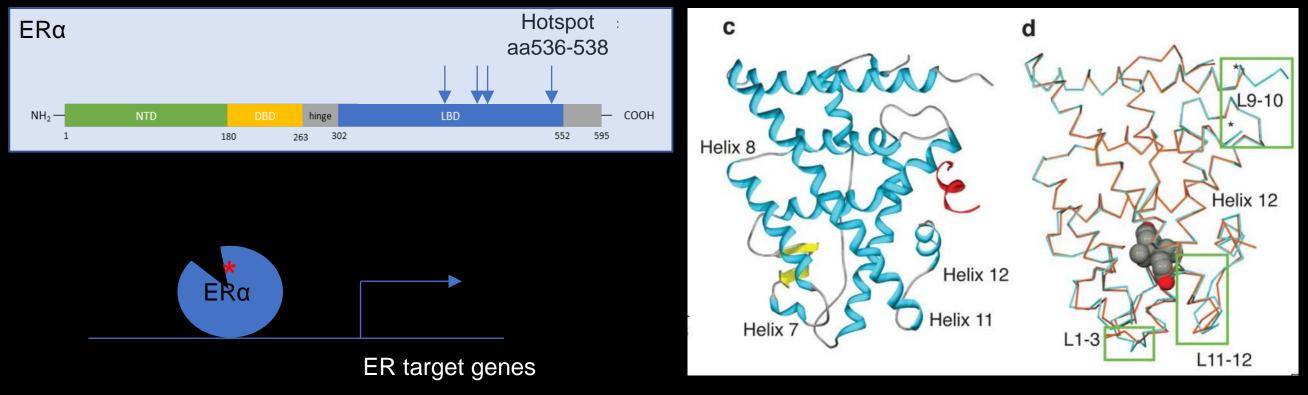

The Challenge of Rare Subsets of Rare Cancers: A focus on *ESR1* mutations in gynecologic malignancies

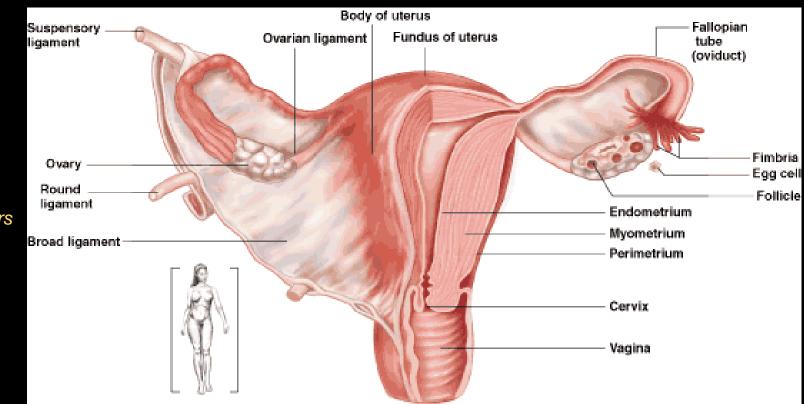
Stéphanie Gaillard, MD, PhD Johns Hopkins Sidney Kimmel Cancer Center & Kelly Gynecologic Oncology Service


Disclosure Information Relationships with Companies

- Consulting or Advisory Role: PharmaMar, Merck, Genentech, Tesaro
- Research Funding (to institution): PharmaMar, Merck, Genentech, Gradalis, BMS, Tetralogic, Iovance
- Patents, Royalties, and other Intellectual Property: some of the work presented has resulted in a patent filing which has been licensed by Duke University to Sermonix

Estrogen Receptor – a ligand-dependent regulator of transcription

Estrogen Receptor (*ESR1*) Activating Mutations are Associated with Resistance to Endocrine Therapy


Nettles et al. Nat Chem Biol. 2008

Rare Gynecologic Cancers

OVARY High-grade serous Endometrioid Low-grade serous Clear cell Mucinous Carcinosarcoma Adenosarcoma Germ Cell Tumors Sex Cord -Stromal Tumors (Granulosa Cell Tumors) Small Cell Carcinoma Carcinoid Wolffian Tumors

UTERUS Endometrioid

High-grade serous Clear cell Carcinosarcoma Leiomyosarcoma Low-grade endometrial stromal sarcomas High-grade endometrial stromal sarcomas Undifferentiated uterine sarcomas

CERVIX Squamous cell carcinoma Adenocarcinoma Adenosquamous carcinoma Small cell carcinoma

VAGINA/VULVA Squamous cell carcinoma

Endocrine Therapy is Associated with Modest Response

Advanced Endometrial Cancer

Table 5

Comparison of objective response rates (ORR) and median progression-free survival (PFS) outcomes with use of targeted and hormonal agents in advanced endometrial cancer.

Study	Agent	ORR (%)	PFS (months)	
	Hormonal agents	21.6	2.8	
	ER/+PR+	32.5	_	
	ER+	26.6	_	
	PR+	35.5	_	
Leslie [61]	Gefitinib	3.3	1.8	
Aghajanian [62]	Bevacizumab	13.2	4.5	
Alvarez [63]	Bevaizumab + temsirolimus	24.5	5.6	
Bender 2015 [64]	Cediranib	12.5	3.6	
Castonguay [65]	Sunitinib	18	3.0	
Slomovitz [66]	Everolimus + letrozole	32	3.0	
Oza [67]	Erolotinib	12.5	_	
Oza [68]	Temsirolimus	13.7	_	

Ethier et al 2017 Gyn Onc

Slomovitz 2018 SGO Annual Mtg

Recurrent Low-Grade Serous Ovarian Cancer

9% response rate

Table 4 Summary of c	omplete and partia	l responses.				
Patient-	Primary	Regimen (no.)	Respons	Response		
regimen	tumor site ^a		Туре	Duration, months		
1 ^b	Peritoneum	Tamoxifen (4)	CR	117.6		
2	Peritoneum	Anastrozole (2)	CR	112.2		
3	Peritoneum	Letrozole (3)	CR	67.9		
4	Peritoneum	Letrozole (4)	CR	52.2		
5	Ovary	Letrozole (3)	CR	11.9		
6 ^b	Peritoneum	Letrozole (2)	CR	42.0		
7	Ovary	Letrozole (2)	PR	22.0		
8 ^c	Peritoneum	Letrozole (4)	PR	1.63		

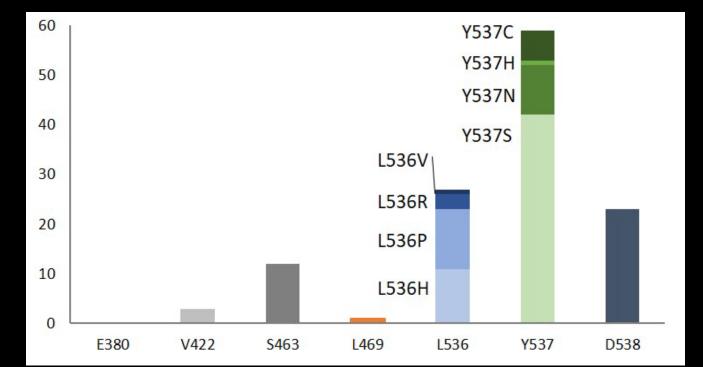
Gershenson et al 2012 Gyn Onc

Al use in adjuvant therapy has been associated with prolonged PFS Gershenson et al. 2017 JCO Fader et al. 2017 Gyn Onc

Frequency of ESR1 alterations in gynecologic malignancies

Type of alteration	Frequency N=9645	Ovary/FT N=5594	Uterus N=3101	Cervix N=720	Vulva/Vagina N=216
Total, N (%)	295 (3.1)*	120 (2.1)	160 (5.2)	9 (1.2)	6 (2.8)
Amplification	80 (0.8)	45 (0.8)	34 (1.1)	1 (0.1)	-
Deletion	1 (<0.1)	-	1 (<0.1)	-	-
Fusion	2 (<0.1)	1 (<0.1)	-	-	1 (0.5)
Rearrangements	18 (0.2)	9 (0.2)	9 (0.3)	-	-
Substitution Variants	194 (2.0)	65 (1.2)	116 (3.7)	8 (1.1)	5 (2.3)
Codon 536-538	75 (0.8)	18 [∞] (0.3)	56 [∞] (1.8)	1 (0.1)	-
Other Activating Mut	12 (0.1)	3 (<0.1)	7 (0.2)	-	2 (0.9)

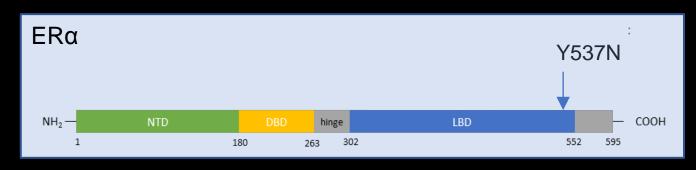
"-": none present, FT: fallopian tube, Mut: mutation *Includes 10 cases with 2 alterations each, "1 ovarian case & 2 uterine cases w/ 2 codon 536-538 mutations each

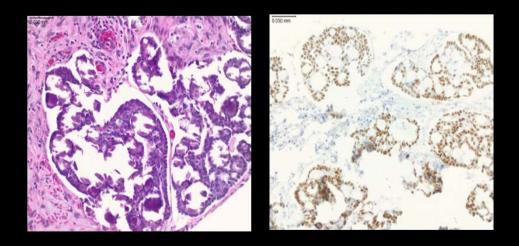

ESR1 mutations identified through public databases

	N in dataset	mutESR1 N (%)	Histology	Ref
LGSOC	26	1 (3.8)	Low-grade serous	1
AACR GENIE				2
Cervix	271	1 (0.4)	Adenocarcinoma	
Ovary	1473	2 (0.1)	2 Endometrioid	
Endometrial	1076	26 (2.4)	26 Endometrioid	
Uterine Sarcoma	199	2 (1.0)	2 ESS	
TCGA				
Uterine Corpus	248	5 (2.0)	5 Endometrioid	3
Ovary		0		4
Cervix		0		5
Uterine	22	1 (4.5)	Carcinosarcoma	6

Carcinosarcoma

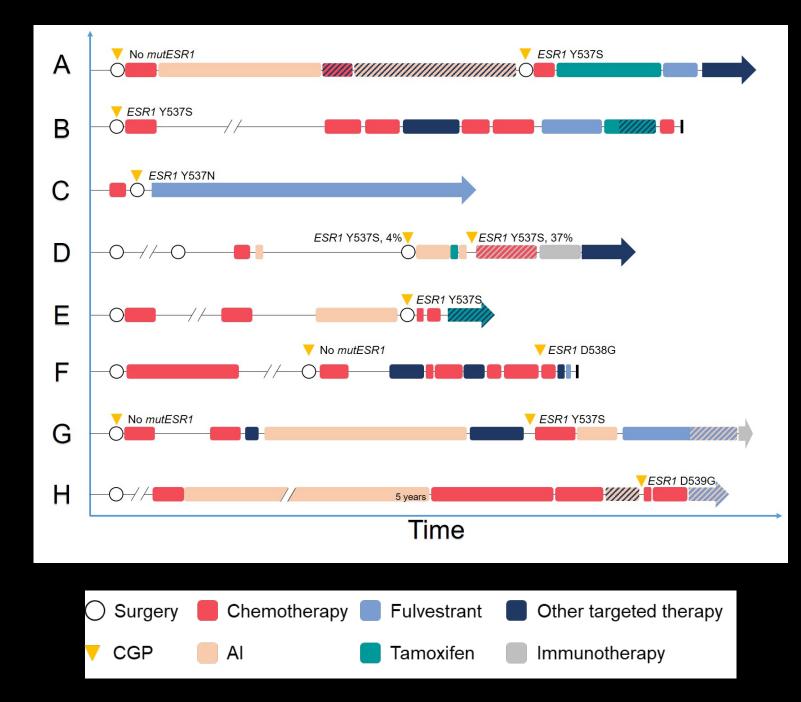
¹McIntyre, *Histopathology* 70, 347-358 (2017). ²A.P.G. Consortium, *Cancer Discov* 7, 818-831 (2017). ³N. Cancer Genome Atlas Research, *Nature* 497, 67-73 (2013). ⁴N. Cancer Genome Atlas Research, *Nature* 474, 609-615 (2011). ⁵Merenbakh-Lamin, *Cancer Res* 73, 6856-6864 (2013). ⁶Jones, *Nature Comm* 5, 5006 (2014).

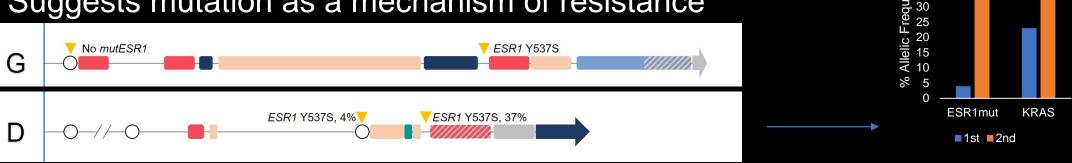



ESR1 mutations are enriched in hormone-responsive histologies

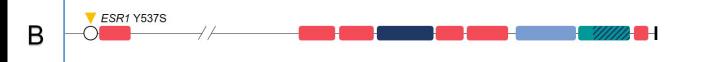
Dataset	Histology	Ν	mutESR1 N (%)	р		
CGP analysis						
Ovary	serous	3502	12 (0.3)	0.0004		
Ovary	endometrioid	144	5 (3.5)	0.0004		
Uterus	serous	446	1 (0.2)	<0.0001		
Olerus	endometrioid	548	24 (4.4)	<0.0001		
Sarcoma	LMS	421	3 (0.7)	0.09		
Salcollia	ESS	103	3 (3.0)	0.09		
AACR GENIE						
Ovary	high-grade serous	687	Ο	0.006		
Ovary	endometrioid	57	2	0.000		
Uterus	serous	203	Ο	0.0004		
Olerus	endometrioid	518	25 (4.8)	0.0004		
Sarcoma	LMS	113	0	0.018		
Sarcoma	ESS	16	2 (12.5)	0.010		
P value calculated using Fisher's exact test						

One patient's story:


- 58F diagnosed with low-grade serous papillary carcinoma of gyn origin
 - Neoadjuvant Carboplatin/Paclitaxel
 - 3 cycles
 - CT: No change in calcified peritoneal carcinomatosis, bilateral pulmonary nodules
 - Attempted cytoreductive surgery: tumor engulfing small & large bowel, extensive adhesions



Clinical Relevance of ESR1 mutations in Gyn Cancers

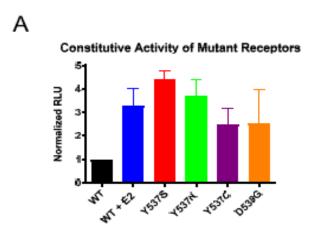

Key Points from Clinical Review

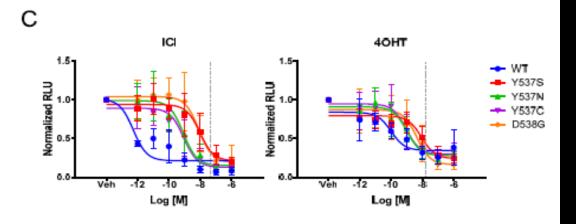
- Prior treatment with aromatase inhibitors in 5 cases
 - Suggests mutation as a mechanism of resistance ightarrow

45

Mutations present in absence of exposure to endocrine therapy

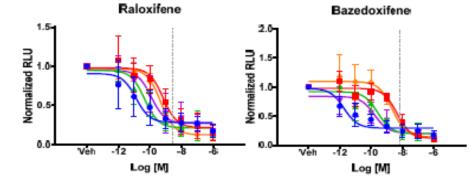
• *mutESR1* tumors may clinically benefit from anti-ER directed therapy

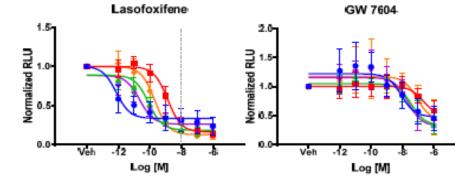

Potential Reasons for Differences in Benefit

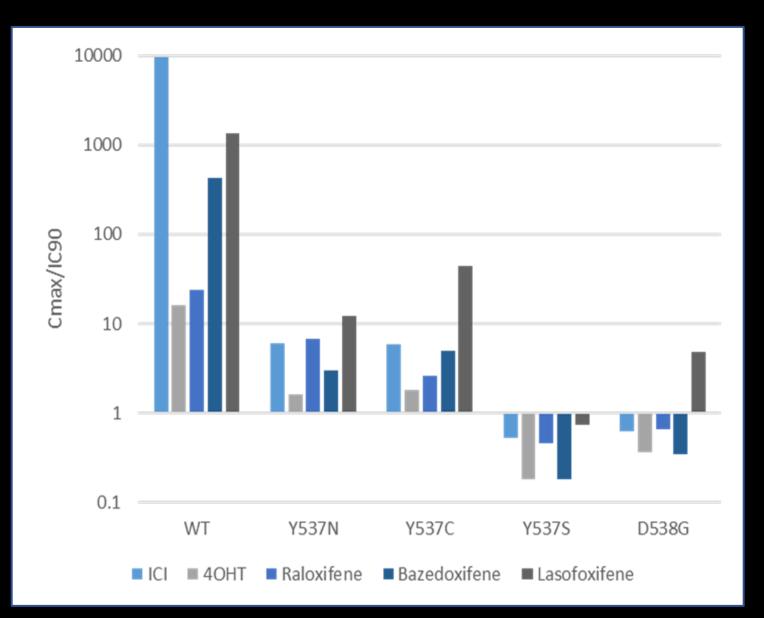

1. the use of hormone therapy in a later phase of the disease course after the cancer has had the opportunity to develop multiple adaptive/resistance mechanisms

2. the influence of co-occurring mutations

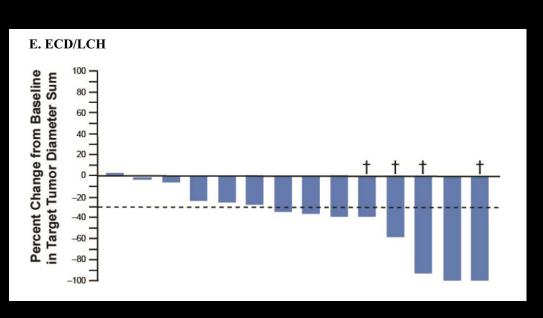
3. the specific *mutESR1* present within each tumor

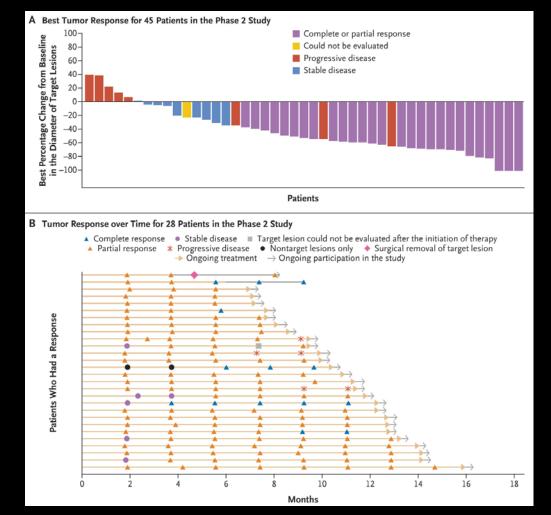

Mutations Confer Partial Resistance




в

	ICI	40HT	Ralonifene	Bazedoxifene	Lasofonifene	GW 7604
_			IC50	(pM)		
WT	0.53	102.7	13.27	1.867	0.7425	8576
Y537N	830.9	1050	46.98	268.1	82.75	38290
Y537C	\$87.8	923.1	121.5	166.1	22.69	22270
Y537S	9606	\$\$77	696.8	4548	1351	218900
D538G	\$102	4393	487.7	2301	208.5	86870
_			IC90	(pM)		
WT	4.76	924	119	16.8	6.68	77200
Y537N	7480	9450	423	2410	745	345000
Y537C	7990	\$310	1090	1490	204	200000
Y537S	\$6500	79900	6270	40900	12200	1970000
D538G	72900	39500	4390	20700	1880	782000

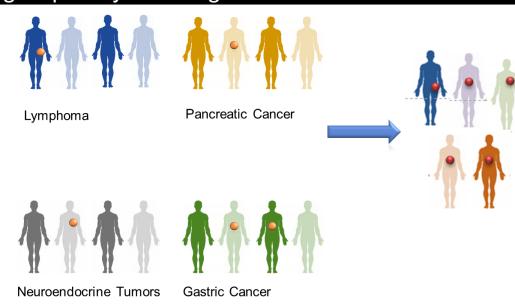

Inhibitory Blood Concentrations May Not Be Achievable for some Mutations


Summary

- ESR1 mutations are rare findings in rare cancers
 - Prevalence may increase with increased use of aromatase inhibitors
 - May be present in the primary tumor
 - Hotspot sequencing may miss some cases of activating mutations
 - Heterogeneity and polyclonality
- Important Treatment implications
 - Resistance to aromatase inhibitors
 - May respond to anti-ER directed therapy (SERMs/SERDs)
 - Relative response may be affected by the mutation(s) present
- Needs
 - Determine the true prevalence and conditions under which they arise
 - Development of drugs that more effectively inhibit mutERα, esp Y537S and D538G

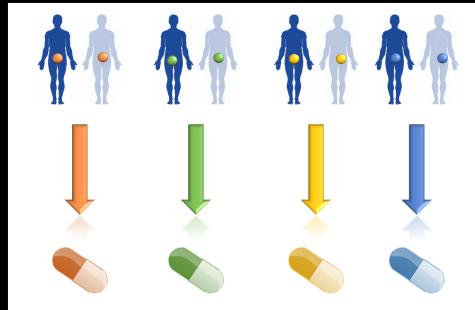
- Challenge of recruitment given small numbers
 - Advantage of cooperative group/rare tumor committee

Hyman et al, NEJM 2015

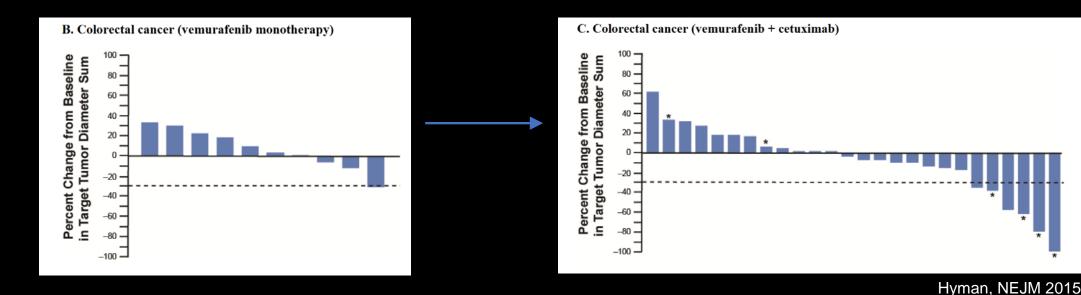

Migden, NEJM 2018

- Challenge of recruitment given small numbers
 - Advantage of cooperative group/rare tumor committee
- Modern Trial Designs

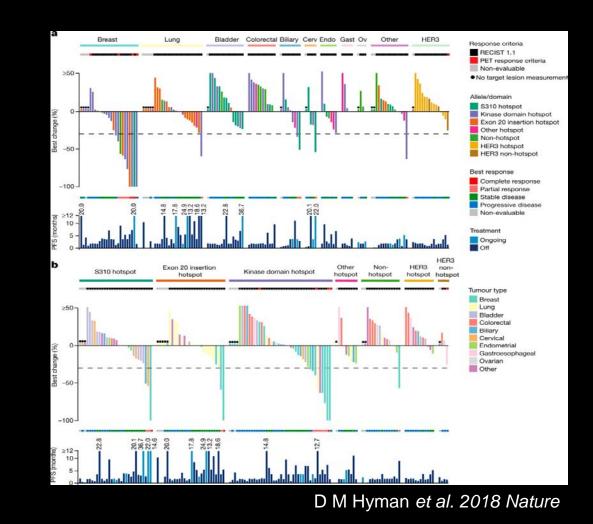
Basket Trials



Multiple tumor/histologic types are grouped by similar genomic alteration


Umbrella Trials

Single tumor type divided by individual genomic alterations



- Challenge of recruitment given small numbers
 - Advantage of cooperative group/rare tumor committee
- Modern Trial Designs
 - Hybrid designs
 - Adaptive designs

- Challenge of recruitment given small numbers
 - Advantage of cooperative group/rare tumor committee
- Modern Trial Designs
 - Hybrid designs
 - Adaptive designs
- Lessons from prior trials
 - Tumor context matters

- Challenge of recruitment given small numbers
 - Advantage of cooperative group/rare tumor committee
- Modern Trial Designs
 - Hybrid designs
 - Adaptive designs
- Lessons from prior trials
 - Tumor context matters
 - Not all mutations are the same

- Challenge of recruitment given small numbers
 - Advantage of cooperative group/rare tumor committee
- Modern Trial Designs
 - Hybrid designs
 - Adaptive designs
- Lessons from prior trials
 - Tumor context matters
 - Not all mutations are the same
- Endpoints need to be selected wisely

Acknowledgements

Duke University Kaitlyn J. Andreano Meghan Steiner Brittany Anne Davidson Laura J. Havrilesky Angeles Alvarez Secord Fidel A. Valea Ching-Yi Chang Donald P. McDonnell Andrew Berchuck

Foundation Medicine

Laurie M. Gay Julia A. Elvin

Mayo Clinic - Jacksonville Matthew S. Jorgensen Gerardo Colon-Otero

Clearity Foundation Deborah A. Zajchowski