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Myocardial biology of kinase inhibitor cardiotoxicity:
Predictable on-target and surprising off-target effects




Conclusions

Heart failureis a relatively rare but important adverse effect of some targeted cancer therapies
Current preclinical testing strategies do not adequately predict cardiomyocyte injury

Though uninjured cardiomyocytes are very different from cancer cells, there is overlap between
the biology of a failing cardiomyocyte and a cancer cell.

Cardiomyocytes are metabolically vulnerable. Expanded preclinical testing for kinase inhibitor
cardiotoxicity might include assays of metabolism and mitochondrial function.



Cardiotoxicity of kinase inhibitors
..the most common class of novel targeted cancer therapies
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Kinase inhibitors generally do not kill cardiomyocytes, so how do they lead to heart failure?

Babiker HM. Critical Reviewsin Oncology / Hematology 126 (2018) 186—200



Toxicity from targeted therapies: scope of the problem

Kinase Inhibitorsin the treatment of Renal Cell CA (and others)

All Patients
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Sunitinib
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Sorafenib
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(17)

Hypertension is most common, but cardiomyopathy/heart failure occurs in 4-15%
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Contrasting cardiomyocytes and cancer

Cardiomyocytes Cancer cells

Terminally differentiated Undifferentiated
Very limited regeneration Nearly limitless replication
Energy derived from fatty acids Energy derived from glucose and glutamine

The differences between cardiomyocytes and cancer cells suggest the possibility
that we could develop truly targeted and “cardiosafe” cancer drugs.



Causes of Heart Failure
Heart Failure as a final common pathway

Myocardial
Hypertension Infarction

Cardiotoxic drug
Valvular — Dilated
DINENE Cardiomyopathy

N\

Arrhythmias

Congenital
Heart Disease



Heart failure is progressive and has a poor prognosis
..trading one bad disease for another...

Normal heart b Chronic heart failure —————» Death

CHF:- 5 M in US; 10 M in Europe

Initial myocardial
injury

ADHF: 1 MYy in US; 1.7 M/y in Europe
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Acute Heart Failure Syndromes Gheorghiade & Mebazaa, Am J Cardiology 2005;96(supp! 6A}
MNierminen et al Guidelines on AHF Fur Heart 1 2005-26-384-416

Mean survival after diagnosis of heart failure is ~5 years
Mean survival after first hospitalization for heart failure = ~2.5 years




Mechanisms of remodeling
The multifactorial pathobiology of heart failure

Pathophysiological stimuli
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Energy deprivation is central to HF pathobiology

Substrate switching and mitochondrial dysfunction

/’ N MncromolacLiios ‘\
Fatty acid .- \ i iy
oxidation P |\ RECES | . of
Hypertrophy HF ) "‘}“ﬁ "-?1-—-— A
Glucose ‘ =
tilization ypertrophy 4
u | (m & 1«"3 4y
ﬁi@m# D | f':“ RN
Oxidative < Nl -
phosphorylation
Hypertrophy HF ' e | e'& 1—3‘
%’mﬁ.’ﬁ t 02
Hypertrophy HF b __d

Cell 2016 166, 555-566DO0I: (10.1016/j.cell.2016.07.002)

N.B. The heart has the highest ATP requirement of any organ

Could drug-induced energy deprivation cause heart failure?

Neubauer, NEJM 2007



Heart failure vs. cancer...

Heart failure

Cellular hypertrophy

Vascular rarefaction

Enhanced glucose metabolism
Impaired oxidative phosphorylation

Inflammation

Oxidative stress

Compare and contrast
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Cancer

Cellular hyperplasia

Angiogenesis

Enhanced glucose metabolism

Impaired oxidative phosphorylation
Warburg effect: aerobic glycolysis

Inflammation

Oxidative stress



Signaling in the failing heart
Complex...like cancer
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Some oncogenic pathways are also cardioprotective




Targeted cancer therapies
VEGF signaling pathway: on-target CV toxicity (?)

Tumors require angiogenesis to proliferate. Targeted therapies block angiogenesis

by blocking the effects of VEGF, which decreases NO bioavailability. Hypertension is
a frequent response, due to the importance of NO to endothelial function.

MoslehiJJ N Engl J Med 2016;375:1457-67



Multiple mechanisms of K| cardiotoxicity
Direct myocardial effects and indirect effects from vasculature (?)

Afterload Y t ¥ ——1
stress

¥ Cardiac adaptation
to afterload stress

Heart failure
VEGF-A _ PDGF
. ' » Ventricular hypertrophy -
Hypertension * Ventricular dilatation
* Reduction in cardiac capillary
density
* Local tissue hypoxia

VEGFR

Multitargeted kinase inhibitors (e.g. sunitinib and sorafenib) target both PDGFRand VEGFR

PDGFRs and VEGFRs both are protectivein cardiomyocytes

Expert Opinion on Drug Safety 2015, 14, 253-267



Can we predict cardiotoxicity of targeted therapy?

..not very well
HER2 (ErbB2) Herceptin
MEK-ERK Yes Trametinib Yes
PDGFR Yes Sunitinib Yes
EGFR Yes Erlotinib No
P13 Kinase/Akt Yes Idelalisib No
VEGFR No Bevacizumab Yes
CDK4/6 No Palbociclib No *
BTK No Ibrutinib No**
ALK ? Crizotinib No***

* Ribociclib causes QT prolongation
** Ibrutinib causes arrhythmias
*** Crizotinib causes bradycardia



Do mice accurately model human Kl cardiotoxicity?
Echocardiography measures cardiac contractile function

Once daily oral gavage with kinase inhibitors or vehicle

Echocardiogramat Day 7 and 14
Sacrifice at Day 14
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Can we identify the molecular basis of K| cardiotoxicity?
Kinome profiling (MIB/MS)
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Why isn’t erlotinib cardiotoxic?
Its target, EGFR, is cardioprotective...

Enrichment plot:
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STAT3 upregulation facilitates tumor “escape” from EGFR inhibition
Similarities between heart and tumor?

www.impactjournals.com/oncotarget/ Oncotarget, Vol. 7, No. 16
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STAT3 activation is cardioprotective
Potentially mitigating effects of EGFR inhibition (?)

',‘ frontiers o
1IN Cardiovascular Medicine



Fractional Shortening (%)

Combined EGFR and STAT3 inhibition is cardiotoxic

Caution for combinationtargeted therapy?

Echocardiography
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Trametinib causes reversible cardiomyopathy and heart failure
...in mice like in (some) humans
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MIB-MS and RNA-seq suggest metabolic injury

MIB-MS MEK _ RNA-seq
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Trametinib impairs mitochondrial number and function
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Conclusions

Heart failureis a relatively rare but important adverse effect of some targeted cancer therapies
Current preclinical testing strategies do not adequately predict cardiomyocyte injury

Though uninjured cardiomyocytes are very different from cancer cells, there is overlap between
the biology of a failing cardiomyocyte and a cancer cell.

Cardiomyocytes are metabolically vulnerable. Expanded preclinical testing for kinase inhibitor
cardiotoxicity might include assays of metabolism and mitochondrial function.

Thank you!
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