected with SW 602
- Eversense performance accurate and reliable with Study SW and SW 602

FDA Discussion Topics: Sensor Accuracy

- Amount of data relative to sensor life (90 days)
- Accuracy in early wear period

PRECISE II: Eversense System is Highly Accurate

- Demonstrated accuracy
 - 8.5% mean absolute relative difference (MARD)
 - 87% of readings within 15 mg/dL or 15% of reference
- Excursions consistently detected
 - 96% of hypoglycemic excursions*
 - 98% of hyperglycemic excursions*
- Duration of use
 - 91% of sensors functioned for 90 days

Eversense System is Safe

- No device-related SAEs
 - 1 procedure-related SAE through 90 days post-insertion
- No unanticipated AEs
- Low rate of infections and adhesive patch skin reactions
- AEs consistent with other CGMs and subcutaneous implants

Repeat Sensor Use is Safe

- Risk analysis
 - Risks are consistent, predictable, can be mitigated
 - Single insertion characterizes impact, 90-day use, removal, and healing
- Clinical study results
 - Device and insertion/removal procedure are safe
 - Nominal/complete healing following sensor removal
- Post-marketing studies of repeat use
 - EU Registry (1686 patients, up to 7 sequential sensors)
 - Repeat sensor not associated with increased AEs

Agenda

Unmet Need	Jeremy H. Pettus, MD University of California at San Diego		
Study Design	Tim Goodnow, PhD		
Effectiveness	Senseonics, Inc.		
Safety	Lynne Kelley, MD, FACS Senseonics, Inc.		
Post-approval / Training			
Clinical Perspective	Steven J. Russell, MD, PhD Harvard Medical School		

Additional Experts

- Clinical Pharmacology
 Nicholas Fleischer, RPh PhD
 Vice President
 Clinical Pharmacology and Biopharmaceutics
 The Weinberg Group
- Statistics
 Richard Holcomb, PhD
 Consultant
- Study Conduct
 Katherine Tweden, PhD
 Senseonics, Inc.

- Dermatology
 Howard I. Maibach, MD
 Dermatologist
 Professor of Dermatology
 University of California, San Francisco
- Pathology
 Renu Virmani, MD FACC
 President
 CVPath Institute

Unmet Need

Jeremy H. Pettus, MD

Assistant Professor of Medicine

Endocrinology, Diabetes and Metabolism

University of California, San Diego (UCSD)

CGM Overview

- CGM benefits
 - Improved overall glucose control → lower HbA1c levels
 - Increased time spent within normal glucose range
 - Improved quality of life
- CGM use supported by society guidelines*
- Greatly underutilized

Intermittent Monitoring with Home Blood Glucose Meter Leads to Unnoticed Highs and Lows

Maximum A1c Improvement with Regular CGM Use

CGM Protects Against Severe Hypoglycemia

CGM Systems Are Underutilized: 76% of Patients Do Not Use CGM

27% of Patients Discontinue CGM Use Within 1 Year

Reason	N=262	
CGM not working properly / accurate enough	71%	
Problems with adhesive/insertion	61%	
Too expensive / not covered by insurance	58%	
Uncomfortable to wear	41%	
Using pump / don't want two sites on body	33%	
CGM too big	28%	

Advancements Needed in CGM Systems

- Longer sensor life
- Less frequent sensor insertions
 - Current systems require 25–50 replacements/year
- Easy to wear and easily removed
 - For physical activities or discretion

Natural Evolution of Sensor Technology: Longer-Lasting, Less Intrusive

- Proven clinical benefit
- Many patients have not adopted CGM technology or quickly abandon it
- Patients missing opportunity to improve diabetes status and quality of life
- Need more CGM options to increase patient access

Study Design and Effectiveness

Tim Goodnow, PhD

Chief Executive Officer

Senseonics, Inc.

Eversense Clinical Program

Study	Duration	Patients	Sites	Role
PRECISE II	90 days	90	8 US	Pivotal
PRECISION	90 days	35	3 US	Supportive
PRECISE	180 days	81	7 EU	Supportive
European Patient Registry (ongoing)	2 years	1686	350 EU	Post-market
Feasibility Studies	Varied	332	10	Pilot
Total		2224		

PRECISE II: Pivotal Study Design

- Non-randomized, single-arm, multi-center study
- N=90 patients
 - n=75 one sensor inserted
 - n=15 two sensors inserted (one in each arm)
- Sensors calibrated 2x/day using home glucose meter
- Glucose readings and high/low alerts were blinded during study

PRECISE II: Pivotal Study Schedule

^{*}Meal, exercise, compression challenges

PRECISE II: Primary Endpoint Based on MARD

- Mean absolute relative difference (MARD)
 - Compares sensor reading with reference glucose
 - Smaller MARD = higher accuracy
- Percent of sensor values within 15 mg/dL or 15% of reference

PRECISE II: Additional Effectiveness Characterization

- Sensor accuracy across 90 days of use
- Agreement of sensor readings within accuracy limits
- High and low glucose alert performance
- Impact of compression
- Paired precision
- Kaplan-Meier analysis of sensor life
- Method comparison, bias analysis, Clarke & Consensus Error Analysis

PRECISE II: Key Enrollment Criteria

- Adults diagnosed with diabetes mellitus for at least 1 year
- No severe hypoglycemia within last 6 months
- No diabetic ketoacidosis requiring hospitalization within 6 months

PRECISE II Demographics: Representative Study Sample

Parameter		N=90
Sex	Male	60%
Age	Mean	45 years
	Caucasian	86%
Paga	Black or African American	8%
Race	Asian	3%
	Other	3%
Body Mass Index	Mean	29 kg/m²
Glycosylated Hemoglobin (HbA1c)	Mean	7.6%
Time since diabetes diagnosis	Mean	20 years
Diabataa tura	Type 1	68%
Diabetes type	Type 2	32%
	Continuous insulin infusion pump	48%
Type of insulin therapy	Multiple daily injections	27%
	None (Type 2, not on insulin)	22%
	Other (long-acting insulin only)	3%

PRECISE II: Disposition

PRECISE II: Primary Effectiveness Endpoint Met Using Study Software

Software Version	Unique Patients N	Paired Values N	Mean Absolute Relative Difference (95% CI)	p-value
Study SW	90	15,704	8.8% (8.3%, 9.4%)	< 0.0001

PRECISE II: Primary Effectiveness Endpoint Met Using SW 602

Software Version	Unique Patients N	Paired Values N	Mean Absolute Relative Difference (95% CI)	p-value
SW 602	90	15,753	8.5% (8.0%, 9.1%)	< 0.0001

PRECISE II: Sensor Accurate through 90 Days of Use

Eversense Clinical Program

Study	Duration	Patients	Sites	Role
PRECISE II	90 days	90	8 US	Pivotal
PRECISION	90 days	35	3 US	Supportive
PRECISE	180 days	81	7 EU	Supportive
European Patient Registry (ongoing)	2 years	1686	350 EU	Post-market
Feasibility Studies	Varied	332	10	Pilot
Total		2224		

PRECISION Study Design

^{*}Meal challenges; Overnight challenges were performed on Days 7 and 14

PRECISION Differences from PRECISE II

- 3 US sites
- 35 patients with sensors inserted
 - 27 patients had 2 sensors inserted
- Unblinded sensor glucose values and active high/low alerts

PRECISION: Sensor Accurate over 90 Days of Use

SW 602 0 20 40 60 80 100

Accuracy Comparison with Approved CGMs through Sensor Life

	Data		Percent o	f System	Readings	Within 1	5/15% of F	Reference	
Device	Source	Day 1	Day 3-4	Day 7	Day 10	Day 14	Day 30	Day 60	Day 90
Eversense	PRECISE II	77%					91%	87%	85%
(SW 602)	PRECISION	79%		86%		88%	88%	87%	84%
Dexcom G5*		77%	89%	90%					
Medtronic Guardian (3)*‡		68%	87%	82%					
FreeStyle Libre*		76%	82%	85%	85%				

^{*} Summary of Safety and Effectiveness Data (SSED) - Medical Device Databases - http://www.fda.gov

[‡] Results based on calibration every 12 hours

Accurate Detection of Glucose Excursions

	PRECISE II		PREC	ISION
Alert Setting	Detection Rate	False Alert Rate	Detection Rate	False Alert Rate
Low Glucose Alert at 70 mg/dL*	96%	16%	95%	8%
High Glucose Alert at 180 mg/dL*	98%	7%	99%	7%

PRECISE II and PRECISION: Eversense Sensor Longevity

- PRECISE II: KM survival probability of 91% at Day 90
- PRECISION: All sensors functioned 90 days

PRECISE II and PRECISION: System Adherence

	PRECISE II	PRECISION
Median wear time	23.4 hours	23.4 hours
% transmitters worn > 20 hours/day	87%	91%

Effectiveness Summary: Eversense is Accurate for 90 Days

- PRECISE II: 87% of sensor readings with 15/15% of reference
- PRECISION: 85% of sensor readings with 15/15% of reference
- Accurate at each measured time point
- No degradation of sensor performance
 - 91% of sensors function through 90 days
 - "Sensor Replacement" alert appropriately produced
- Over 95% detection rates for glycemic excursions
 - High (180 mg/dL) and low (70 mg/dL) glucose

Clinical Safety

Lynne Kelley, MD, FACS

Chief Medical Officer

Senseonics, Inc.

Overview of Safety Profile

- Eversense system has acceptable safety profile
 - Similar to other marketed CGM systems
- Procedural risks of implantable sensor mitigated
 - Device design, training, and continued improvements based on post-market surveillance
- Eversense reduces some known risks associated with other CGM systems

Eversense Clinical Program

Study	Duration	Patients	Sites	Role
PRECISE II	90 days	90	8 US	Pivotal
PRECISION	90 days	35	3 US	Supportive
PRECISE	180 days	81	7 EU	Supportive
European Patient Registry (ongoing)	2 years	1686	350 EU	Post-market
Feasibility Studies	Varied	332	10	Pilot
Total		2224		

PRECISE II and PRECISION: Device Exposure

	PRECISE II	PRECISION
Sensors inserted and removed	106 sensors (90 patients)	62 sensors (35 patients)
Procedures performed	212 procedures	124 procedures
Sensor use (mean duration)	92.2 days	91 days
Sensor exposure	9,773 days	6,148 days

PRECISE II and PRECISION: Primary Safety Endpoint

 Incidence of device-related or insertion/removal procedurerelated serious adverse events (SAEs) at any point during sensor use

PRECISE II and PRECISION: Additional Safety Analyses

- Non-serious related adverse events
- AEs of special interest
 - e.g. infection, adhesive reactions
- Dexamethasone exposure over time

PRECISE II and PRECISION: Serious Adverse Events (SAEs)

PRECISE II

- No device-related SAEs
- One procedure-related SAE reported
 - Sensor removal sensor unsuccessful (with and without ultrasound)
 - Sensor successfully removed by surgeon under general anesthesia

PRECISION

- No device- or procedure-related SAEs
 - 3 unrelated SAEs
 - Gastroenteritis, hypoglycemic episode, cellulitis of left foot

PRECISE II and PRECISION: Device- or Insertion/Removal-Related AEs

	PREC	ISE II	PREC	ISION
		Patients		Patients
Adverse Event	Events	N=90	Events	N=35
All Events	14	7	8	5
Pain/discomfort	4	2	2	2
Bruising	2	2		
Erythema	2	2		
Device fragment not recovered	2	2		
Syncope	1	1		
Tingling	1	1		
Delayed report of pain	1	1		
Secondary procedure to remove sensor	1	1	2	1
Dermatitis at patch location			2	1
Skin hyperpigmentation			2	1

PRECISE II: Two Events Related to Device Fragment

- All removed sensors returned to sponsor for inspection
- 2 devices did not have cap upon return
- Corrective and preventative action plan implemented
 - Implementing enhanced quality procedures (cap adhesion)
- Cap material: PMMA highly biocompatible, permanent implant
 - Orthopedic, dental, and ophthalmologic
- Cap size: 3.2 mm x 0.8 mm

PRECISE II and PRECISION: Additional Safety Outcomes

- No infections
- All related AEs considered expected and common for subcutaneous implant
- All related AEs resolved fully

Role of Dexamethasone-Eluting Silicone Collar

- Contains 1.75 mg dexamethasone acetate (DXA)
 - Water-insoluble corticosteroid
 - Reduces local inflammatory response
 - Extends sensor life
- Controlled and slow DXA release
 - < 3 μg/day to local tissue
 - < 300 µg delivered over entire 90 days</p>

Impact of Dexamethasone Exposure

- Blood assayed for DXA to 50 pg/mL level
 - No detectable plasma levels of DXA observed
 - No systemic effects
- DXA collars examined after removal
 - Minimal DXA exposure confirmed 3 µg/day
- 2 events of transient hyperpigmentation
 - Resolved upon sensor removal

Eversense Clinical Program

Study	Duration	Patients	Sites	Role
PRECISE II	90 days	90	8 US	Pivotal
PRECISION	90 days	35	3 US	Supportive
PRECISE	180 days	81	7 EU	Supportive
European Patient Registry (ongoing)	2 years	1686	350 EU	Post-market
Feasibility Studies	Varied	332	10	Pilot
Total		2224		

Integrated Device Exposure

- Three multi-center studies
 - PRECISE II, PRECISION, and PRECISE
- 206 subjects
- 335 sensors
- 670 insertion/removal procedures
- 22,529 patient-days of sensor wear

Integrated Summary of Related Adverse Events

Adverse Event	Events	Patients N=206
All Events	41	26 (13%)
Pain/discomfort	10	8 (4%)
Redness/erythema	6	6 (3%)
Secondary procedure to remove sensor	4	3 (1%)
Infection	3	3 (1%)
Bruising/hematoma	3	3 (1%)
Device fragment not recovered	2	2 (1%)
Dermatitis at patch location	3	2 (1%)
Skin hyperpigmentation	2	1 (< 1%)

Low Rate of Infections Observed in Studies

- Aggregate infection rate 1%
- Improved incision care instructions
 - PRECISE: leave bandage for 24 hours
 - PRECISE II: leave bandage for 48 hours
- Infection rate observed is below literature reports for similar implants and minor procedures: 2–4%*

^{*}Buprenorphine, Braeburn Pharmaceuticals, Inc.

^{*}http://www.worldwidewounds.com/2005/september/Gottrup/Surgical-Site-Infections-Overview.html

Eversense Clinical Program

Study	Duration	Patients	Sites	Role	
PRECISE II	90 days	90	8 US	Pivotal	
PRECISION	90 days	35	3 US	Supportive	
PRECISE	180 days	81	7 EU	Supportive	
European Patient Registry (ongoing)	2 years	1686	350 EU	Post-market	
Feasibility Studies	Varied	332	10	Pilot	
Total		2224			

European Patient Registry

- All patients inserted commercially enrolled in registry
 - Enrollment completed when 100 patients reach 4 insertions
- All patients enrolled to be followed through 8 insertions and removals

Low Rate of AEs with Repeat Insertions

	Post Insertion #							
Events, n (%)	1 N=1686	2 N=443	3 N=143	4 N=58	5 N=39	6 N=14	7 N=3	
SAEs	0	0	0	0	0	0	0	
Device-, procedure-related AEs								
Infection (at sensor site)	8 (0.5%)	4 (1%)	2 (1%)	-	-	-	-	
Secondary procedure to remove sensor	7	2	-	-	-	-	-	
Adhesive patch site irritation	5	-	2	-	-	-	-	
Prolonged wound healing	3	-	-	-	-	-	-	
Redness/reaction to dressing	3	-	-	-	-	-	-	
Sensor broke during removal	3	-	-	-	-	-	-	
Skin atrophy over sensor w/ skin discoloration	2	1	-	-	-	-	-	
Skin atrophy over sensor	1	-	-	-	-	-	-	
Skin discoloration	1	2	-	-	-	-	-	
Sensor site pain/discomfort	1	-	-	-	-	-	-	
Bruising	1	1	-	1	-	-	-	
Patient fainted during procedure	1	-	-	-	-	-	-	
Hematoma	-	-	-	1	-	-	-	

Proposed Post-Approval Study

Proposed U.S. Post Approval Study Design

- Serial sensor insertions and removals for 2 years
- 175 patients in up to 20 clinical sites
- Primary safety endpoint
 - Rate of device-related and insertion/removal procedure-related
 SAEs through 12 months ≤ 7%
- Primary effectiveness endpoint
 - Time in range (between 70 mg/dL and 180 mg/dL),
 12 months vs. first month

Proposed U.S. Post Approval Study: Other Outcome Measures

- All related AEs through 2 years
- Plasma dexamethasone levels every 6 months
- Effectiveness of training program
 - Success rate of insertions/removals
- Diabetes distress scale and CGM satisfaction scale
 - Baseline and annually

Design Changes

- Sensor end cap
- Blunt dissector tool

Sensor End Cap Improvement

- End cap redesigned to be flush with end of sensor
- Design verification
 - Compressive forces
 - Torque
 - Maintains functional compatibility with insertion tool

Blunt Dissector Design Improvement

- Same function
- Consistent placement facilitates removal
 - Proper entry angle
 - Pocket depth / length
 - Parallel to skin
- Validated with Human Factors testing

Training for Clinicians

Training Program Overview

- Mandatory comprehensive training
- Certification process led by Senseonics approved trainers
 - ✓ Didactic session
 - Practices with simulated skin
 - ✓ Initial insertions and removals are observed

Training resources:

- CGM Sensor Insertion and Removal Instructions
- Insertion videos
- Removal videos
- Simulation station
- Procedure poster
- Take-home instructions

Training Checklist for Certification

Hands-On Practice Session with Simulated Skin, Sterile Field, and Required Supplies

Examples of Training Materials

Trained Providers Outside U.S.

- 461 clinicians trained on insertions
 - 94% certified to do insertions independently
- 258 clinicians trained on removals
 - 86% certified to do removals independently

Europe: Successful Insertion and Removal Training

- Procedure easily learned by physicians with no prior Eversense experience
- 99% of removals successful on first attempt
- Low infection rate (0.5%)

PRECISE II and PRECISION: Successful Insertion and Removal Training

- 100% of insertions and 99% of removals successful on first attempt
- 91% of insertions and 80% of removals completed in < 5 min

	Insertion N=168	Removal N=168
Mean time	2.3 min	4.5 min

Eversense System Has Acceptable Safety Profile

- No unanticipated adverse events
- Limited AEs related to device or procedure
 - All AEs reported resolved fully
 - No Infections in US clinical trials
 - No detectable blood levels of dexamethasone
- One procedure-related SAE, resolved
- No device-related SAEs
- Eversense is safe for intended use

Clinical Perspective / Benefit-Risk

Steven J Russell, MD, PhD

Associate Professor of Medicine

Harvard Medical School

Relevant CGM Experience

- Experience with all currently approved CGMs (since 2004)
 - Published accuracy comparison studies of CGMs
- Developing bionic pancreas
 - Depends on CGM accuracy and reliability
 - Motivates interest in new CGM technologies
- Clinical investigator in artificial pancreas trials
 - Used Eversense system
 - Inserted and removed sensors
 - Trained quickly

Current Situation: Majority of Patients Do Not Meet Glycemic Goals

- 70% not at A1c targets*
 - Hypoglycemia still very common
- CGM systems are proven to help
 - Improve glucose control
 - Lower risk of hypoglycemia
 - Improve patients' lives

The Current Situation: Only 3 Out of 10 Patients with T1D Use CGM

- Perceived burden of repeat insertion
- Fear of pain

The Current Situation: 1 out of 3 CGM Users Discontinue within 1 Year

- Problems with adhesive / insertion
- Uncomfortable

Eversense Addresses Many Barriers to CGM Use

- Longer sensor life (90 days)
- Less frequent sensor insertions
 - Eversense: 4 times per year
 - Current systems: 25–50 times per year
- Easy to wear and easily removed
 - For physical activities or discretion
- On-body vibration from transmitter provides extra safety measure

The Goal: Increase Use of CGM

- Improve glucose control
- Lower risk of hypoglycemia

Eversense® Continuous Glucose Monitoring (CGM) System

March 29, 2018

Senseonics, Inc.

Clinical Chemistry and Clinical Toxicology Device Panel