Linear Peptide Antibiotics

Development of Non-Traditional Therapies for Bacterial Infections

FDA White Oak Campus Building 31 21-22 Aug 2018 Non-Confidential


The EnBiotix Focus

Engineered antibiotics to address the global antibiotic resistance & tolerance crisis: a \$40B market, projected to grow to \$57B by 2024

Based On Syn-bio/AI Work Of Co-founder James Collins, PhD

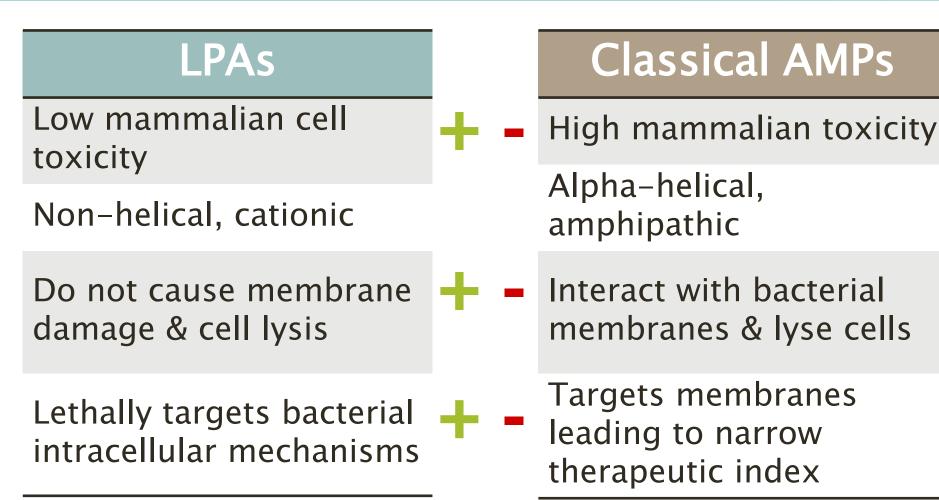
- MIT, Harvard, Wyss, Broad
- Member, National Academies of Science, Engineering, Medicine & Inventors; American Academy of Arts & Sciences
- 2012 Sanofi-Pasteur Award, HHMI, Rhodes Scholar
- Co-founder of Sample 6, Synlogic

EnBiotix Platforms

EnBiotix Product Pipeline

	Preclin	Phase 1	Phase 2	Phase 3	NDA/Mkt
WW Ex-Europe Market: ColiFin® for Cystic Fibrosis Infections (& non-CF BE)					
WW Ex-Asia Market: EBX-003 (inhaled arbekacin) for NV-HAP/VAP					
EBX-001: Potentiated Inhaled Tobramycin for Cystic Fibrosis Infections			non-CF BE,)PD		
EBX-002: Potentiated Inhaled Amikacin for NTM		+LCM* in HA	AP/VAP		
EBX-004: Inhaled and IV LPAs for IAI/cUTI/BSI	_				

Product Value Proposition


Product	Value Drivers	Market Potential
ColiFin® (inhaled colistin) for CF & nCFBE	 Approved in EU, significant off-label use in nCFBE New Class for CF Treatment (Polymixins) Replaces off-label IV colistin usage (FDA discourages) Highly active against MDR CF pathogens 	\$250 - 300M \$400 - 500M
EBX–003 (Inhaled arbekacin) for NV–HAP & VAP	 i.v. formulation approved in Japan for MRSA Potentially first approved antibiotic for non-ventilator hospital-acquired pneumonia Greater potency & broader spectrum than amikacin 	\$250 - 300M
EBX-001: Potentiated Inhaled Tobramycin	 Next-gen TOBI TIP/Podhaler® (Novartis) (front-line CF ABX, peak sales >\$400M) Highly active against persisters: cause of chronic, recurrent infections 	\$500 – 700M
EBX-002: Potentiated Inhaled Amikacin	 Next-gen ARYKACE[®] (driving \$2B Insmed market cap) Highly active against persisters: cause recurrent infections 	\$1 Billion
EBX-004: Inhaled and IV LPAs: IAI/cUTI/BSI	 New ABX class, blockbuster potential Novel Mechanism of Action Broad Spectrum, Highly Potent Very low mammalian toxicity 	

LPAs Have Blockbuster Potential

Proven Class	Some of today's most successful antibiotics are peptides: Daptomycin, Dalbavancin, Colistin
Externally Validated	Acquired from AMP Therapeutics GmbH; funded by Boehringer Ingelheim Ventures & Novartis Ventures
Strong Rationale	Novel mechanism of action, excellent potency, broad spectrum $G+/G-$ activity, favorable safety profile
Vast Potential	In vitro & in vivo data support a broad range of potential indications: VAP, cUTI, IAI, SSTIs

LPAs Possess Advantages Over AMPS for Therapeutic Use

Two Families of LPAs: Apidaecins and Oncocins

 Apidaecins (Api) and Oncocins (Onc): proline-rich antimicrobial peptides derived from insect defensin peptides

SAR to Improve Potency/Spectrum

1000

Broad Spectrum Gram- Activity

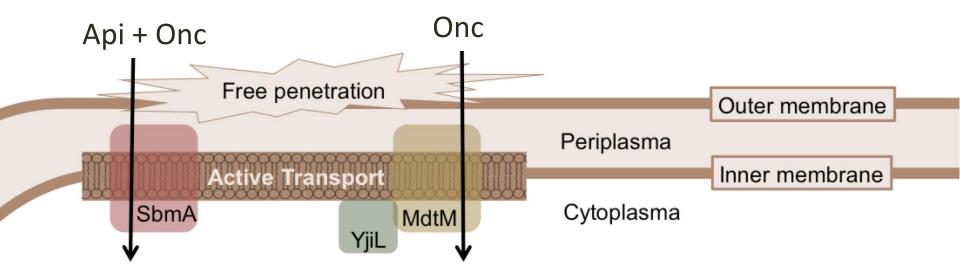
<i>Ofa</i> ABP4	VDKPPYLPRPPPPRRIYNNR-OH
Onc18	VDK <u>PP</u> YL <u>PRPRPPRRIYNR-NH</u> 2
Onc72	VDK <u>PP</u> YL <u>PRPRPPROIYNO-NH</u> 2
Onc112	VDK <u>PP</u> YL <u>PRPRPPRrIYNr-NH</u> 2
Onc143	VRK <u>PP</u> YL <u>PRPRWP</u> RRIYNR-NH ₂
Onc158	VRK <u>PP</u> YL <u>PRPRWPROIYNO-NH</u> 2
Onc166	Vrk <u>pp</u> YL <u>prprwp</u> rrIYNr-NH ₂

Oncopeltus fasciatus peptide-derived

SAR to Improve Potency/Spectrum

Broad Spectrum Gram- & Gram+ Activity

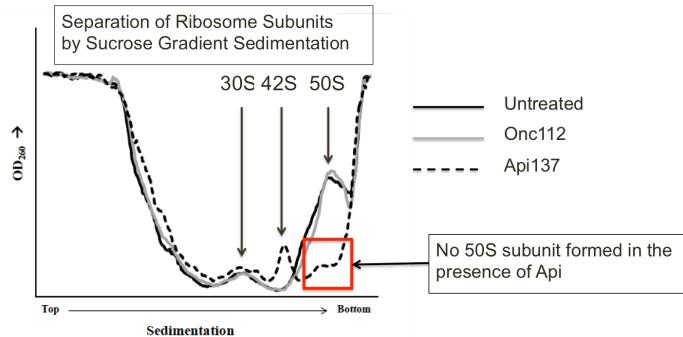
Oncocins



gu = tetramethylguanidinium, O=L-ornithine, H=L-homoarginine

Apidaecins

Mechanism of Action: Uptake Mediated by Specific Transporters

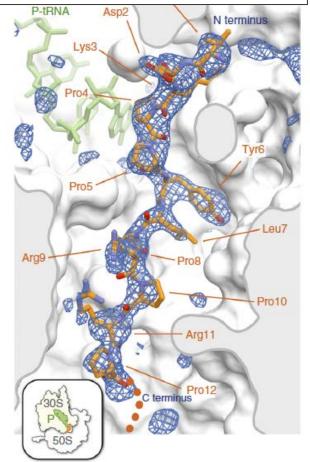

LPAs freely penetrate the outer membrane and have specific transporters in the inner membrane

ENBIOTI

Apidaecin Prevents Ribosome Assembly, A Unique Mode of Action

- Large Ribosome Subunit Assembly
 - 30S → 42S → 50S large ribosomal subunit
- Api137 treatment accumulates 42S intermediate, preventing assembly of 50S large ribosomal subunit¹

¹Krizsan, A., et al., Short Proline-Rich Antimicrobial Peptides Inhibit Either the Bacterial 70S Ribosome or the Assembly of its Large 50S Subunit. Chembiochem, 2015. 16(16): p. 2304, PMID: 26448548

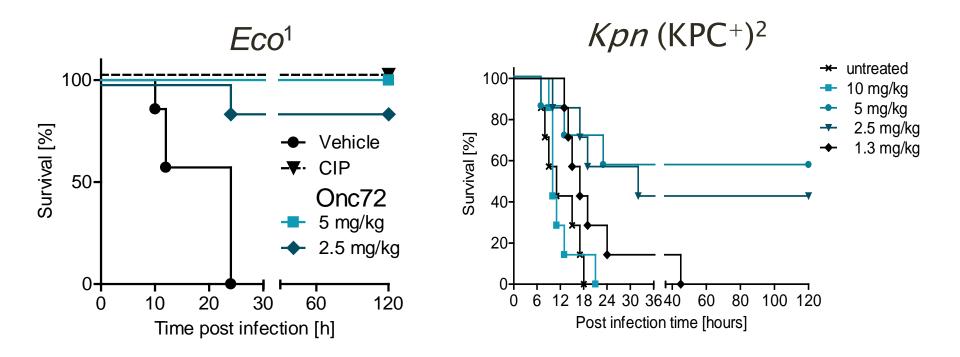


Oncocin Blocks the Entire Exit Tunnel of the Intact Ribosome

- No other antibiotic blocks entire ribosome exit tunnel; very significant because....
- Interaction with multiple binding sites reduces likelihood of resistance development
- Prevents elongation of nascent protein chain by the ribosome & destabilizes initiation complex
- In contrast to other antibiotic MOAs, Onc binding in tunnel overlaps several known binding sites:
 - macrolides
 - chloramphenicol
 - streptogramins
 - pleuromutilins
 - clindamycin

ntact Ribosome

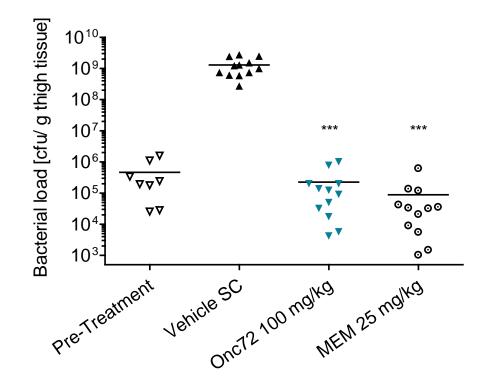
Crystal structure of Onc112 in Exit Tunnel¹



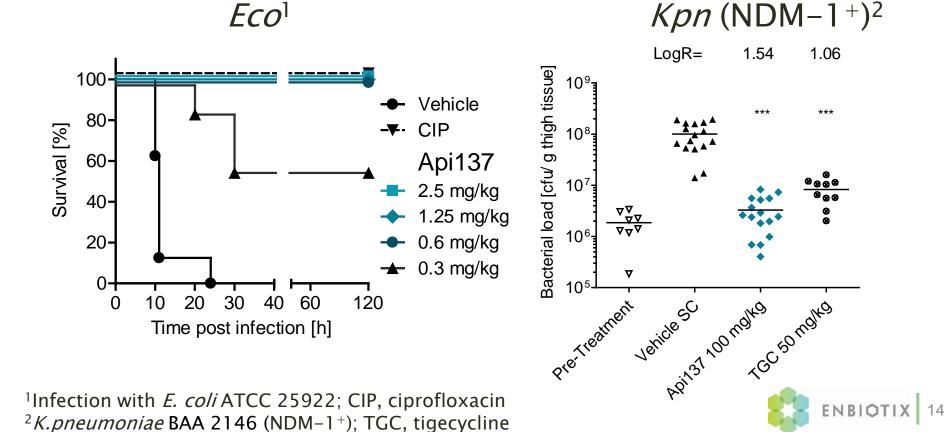
¹Seefeldt, A.C., et al., The proline-rich antimicrobial peptide Onc112 inhibits translation by blocking and destabilizing the initiation complex. Nat Struct Mol Biol, 2015. 22(6): p. 470, PMID: 25984971

Efficacy In Two Intraperitoneal Infection Models

• Onc72 shows efficacy towards *E. coli* and carbapenemase-resistant *K. pneumoniae*



¹Infection with *E. coli* ATCC 25922; CIP, ciprofloxacin ²*K.pneumo*niae K97/09 MDR strain


Onc72 Shows Strong Efficacy In *Kpn* Thigh Burden Model

 Onc72 reduces CFU recovery by ~ 4 log in thigh infection model

Apidaecins Have Excellent Efficacy In Two Different Infection Models

• Api137 shows efficacy towards *E. coli* and carbapenemase-resistant *K. pneumoniae*

LPAs' Broad Spectrum Addresses Need for Empirical Therapy

Compound	S. aureus	K. pneumoniae	P. aeruginosa	A. baumannii
Ceftazidime		\checkmark	\checkmark	
Meropenem		\checkmark	\checkmark	\checkmark
Colisitin		\checkmark	\checkmark	\checkmark
Amikacin	\checkmark	\checkmark	\checkmark	\checkmark
Api137		\checkmark	\checkmark	\checkmark
Onc72		\checkmark	\checkmark	\checkmark
Onc143	\checkmark	NT	\checkmark	NT
Onc166	\checkmark	\checkmark	\checkmark	\checkmark

Similar to Most Approved Antibiotics

Organism	Compound	MIC (ug/ml) ¹	MIC (uM)
S. aureus	Ceftobiprole	<2 ug/ml	3.74
	Meropenem	< 4 ug/ml	10.43
	Vancomycin	<2 ug/ml	1.38
	Daptomycin	<1 ug/ml	0.62
	Onc143	0.5 ug/ml	0.20
	Api137	NA	-
P. aeruginosa	Ceftazidime	< 8 ug/ml	14.6
	Meropenem	< 2 ug/ml	5.21
	Colisitin	< 4 ug/ml	3.16
	Amikacin	< 8 ug/ml	13.7
	Onc143	4 ug/ml	1.59
	Api137	16 ug/ml	6.98

¹Clincalc EUCAST sensitivity breakpoints for approved drugs ²NA=not active

Acknowledgments

- EnBiotix, Inc., Boston, MA
 Jeffrey A. Radding, Ph.D., Vice President, Biology
- EnBiotix GmbH, Leipzig, DE

 Daniel Knappe, Ph.D., Director Peptide Therapeutics
- Universität Leipzig, Leipzig, DE
 Prof. Ralf Hoffmann, Ph.D., Professor of Bioanalytics

Thank You!

