Studies to further establish PK as central tool for a streamlined approval of generic inhalation drugs

Jürgen Bulitta and Günther Hochhaus

FDA Generic Drug Research Public Workshop – May 1, 2019, Silver Spring, Maryland

Background

- Great need for generic inhaled drugs.
- High pressure to streamline generic development and approval.
- FDA is very active in providing guidance information and participating in discussions with stakeholders.
 (June 21st 2013, FDA Meeting on Bioequivalence, ... GDUFA Meetings, DIA 2018, today's workshop ...)

Previous Work

FDA HHSF223201610099C, FDA HHSF223201110117A, FDA HHSF223201610099C, FDA HHSF223201300479A.

Hypothesis for slowly dissolving drugs ($F_{oral} = 0$): **PK can provide information necessary to assess pulmonary bioequivalence.**

- Pulmonary available dose (AUC)
- Pulmonary residence time (C_{max}, t_{max})
- Regional lung deposition (c/p ratio)
- → A formulation that deposits more centrally is predicted to have:
 - Lower AUC due to increased mucociliary clearance,
 - Lower C_{max}

Study Design and Results (in a nutshell)

- Formulate three Fluticasone
 DPIs which differ in MMAD
 (collaboration with Rob Price, Jag Shur)
- In vitro evaluation found differences in
 - Total Lung Dose_{in vitro} (Mike Hindle)
 - Dissolution rate (UF)
- PK could provide information on:
 - Total lung dose (AUC)
 - Pulmonary residence time (Cmax/D)
 - c/p ratio, based on Cmax/D, but not AUC
 - Further information on c/p ratio necessary

Central Periphe lung ral lung Peripheral Central CMT **CMT** CL

Fc: absorbed dose fraction from the central region of the lung.

Fp: absorbed dose fraction from the peripheral region of the lung.

PART 2: Population PK analysis

Lung related mean PK parameter estimates

Parameters	A- 4.5 μm	B- 3.8 μm	C -3.7 μm
	Mean	Mean	Mean
Absorption $t_{1/2}$ for central lung (h)	2.7	1.6	1.7
Absorption $t_{1/2}$ peripheral lung (h)	0.27	0.13	0.13
Absorbed dose - central lung (%)	6.1	6.1	5.3
Absorbed dose - peripheral lung (%)	1.7	5.7	6.0
c/p ratio	3.5	1.1	0.9

Summary

- Population PK could clearly provide information on the regional lung deposition
- However, population PK is a quite involved technique for standard BE assessment.
- → Future research to evaluate simpler approaches informed by population PK.

Is C_{max} sensitive to the c/p ratio?

Differences in Dissolution Rate

MDT (h) Relative surface area

A-4.5 μm 19.2 0.5

C-3.7 μm 13.4 1

Integrate in PBPK Model Nernst-Brunner Fick's Law C_{max} ratio, if only dissolution differs

Measured 1.8

Summary

- NCA-PK can provide information on
 - Dose
 - Pulmonary residence time
 - Regional deposition
 - Cmax seems to be sensitive to the c/p ratio
- Open Questions Future Research:
 - Is NCA analysis (Cmax) a robust parameter?
 - A PBPK/popPK based simulation approach should be able to answer this question.
 - How can we generalize this approach to other corticosteroids, long-acting beta-agonists (LABAs), and anti-muscarinic agents

Future Research I: Novel BE approaches to study regional distribution of inhalation drugs supported by PBPK and PopPK

Future Research II: Systematic evaluation of the ex-throat plume properties of MDI formulations

Droplet Size
Distribution (DSD)

Plume geometry via laser diffraction

Dissolution

profiles

MDIs: Advair, Symbicort and QVAR

Aerodynamic Particles
Size Distribution (NGI)

Computational fluid dynamics

Eight available throat models

→ Improved understanding of realistic testing conditions.

Acknowledgements

- Mongjen Chen, Yuanyuan Jiao, Stephanie Drescher, Elham Amini, Uta Schilling, Abhinav Kurumaddali, Sagar Bachhav, Sandy Baumstein, UF-CTSI clinical team
- Mike Hindle, Xiangyin Wei (VCU)
- Jag Shur, Rob Price (University of Bath)
- Worldwide Clinical Trials, Austin, TX (LC-MS/MS bioanalysis)
- FDA scientists: Denise Conti, Murewa Oguntimein, Minori Kinjo, Renish Delvadia, Susan Boc, Mohammad Absar, Larry Lee, Bavna Saluja, Kimberly Witzmann, Robert Lionberger, ...
 - U01FD004950 (Dissolution)
 - 5U01FD004943-05 (MDI)
 - FDA-SOL-1120918 (Nasal Spray)
 - HHSF223401610099C (DPI)