Combined Manufacturer Presentation FDA Panel Day 2

Daniel Clair, MD

Chair, Department of Surgery University of South Carolina Palmetto Health-USC Medical Group

Laura Mauri, MD, MSc

Vice President, Global Clinical Research and Analytics Medtronic

Eric A. Secemsky, MD, MSc

Director, Vascular Intervention Beth Israel Deaconess Medical Center Assistant Professor of Medicine Harvard Medical School Agenda

Dr. Daniel Clair

Dr. Laura Mauri

Dr. Eric Secemsky

Dr. Laura Mauri

Ongoing Studies and Implications

Interpreting Multiple Sources of Safety Data

Analysis of Medicare Beneficiary Data

Next Steps and Conclusion

No Signal Present in Randomized Trials of Paclitaxel Device Use in Other Vessel Beds – Coronary, Long Lesions

1. Stone GW, et al. JACC Cardiovasc Interv. 2011;4(5):530-542.

No Signal Present in Randomized Trials of Paclitaxel Device Use in Other Vessel Beds – Arteriovenous Dialysis Access

IN.PACT[™] AV Access Study:

All-Cause Mortality (Interim 12-mo Results¹)

	IN.PACT [™] AV Access		
All-cause	DCB	РТА	
Mortality	(N=170)	(N=160)	P-value ¹
Within cut-off of Apr 1, 2019 ¹	11.2% (19/170)	11.3% (18/160)	0.983

1. Interim results with 80% of patients completing 12-month follow-up.

No Signal Present in Randomized Trials of Paclitaxel Device Use in Other Vessel Beds – Below-the-Knee Arteries

Lutonix[®] 014 DCB Below-The-Knee Study: Survival through 36 months (interim)

No Signal Present in Randomized Trials of Paclitaxel Device Use in Other Vessel Beds – Renal Arteries

Years

No Signal Present in Randomized Trials of Paclitaxel Device Use in Other Vessel Beds

- Coronary Arteries
- Arteriovenous Dialysis Access
- Below-the-Knee Arteries
- Renal arteries
 - Paclitaxel devices have been commercially available for over 15 years.
 - No mortality signal has been observed in randomized trials in multiple vessel beds.

Agenda

Dr. Daniel Clair

Dr. Laura Mauri

Dr. Eric Secemsky

Dr. Laura Mauri

Ongoing Studies and Implications

Interpreting Multiple Sources of Safety Data

Analysis of Medicare Beneficiary Data

Next Steps and Conclusion

Interpreting Multiple Sources of Safety Data

Randomized Controlled Trial	+++	+	+	Unbiased ascertainment
Meta-Analysis of RCTs (trial-level or patient- level)	++	++	+	Quality and homogeneity of contributing RCTs
Large Real-World Comparative Analysis	+	+++	+++	Reliable adjustment to address selection bias

Available RCT Data are Limited in their Interpretation

Limitations

- Study design: designed to examine 1-year efficacy not long-term mortality
- Paclitaxel treatment: incompletely recorded before and after randomization with varied study designs
- Small sample sizes: unbalanced randomization with unstable estimates for mortality
- Missing data: high rates of withdrawal and lost to follow-up (initially 14-38% at 5 years)
- Variable adherence: risk factor modification, guideline medications, screening, medical care and visits
- Incomplete blinding: single blind, with unblinding after 1 year

FDA Panel Packet "Paclitaxel-Coated Drug Coated Balloon and Drug-Eluting Stent Late Mortality Panel"; Appendix P Figures 13 (Philips – ILLUMENATE 3-yr data) and 14 (Medtronic – SFA I/II, Cook – Zilver, and BD – Levant 2 5-yr data).

Meta-Analyses are Limited by Heterogeneity and Quality of Data Collection

Examples of Study Heterogeneity

- Device types varied not just in dose, but also by excipient, presence of stent
- Trial variations
 - Definitions (e.g. patient and lesion characteristics, endpoints, adjudication)
 - Treatment cross-over varied (designed, allowed, prohibited)
 - Durations
 - Conduct and execution
- Removing one study or changing analysis population changes results
- Sensitive to large amount of missing data

JAHA Analysis¹

Study	Pacl Events	litaxel Total	C Events	ontrol Total	Risk Ratio	RR	95%-CI	Weight (fixed)	Weight (random)
THUNDER ⁵⁷ ZILVER-PTX ^{9,19} IN.PACT SFA ^{10,56}	12 42 24	48 297 184	8 12 7	54 177 103		1.69 2.09 1.92	[0.75; 3.78] [1.13; 3.85] [0.86; 4.30]	23.9% 47.7% 28.5%	26.9% 46.3% 26.8%
Fixed effect model Random effects model Heterogeneity: $I^2 = 0\%$, τ^2	= 0, <i>p</i> = 0	529).92		334	0.5 1 2	1.94 1.93	[1.28; 2.96] [1.27; 2.93]	100.0% 	 100.0%

VIVA/NAMSA Analysis²

VIVA-NAMSA Analysis Presented June 19, 2019	Hazard Ratio Paclitaxel vs. Control (95% Cl)
Primary model	1.38 (1.06, 1.80)
As Treated, unadjusted	1.36 (1.04, 1.78)
As Treated, adjusted	1.37 (1.04, 1.80)
With additional long-term follow-up	1.30 (1.03, 1.63)
Censoring at control crossover to paclitaxel	1.31 (1.00, 1.72)
Missing data sensitivity / weighted analysis	1.36 (1.05, 1.77)
Fixed effects two-stage meta-analysis	1.36 (1.05, 1.77)
Random effects two-stage meta-analysis	1.34 (1.01, 1.78)
DCB devices only	1.25 (0.92, 1.69)
Using Zilver 2 nd randomization instead of primary	1.19 (0.89, 1.60)

^{1.} Katsanos K, et al. J Am Heart Assoc 2018;7:e011245. DOI: 10.1161/JAHA.118.011245.

^{2.} Mullin C, presented at FDA Panel June 19, 2019.

Well-Conducted Large Observational Studies Increase Precision (~224k patients)

Data source/study population	Study Inclusion [Obs. period]	Follow-up	Methods	Sample Size	Hazard Ratio (P value)	95% CI
Vascular Quality Initiative (VQI) ¹	Sep '16 – Sep '17	Mean: 509 days	Propensity matching (1:1) analysis	4,880	0.87 (0.12)	0.73, 1.04
OPTUM (Medicare Advantage and commercial payors) ²	Apr '15 – Dec '17 [Dec 31, 2018]	Median: 763 days	IPTW Cox model	20,536	1.09 (0.11)	0.98, 1.22
Medicare fee-for-service inpatient claims ³ Drug coated vs non-drug coated devices	Jan '16 – Dec '16 [Sep 30, 2017]	Median: 389 days	Multivariable Cox model	16,560	0.97 (0.43)	0.91, 1.04
Medicare fee-for-service inpatient claims ⁴ Drug-eluting vs bare metal stents	Dec '12 – Sep '15 [Dec 31, 2016]	Median: 2 years	Multivariable Cox model	51,456	0.98 (0.53)	0.93, 1.03
Medicare fee-for-service inpatient and outpatient claims ⁵ Drug coated vs non- drug coated devices	Jan '15 – Dec '17 [Apr 23, 2019]	Median: 799 days	IPTW Cox model	152,473	0.94 (<0.001)	0.93, 0.96

1. Bertges D, presented at SVS 2019.

2. Yeh RW, presented at FDA General Issues Panel June 20, 2019.

3. Secemsky E, et al., JAMA Cardiol. 2019. doi: 10.1001/jamacardio.2019.0325.

4. Secemsky E, et al., J Am Coll Cardiol. 2019;73:2636-2638.

5. Secemsky E, presented at FDA General Issues Panel June 19, 2019.

Agenda

Dr. Daniel Clair

Dr. Laura Mauri

Dr. Eric Secemsky

Dr. Laura Mauri

Ongoing Studies and Implications

Interpreting Multiple Sources of Safety Data

Analysis of Medicare Beneficiary Data

Next Steps and Conclusion

Medicare Beneficiary Data Analysis: Characteristics Pre-Weighting

Characteristic (%)	Drug-Coated Device (N=61,507)	Non-Drug-Coated Device (N=90,966)	Standardized difference (%)
Age, mean ± SD	76.5 ± 7.4	77.0 ± 7.7	6.6%
Female	44.4%	45.1%	1.4%
Caucasian	83.3%	81.5%	4.8%
Critical limb ischemia	36.8%	40.0%	6.5%
Prior amputation	6.1%	7.4%	5.3%
Tobacco use	41.5%	44.1%	5.1%
Diabetes mellitus	34.8%	37.7%	6.0%
Heart failure	14.3%	16.0%	4.8%
Chronic lung disease	19.0%	21.0%	5.2%
Renal failure	18.1%	20.3%	5.5%
Liver disease	1.2%	1.4%	1.9%
Obesity	6.4%	7.2%	3.1%
Malignancy	1.9%	2.3%	2.7%
Stent	40.8%	37.6%	6.5%
Atherectomy use	42.7%	31.2%	24.1%
Inpatient	31.8%	39.9%	16.9%
Procedural volume	217.9 ± 181.5	188.8 ± 159.0	17.1%

Medicare Beneficiary Data Analysis: Characteristics Pre-Weighting

Characteristic (%)	Drug-Coated Device (N=61,507)	Non-Drug-Coated Device (N=90,966)	Standardized difference (%)
Age, mean ± SD	76.5 ± 7.4	77.0 ± 7.7	6.6%
Female	44.4%	45.1%	1.4%
Caucasian	83.3%	81.5%	4.8%
Critical limb ischemia	36.8%	40.0%	6.5%
Prior amputation	6.1%	7.4%	5.3%
Tobacco use	41.5%	44.1%	5.1%
Diabetes mellitus	34.8%	37.7%	6.0%
Heart failure	14.3%	16.0%	4.8%
Chronic lung disease	19.0%	21.0%	5.2%
Renal failure	18.1%	20.3%	5.5%
Liver disease	1.2%	1.4%	1.9%
Obesity	6.4%	7.2%	3.1%
Malignancy	1.9%	2.3%	2.7%
Stent	40.8%	37.6%	6.5%
Atherectomy use	42.7%	31.2%	24.1%
Inpatient	31.8%	39.9%	16.9%
Procedural volume	217.9 ± 181.5	188.8 ± 159.0	17.1%

Medicare Beneficiary Data Analysis: PAD Severity - Weighted Results

Agenda

Dr. Daniel Clair

Dr. Laura Mauri

Dr. Eric Secemsky

Dr. Laura Mauri

Ongoing Studies and Implications

Interpreting Multiple Sources of Safety Data

Analysis of Medicare Beneficiary Data

Next Steps and Conclusion

Large Well-Conducted Observational Studies Demonstrate No Mortality Signal

Hazard Ratio (HR; subject level)

Risk Ratio (RR; study level)

- 1. Katsanos. K. JAHA 2018; 7:e011245.
- 2. FDA Analysis, pre vital status.
- 3. FDA Analysis, post vital status.
- 4. VIVA-NAMSA Analysis. June 3, 2019.

Large Well-Conducted Observational Studies Demonstrate No Mortality Signal

Industry Responses to FDA Panel Questions 1-5

FDA Question	Response
1. Presence of Signal	Presence of a signal in meta-analysis, not in well-designed observational comparisons
2. Class Effect	 Cannot conclude a common class effect for late mortality Inconsistent observations across studies and sponsors Differences in device platforms
3. Impact of Missing Data	 Previously missing vital status data introduced uncertainty Updated vital status information reduces observed mortality difference RCTs did not uniformly collect treatment before and after randomization (e.g. additional paclitaxel, medical therapy)
4. Subgroup Analysis	 Predictors of mortality are those expected from PAD patient population, not paclitaxel No clear treatment interactions by subgroups
5. Cause of Death	No clustering of adverse events or mortality patterns to support a causal mechanism

Industry Responses to FDA Panel Questions 6 – 12

FDA Question	Response
6. Paclitaxel Dose/Mortality Relationship	 No paclitaxel dose-mortality relationship observed
7. Pre-clinical Studies	 Pre-clinical studies in paclitaxel devices do not demonstrate a plausible mechanism for late mortality New pre-clinical studies are unlikely to yield additional insight
8. Benefit-risk Profile	 Totality of evidence exhibits consistent effectiveness and improvement in quality of life with paclitaxel devices Updated data & analyses (RCTs, large high-quality observational studies) show long-term safety Benefit-risk profile supports paclitaxel devices as first-line therapies for treatment of PAD
9. Post-market Studies / Surveillance	 Extend follow-up in large comparative studies (e.g. Medicare, OPTUM, VQI) through 5 years Adhere to FDA guidance regarding Real World Evidence
10. Labeling	 Work with FDA to review and update consistent data sets and analyses for labeling Subgroup analyses do not support indication changes
11. Changes to Study Design	Ongoing trials should continue with focused attention to completeness of data (e.g. vital status, medication, additional paclitaxel exposure) and long-term follow-up
 12. Implications for Current Trials and other indications 	 No mortality difference in four other vascular beds All ongoing studies should continue to enroll (e.g. SWEDE-PAD, BASIL-3, VOYAGER-PAD, BEST-CLI) Each device and indication should be evaluated on safety and effectiveness per normal FDA process

Over the Next 5+ years, 29 Studies will Yield Randomized Data on over 10,000 Patients

N=10,118	Vessel Bed	Name of Study	Ν	Status	Estimated Completion	NCT
		ZILVERPASS	220	Enrollment complete	December 2019: 2-year follow-up	NCT01952457
		HEROES-DCB	250	Currently enrolling	April 2019: 1-year follow-up	NCT02812966
		DCB-SFA	1080	Currently enrolling	June 2021: 2-year follow-up	NCT02648334
	Fomorononlitoal	BEST-SFA	120	Currently enrolling	September 2021: 2-year follow-up	NCT03776799
	Femoropopilieai	Pittsburgh CLI DCB	50	Currently enrolling	December 2020: 1-year follow-up	NCT02758847
		Compare I	414	Enrollment complete	October 2020: 2-year follow-up	NCT02701543
Independent		TRANSCEND	446	Currently enrolling	April 2024: 5-year follow-up	NCT03241459
N=7,350		BASIL-3	861	Currently enrolling	December 2024: 5-year follow-up	ISRCTN14469736
	Infrainguinal	SWEDEPAD	3800	Currently enrolling	June 2021: 5-year follow-up	NCT02051088
	innangunai	BEST-CLI	2100	Currently enrolling	December 2019: 5-year follow-up	NCT02060630
	Below-the-knee	DCB vs PTA in CLI and Crural arteries	70	Currently enrolling	June 2019: 1-year follow-up	NCT02750605
		DEB in AVG	33	Enrollment complete	December 2018: 1-year follow-up	NCT03388892
	AV ALLESS	DCB for AVG Restenosis	40	Currently enrolling	December 2019: 3-mon. follow-up	NCT03360279
	Femoropopliteal	RANGER II SFA	388	Enrollment complete	August 2023: 5-year follow-up	NCT03064126
		IMPERIAL	524	Enrollment complete	March 2022: 5-year follow-up	NCT02574481
		The Chocolate Touch Study	585	Currently enrolling	December 2026: 2-year follow-up	NCT02924857
		EMINENT	750	Currently enrolling	December 2022: 3-year follow-up	NCT02921230
		BIOPACT-RCT	302	Not yet enrolling	June 2021: 1-year follow-up	NCT03884257
		Italy DEB vs Nitinol stents	84	Enrollment complete December 2018: 1-year follow-up		NCT02212470
Industrv-		ILLUMENATE US	300	Enrollment complete	July 2020: 5-year follow-up	NCT01858428
Sponsored		ILLUMENATE EU	501	Enrollment complete	November 2018: 3-year follow-up	NCT01927068
Sponsored		DISRUPT PAD III	400	Currently enrolling	December 2021: 2-year follow-up	NCT02923193
N=2,768		DES BTK SAVAL	201	Currently enrolling	May 2024: 3-year follow-up	NCT03551496
		RANGER-BTK	30	Enrollment complete	November 2018: 1-year follow-up	NCT02856230
	Below-the-knee	Lutonix BTK	442	Enrollment complete	June 2020: 3-year follow-up	NCT01870401
		ILLUMENATE BTK	354	Currently enrolling	April 2024: 3-year follow-up	NCT03175744
		IN.PACT BTK	60	Enrollment complete	December 2020: 3-year follow-up	NCT02963649
		ABISS AV DCB	150	Currently enrolling	December 2019: 1.5-year follow-up	NCT02753998
	AV ALLESS	IN.PACT AV Access	330	Enrollment complete	June 2023: 5-year follow-up	NCT03041467

Next Steps and Recommendations

Collaboration across professional societies, investigators, patients, regulators and industry to improve investigation and patient care in PAD

- 1. Ongoing and Future PAD Studies
 - Emphasize complete follow-up through site education and consent for vital status ascertainment
 - Record prior and additional revascularizations, including treatment type, throughout follow-up
 - Ascertain adherence to optimal medical therapy, throughout follow-up
 - Implement structured minimum core data set and definitions for future PAD device evaluation
- 2. Real World Data
 - Extend follow-up in large comparative studies (e.g. Medicare, OPTUM, VQI) through 5 years
 - Adhere to FDA guidance regarding Real World Evidence
- 3. Labeling Recommendations
 - Work with FDA to review and update consistent data sets and analyses for labeling
 - Maintain current indications

Next Steps and Recommendations

- 4. Patient and Physician Guidance
 - Assess gaps in treatment, medical care, and risk factor modification for patients undergoing revascularization for PAD
 - Convene consortium of PAD stakeholders to create clinical guidelines for patients undergoing peripheral revascularization
 - Timely publication of updated data and results to inform patient and physician decision-making
- 5. Ensure patient access to treatment by reassuring healthcare providers regarding the benefit and safety of these devices

Next Steps and Recommendations

- 4. Patient and Physician Guidance
 - Assess gaps in treatment, medical care, and risk factor modification for patients undergoing revascularization for PAD
 - Convene consortium of PAD stakeholders to create clinical guidelines for patients undergoing peripheral revascularization
 - Timely publication of updated data and results to inform patient and physician decision-making
- 5. Ensure patient access to treatment by reassuring healthcare providers regarding the benefit and safety of these devices

Request FDA update March 15th Letter to Healthcare Providers to convey the totality of evidence available in support of the benefit-risk profile of these devices for their indicated use.