

Pitfalls in Oncology Drug Development

Nicholas Richardson DO, MPH Pediatric Oncologist

Disclosure Information

- I have no financial relationships to disclose
- I will not be discussing off-label or investigational use of named products in my presentation

Challenges in Oncology Drug Development and Review

 Oncology drugs are developed for lifethreatening diseases

\checkmark	Balance: Patient access and adequately studying drug
\checkmark	Small patient samples and short drug exposure
\checkmark	Severe toxicity may be deemed acceptable
1	Indications span a wide spectrum Prevention – Cure
\checkmark	Risk:Benefit is patient and drug specific

Challenges in Oncology Drug Development

Registration trials may poorly predict real-world experience with an oncology drug

	Chronic Lymphocytic Leukemia				
Key Comparison	Clinical Trial (N = 89)	Real World (N = 294)			
Age≥ 75 years	36%	52%			
Charlson Score >3	24%	52%			
Treatment Duration Median	16 months	6 months			
Overall Survival by 6	94%	86%			
months	RW vs CT: HR 1.4	D (CI: 0.93, 2.11)			
Abbreviations: CI: 95% Confidence interval, CT: Clinical trial, HR: Hazard ratio, RW: Real world Source: Adapted from Bird ST et al. Blood 2018					

Common Errors in Developing Oncology Drugs

- Drug activity vs. Clinical benefit
- Dose Optimization
- Relevance to U.S. population
- Trial design

Common Errors in Developing Oncology Drugs

- Drug activity vs. Clinical benefit
- Dose Optimization
- Relevance to U.S. population
- Trial design

Drug Activity vs Clinical Benefit

• Activity: reflects biologic effect

 Clinical benefit: reflects clinical effect that is meaningful for a patient

 Failure to distinguish between activity and clinical benefit may waste resources

Drug Activity vs Clinical Benefit

FDA

Drug Discovery and Development Timeline

American Association of Cancer Research, 2011 Cancer Progress Report

Common Errors in Developing Oncology Drugs

- Drug activity vs. Clinical benefit
- Dose Optimization
- Relevance to U.S. population
- Trial design

FDA

Dose Optimization

 Maximum tolerated dose (MTD) historically chosen as the dose for Phase 2 and 3 trials

- May not be appropriate for non-cytotoxic therapies
 - Targeted therapies
 - Chronic administration
 - Goal of treatment

Dose Optimization Example

- Initial U.S. approval in **2002** at 250mg IM monthly
- Based on non-inferiority versus anastrozole in 2 clinical trials

 Regulators requested post-marketing trial comparing approved dose/schedule to a higher dose with a loading dose

Dose Optimization Example

- Trial compared:
 - 250mg IM monthly
 - 500mg IM on Day
 1, Day 14, and Day
 28 and monthly
 thereafter
- Improved PFS and no greater toxicity
- Label updated in **2010**

FDA

IM: Intramuscular; PFS: Progression-free survival Di Leo, A., et al. J Clin Oncol, 2010. 28(30). 13

New Molecular Entities with Dose-Related Postmarketing Studies

2011	2012	2013	2014	2015
 1.lpilimumab 2.Vandetanib 3.Abiraterone 4.Rivaroxaban 5.Vemurafenib 6.Brentuximab 7.Crizotinib 8.Deferiprone 9.Ruxolitinib 10.Asparaginase 	 1.Glucarpidase 2.Axitinib 3.Vismodegib 4.Peginesatide 5.Pertuzumab 6.Carfilzomib 7.Ziv-aflibercept 8.Tbo-filgrastim 9.Enzalutamide 10.Bosutinib 11.Regorafenib 12.Omacetaxine 13.Cabozantinib 14.Ponatinib 	 1.Pomalidomide 2.Ado- trastuzumab 3.Radium RA-223 4.Trametinib 5.Dabrafenib 6.Afatinib 7.Obinutuzumab 8.Ibrutinib 	 1.Ramucirumab 2.Siltuximab 3.Ceritinib 4.Belinostat 5.Idelalisib 6.Pembrolizumab 7.Blinatumomab 8.Olaparib 9.Nivolumab 	1.Edoxaban 2.Palbociclib 3.Lenvatinib 4.Panobinostat 5.Dinutuximab 6.Sonidegib 7.Trifluridine/ Tipiracil 8.Idarucizumab 9.Trabectedin 10.Cobimetinib 11.Osimertinib 12.Daratumumab 13.Ixazomib 14.Necitumumab

Common Errors in Developing Oncology Drugs

- Drug activity vs. Clinical benefit
- Dose Optimization
- Relevance to U.S. population
- Trial design

Question

Can trials conducted outside of the United States be used to support U.S. regulatory approval?

- A. Yes
- B. No

Relevance to the U.S. Population

- FDA
- Yes, trials to support U.S. regulatory approval may be conducted outside of the U.S. but should be relevant to a U.S. population
 - Relevant patient population
 - Relevant treatment arms
 - Appropriate endpoint
 - Context of available therapy

Common Errors in Developing Oncology Drugs

- Drug activity vs. Clinical benefit
- Dose Optimization
- Relevance to U.S. population
- Trial design

Scenario

- 2 drugs
 - Drug X (Your drug)
 - Drug Y (Competitor)
- Biologic rationale to combine the drugs
- You're asked to design the Phase 3 trial of your company's drug to support potential FDA approval

FDA

Trial Design Case #1

- Your company makes Drug X
- Which design do you choose? Why?

FDA

Trial Design Case #1

• The purpose is to isolate the treatment effect for your drug (Drug X)

- FDA
- Your company is developing a first-in-class targeted therapy (Drug A) for patients with early-stage breast cancer
- Preclinical studies suggest Drug A will work better when given with a well-known chemotherapy agent ("Cyto") used in other solid tumors
- You're asked to help design a Phase 3 trial to support potential FDA approval

 You proposed the trial design below to support initial FDA approval of your company's drug – Drug A

FDA

- Isolate treatment effect
- Control arm
- Remove "Cyto"
- Add a 3rd treatment arm
- High-Risk Patients AC-Taxol + Cyto/Drug A

• Solution

Interim Analyses

- Phase 3 trial: Cytotoxic +/- Drug B in 324 patients with advanced, refractory breast cancer
- Trial terminated after a prespecified interim analysis demonstrated a **17** week difference in time to progression (TTP) favoring the combination arm
 - Hazard ratio (HR) 0.49, p<0.001
 - No difference in overall survival (HR 0.92, p=0.72)
- Safety
 - Diarrhea (65%)
 - Hand-foot syndrome (53%)
 - Rash (28%)
 - Decreased heart function (5%)

Final analysis of the same trial:

- Investigator 6 week difference in TTP in favor of the combination
 - HR 0.57, p=0.0001
 - No difference in overall survival (HR 0.89, p=0.28)

• Risk-benefit evaluation: interim vs. final

Subgroup Analyses

• Great for hypothesis generation

• Should not be used to salvage a trial a failed trial

• "It's like shooting an arrow and then painting the bull's-eye around it!" Richard Pazdur, MD

Closing Remarks

- Moderate mid- to late-stage error/failure rate for oncology drugs that can be improved
- Advocates can play a big role
- Frequent consultation with FDA
- Clinical risk-benefit is essential

Acknowledgements

- Tatiana Prowell
- Aviva Krauss
- Virginia Kwitkowski
- Paul Kluetz
- Oncology Center of Excellence

