
FDA PUBLIC MEETING PROMOTING EFFECTIVE DRUG DEVELOPMENT PROGRAMS: OPPORTUNITIES AND PRIORITIES FOR FDA'S OFFICE OF NEW DRUGS

Speaker: Ting-Chao Chou, PD Science LLC, Paramus, New Jersey 07652-1754 E-Mail: dtchou99@gmail.com

Mass-Action Law Pharmacodynamics (MAL-PD) for Quantitative Biomedical R&D, and Efficient Drug-Evaluation Guidance: Computerized Data Analysis of Single Drug and Drug Combinations in Vitro, in Animals and in Clinical Trials

Place: Food and Drug Administration White Oak Campus, 10903 New Hampshire Ave. Silver Spring, MD 20993 **Date:** November 7, 2019

"Theoretical Basis, Experimental Design, and Computerized Simulation of Synergism and Antagonism in Drug Combination Studies"

The Mass-Action Law PD/BD Theory, Equations, Algorithms and Computer Simulation

Chou TC. Pharmacol. Rev. 58: 621-681, 2006. *Eqs. 7-9; 16,19,20; and 21-23.*

I. Median-Effect Equation [MEE] & Plot (Chou, 1976) [1st Law of MAL] {Doctrine of the Median}

$$\frac{f_a}{f_u} = \left(\frac{D}{D_m}\right)^m \qquad D = D_m \left(\frac{f_a}{1 - f_a}\right)^m \qquad f_a = \frac{1}{1 + \left(\frac{D_m}{D}\right)^m}$$

II. Combination Index Equation [CIE] & Plot (Chou-Talalay, 1984)

$$CI = \frac{(D_{\text{comb}})_1}{(D_{\text{alone}})_1} + \frac{(D_{\text{comb}})_2}{(D_{\text{alone}})_2} = \frac{(D)_1}{(D_x)_1} + \frac{(D)_2}{(D_x)_2} , \quad \text{Ratio:} \frac{(D)_1}{(D)_2} = \frac{P}{Q}$$
$$= \frac{(D)_{1,2}[P/(P+Q)]}{(D_m)_1[f_a/(1-f_a)]^{1/m_1}} + \frac{(D)_{1,2}[Q/(P+Q)]}{(D_m)_2[f_a/(1-f_a)]^{1/m_2}}$$

D & E Interchangeability D-E Curves Linearization Dm as Universal Reference Point and Dynamic Common Link.

Dynamic Interaction Dynamic Integration Synergy Quantification

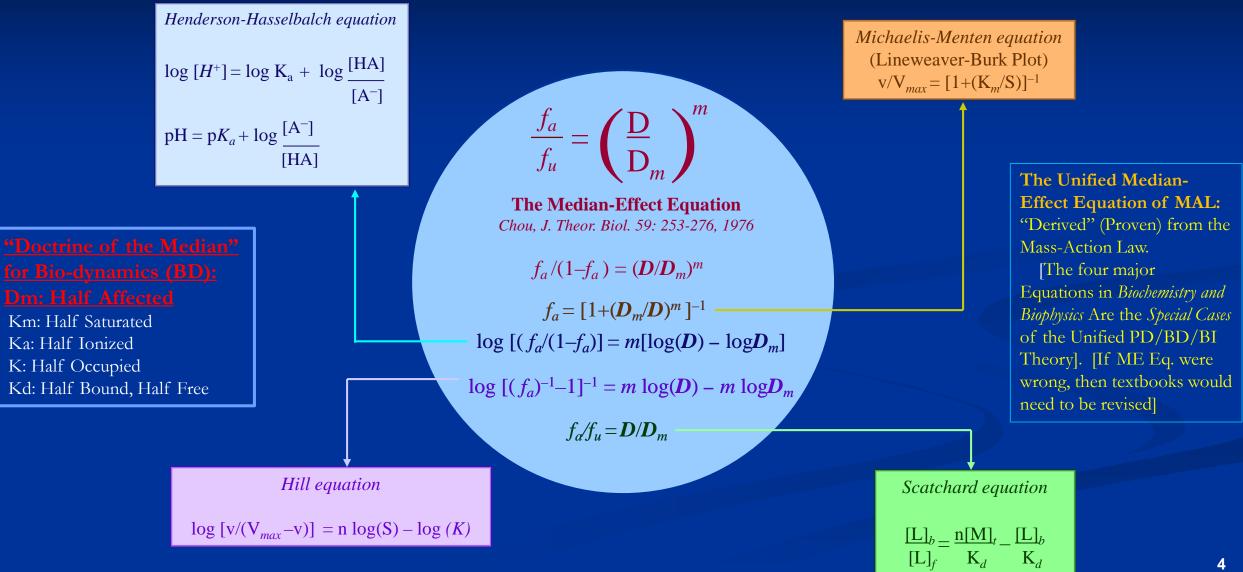
III. Dose-Reduction Index [DRIE] & Plot (Chou-Chou, 1988)

CI = 1 indicates additive effect < 1 indicates synergism > 1 indicates antagonism

$$(DRI)_{1} = \frac{(D_{\text{alone}})_{1}}{(D_{\text{comb}})_{1}} = \frac{(D_{x})_{1}}{(D)_{1}} = \frac{(D_{m})_{1}[f_{a}/(1-f_{a})]^{1/m_{1}}}{(D)_{1}}, \quad (DRI)_{2} = \dots$$

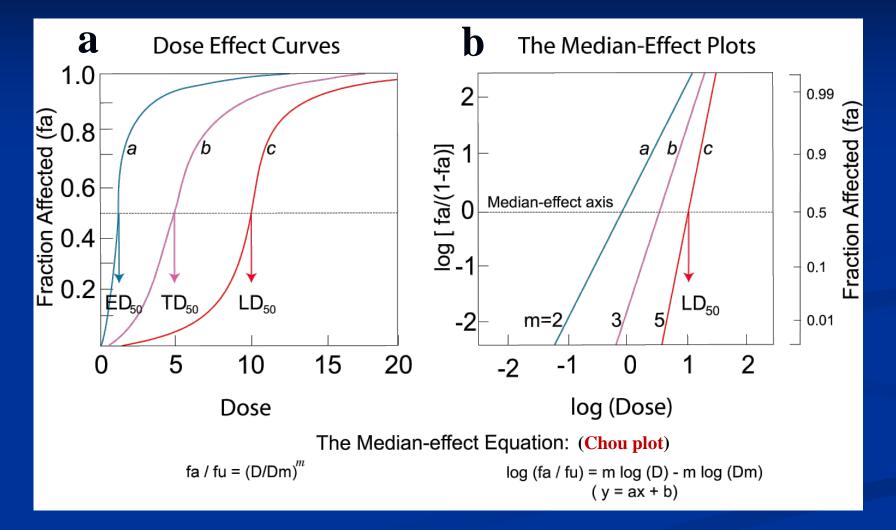
$$DRI = 1 \text{ No dose reduction}$$

$$> 1 \text{ Favorable dose reduction}$$


$$< 1 \text{ Not favorable dose reduction}$$

Retaining Efficacy & Decreasing Toxicity Therapeutic Advantage

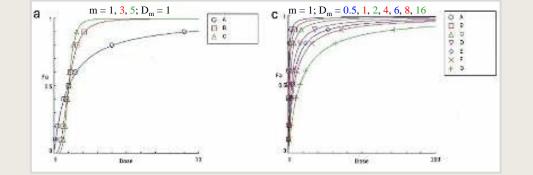
The Unified PD/BD Theory of The Mass-Action Law


Derivation of Major Biochemical and Biophysical Equations from the Median-Effect Equation

[Chou T.C. Pharmacol. Rev. 58: 621-681, 2006; Fig. 4]

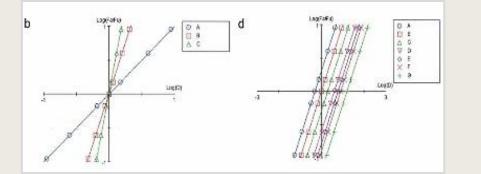
"Linearization" of Dose-Effect Curves

[X-Intercept for *Potency*; Slope for *Dynamic Order* (Sigmoidicity of Shape)]



[Chou T.C. J. Theor. Biol. 59: 253-276, 1976]

The Computer Simulation of the Median-Effect Equation


The Dose-Effect Curves: with different "shape" and "potency"

Linearize All Dose-Effect Curves of Different <u>Shapes</u> and Different <u>Potencies</u> with a <u>Minimum of Only Two</u> <u>Data Points.</u>

The Median-Effect Plot: (Chou Plot): The "Linearization" Principle

Source: Chou TC. Pharmacol. Rev. 58: 621-681, 2006. Fig. 11. Chou TC. Integr. Biol. 3: 548-559, 2011. Fig. 1.

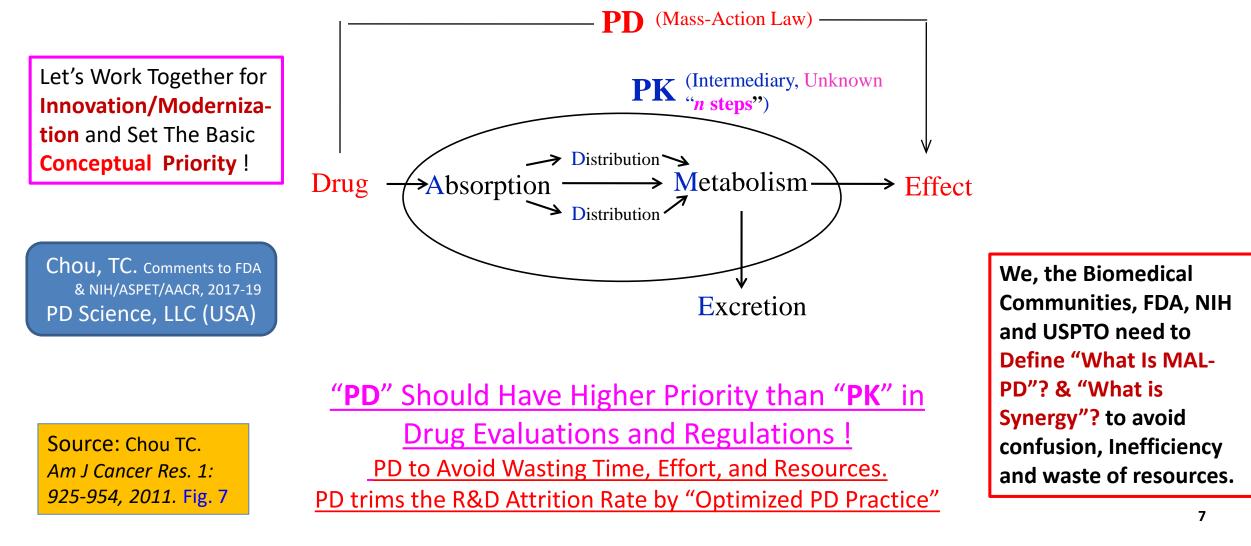
The Most Important Bio-Dynamic Findings of MAL-MEE ! Using the Reverse Logics.

" The Two-Data Point Theory" : <u>A New Paradigm that</u> Defies The Centuries-Old Common Held Belief!"

With MAL-PD, "Only Two Data Points" are required to simulate A Dose-Effect Curve !

• Dose-Effect Curves Follow the Median-Effect Principle of the Mass-Action Law: The "Median" Serves as "The Universal Reference Point and Link as The Largest Common Denominator for Simplifying the Complex Biological Systems".

"One can draw a specific dose-effect curve with a *theoretical minimum* of "only two data points" - [The 3rd Point is dose zero, and the 4th point the Median-Effect Dose (Dm). Any 2-data points on a line represent the same line or the same Dose-Effect Curve!] {The Two Data Points Minimum Theory}. This the Basis for the "Digital Bio-Dynamics" and for the Efficient, Effective "Econo-Green" Biomedical Research & Development and Regulations. [Chou TC. Integr. Biol. 3: 548-559, 2011]

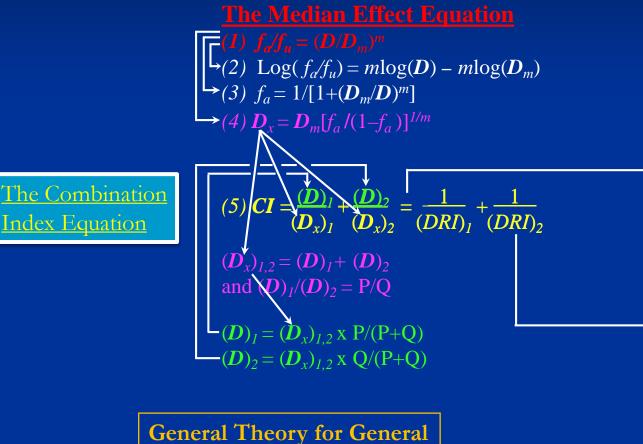

The Nature's Mass-Action Law Is The "Model" of "PD"

PD Is The Fundamental "Dose" and "Effect" Mathematical Relationship.

[PK is Empirical Observational Science that Has No "Model"].

[PK is Just the Intermediary *n*-Steps (ADME) within the PD Domain].

[PK Is An Endless Sink of Research Resources]. ["PD" Determines of Drug Efficacy & Toxicity; But "PK" Does Not].



Why Emphasis on Pharmcodynamics (PD) Over Pharmacokinetics (PK)

[Presented at Drug Development Summit, Zurich, Switzerland, by Chou TC 6.08.2011; Am J Cancer Res 1(7): 925-954, 2011, Table 2]

Items	PD	РК		
Mode of action	What drug does to the body	What body does to the drug		
Characteristics	Mainly vary dose (fixed time) Single Unified Theory of Mass-Action Law	Mainly vary time (fixed dose) Observational Multi-Factorial Mix		
Principle	The median-effect principle of the mass-action law	Empirical phenomenal /observations		
Rigorousness	Explicitly derived equations	Empirically perceived formula		
Applications	Physico/chemical quantitative parameters in Vitro & in Vivo	Probabilistic empiric parameters in Vivo Only		
Parameters & Constants [<i>Defined</i> PD And <i>Empirical</i> PK]	D _m , m, r, CI, DRI, IC ₅₀ , K _m , K _i , K _a and K _d Competitiveness, Exclusivity, Synergism, Antagonism [Mass-action parameters for potency, shape, dynamic order, and interaction indices]	t _{1/2} , C _{max} , Cl, AUC, V _{dis} Absorption, Distribution, Metabolism, Excretion [Measurement of Parameters without direct physico- chemical bearing]		
Determining Efficacy	Yes	No		
Determining Toxicity	Yes	No		
Determinant for	What it takes to be a good drug	Help proper use of a drug		

Algorithm for Computerized Simulation of Synergism, Additivism and Antagonism of the Effect of Multiple Drugs

Bio-Interactions Dynamics

[Chou. Pharmacol Rev 58: 621-681, 1984. Fig. 7]

 $\boldsymbol{D} = \text{Dose}$

 f_a = Fraction affected f_u = Fraction unaffected D_m = Median-effect dose m = Slope, Hill-type coefficient or kinetic/dynamic order

CI : Combination Index *CI* = 1 (additive effect) < 1 (synergism) > 1 (antagonism)

→ *DRI*: Dose-Reduction Index $(DRI)_1 = \frac{(D_x)_1}{(D)_1}, \quad (DRI)_2 = \frac{(D_x)_2}{(D)_2}$

For *n* Drug Combinations: $CI = \sum_{J=1}^{n} \frac{(D)}{(D_{x})_{j}^{j}}$

System Analysis with General Applications: This unified algorithm is *Independent* to drug ratio, drug units, mode of actions, and "mechanism of actions". It is valid for *n* drugs or entities for combination

interactions in vitro and in vivo.

A "Constant-Ratio" Econo-Green Experimental Design Showing the Outlay of Two Drugs for Drug Combination Analysis *in Vitro*

Drug 1 0.25X 0.5X 2X 4X (ED₅₀)1 (ED₅₀)1 (ED₅₀)1 (ED₅₀)1 0 $(ED_{50})_1$ Control (f_a)₁ 0 $(f_{a})_{0}$ $(f_{a})_{1}$ $(f_{a})_{1}$ $(f_a)_1$ $(f_a)_1$ 0.25X $(f_a)_2$ $(f_a)_{1,2}$ $(ED_{50})_2$ Drug 2 0.5X $(f_a)_2$ $(f_a)_{1,2}$ (ED₅₀)₂ (ED₅₀)₂ $(f_{a})_{2}$ $(f_a)_{1,2}$ 2X $(f_a)_2$ $(f_a)_{1,2}$ (ED₅₀)₂ **4X** $(f_{a})_{2}$ $(f_a)_{1,2}$ $(ED_{50})_2$

[Using Only 16 Data Points, (3X5 +1 = 16) in duplicates or triplicates]*

Simple and Efficient Constant-Ratio Diagonal Combo Design (*Recommended*)

Chou TC. Pharmacol. Rev. 56: 621-681, 2006. *Table 5.* *For animal or clinical trials, the practical minimum is 10 data points (3X3 +1 = 10), by removing the lowest and highest doses in this scheme. Each Dose has 4-6 or more animals or patients, depending on the measurement need, in vivo with 1.3-1.5 fold serial dose dilutions instead of 2fold dilutions in vitro.

[The Recommended Practical Minimum Number of Data Points for Two Drug Combinations In Vitro, In Animals and In Clinical Trials need: 16, 10, and 10 Dose-Points, respectively]

[The "Non-Constant Ratio Design" can also be used for quantitative Synergy determination. But No automatic computerized simulation can be done]

For PD/BD/BI of "Single Drug" or "Drug Combinations"

[An "One Second" Automated Data Analysis Based on The Mass-Action Law]

A Computer Program for Quantitation of Synergism and Antagonism in Drug Combinations, and the Determination of IC_{50} , ED_{50} and LD_{50} Values.

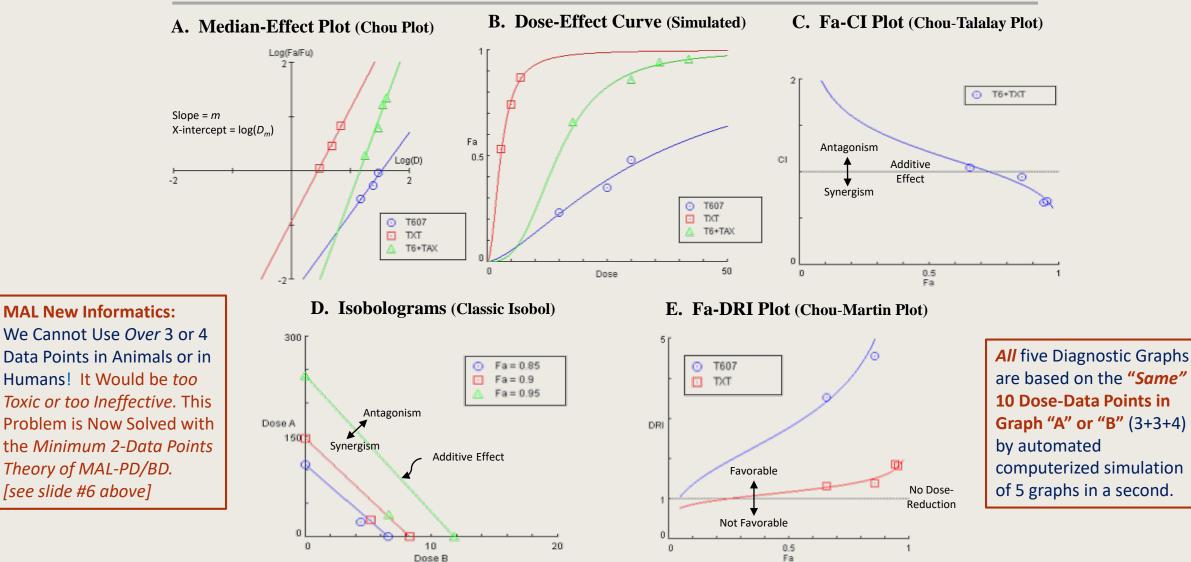
By Ting-Chao Chou (MSKCC)

and Nick Martin (MIT)

The Quantitative, Derived, Proven PD Software.

Published by ComboSyn, Inc.

[©]Copyright 2004, Offered for Free Download as A Donation to the Biomedical Communities *upon Registration*: Since 8/1/2012


[As of 11.5.2019: 35,806 Downloads by Bio-Medical Scientists from 129 Countries or Territories]

http://www.combosyn.com – PD Science, LLC (USA)

Graphic Dynamic Transformations by Mass-Action Law Algorithms

"Drug Combination Study In Animals Using Only 10 Data Points"

Anti-HCT-116 Tumor Xenograft in Nude Mice: T-607:Taxotere & Combinations (5:1), Day 35 Data. (Each dose point, n=6 mice/dose). *Fu J, Zhang N, Chou JH, Dong H, Lin SF, Ulrich-Merzenich G, & Chou TC. Synergy 3: 15-30, 2016. (Figs.4 & 5)*

Cost-Effective.	[Chou T	C, Integrative Bio	l. 3: 548-559, 2011, T	able 1]	
Fewer		ý U			"Design"
Doses/Data		In Vitro	In Animal	In Clinic (Phase I)	Dictates Another the Mathematic
Point.	Time & Effort	2 weeks	2 months	>1 year	Analytic Method and Precludes
Computer-					Possible
Simulated		\$2 00	\$3 ,000		Conclusions.
Quantitative/	Non-wage Cost	\$200 [cells and	\$3,000 [nude mice]	Expensive Trials [\$ Multi- millions,Vary]	
		chemicals]		millions, vary]	"If use only <i>single</i>
Conclusions.				> 36	dose of any drug
No Reason to	Sample <mark>Size</mark>	$> 2 \times 10^{6}$	> 65 [nude mice]	[vary based on accuracy	in drug combination, it is
Waste Time,		[cells]	[Chou-Talalay method]	of end-point determination] [Chou-Talalay method]	not possible to
Efforts and					determine
Resources in	"Practical" Minimum of				"Synergy", no
Animal Studies and	Data Points	16* (5+5+5+1)	10 (3+3+3+1)	10 (3+3+3+1)	matter how accurate is your
in Clinical Trials	(Econo-Green Approach)				assay, or how long
When Quantitative,				D°66° 14	time you spent for
Efficient, Effective	Quantitative	Very Easy [But frequently not done properly	Not Difficult	Difficult Use Surrogate Markers,	your project!"
Method Is	"Synergy" Determination		[Rarely properly done in the past]	Fractional Doses and	
Available.		in the past]		Scanning	

Comparison of Two-Drug Combinations for Anti-Cancer Agents Using "Econo-Green" Small Size Experimental Design [Chou TC, Am J Cancer Res 1(7): 925-954, 2011, Table 6]

Efficient,

*Practical increase of data points in vitro due to simplicity, low cost, and no ethical, legal restrictions.

	Tales of Two Anti-HIV Clinical Trials PD Needs Two (or						
	AZT + 3TC		$AZT + INF_{\alpha}$	More) Doses, for			
It Is Not Possible to		J.J. Eron et al. (9 authors + Northern Am. HIV Working Party	D. Mildvan et al. (21 authors)	both "Potency" and "Shape". Single Dose Generates A			
Quantify Synergy	Publication	<u>N. Engl. J. Med.</u> 333: 1662-1669, 1995	Antiviral Therapy 1(2): 77-88, 1996	Potency <i>Point, but</i> <i>No Shape</i> .			
with a Single	Journal	28.5	3.1				
Dose of Any Drug !	Impact Facto Number of Pa			The PD-Doctrine Challenges <i>All</i> Clinical Trials for Protocol-Designs			
AZT+IFN Is A Life	Surrogate Ma	rker CD_4^+ , HIV-RNA	P24 Antigen, CD_4^+	Using "Only Single Dose".			
Example for Econo-Green, Efficient,	Treatment Des	Fractionated Repeated Doses AZT <u>Single</u> Dose, 3TC 2 Doses	Fractionated Repeated Doses Both Drugs have 3 Doses. Used Only	10 Data Points			
Computerized Clinical Protocol	What They	<u>Combination Effect is Greater than</u>					
Design, Using	Have Proved	Each Drug Alone" Statistics Not Possible to Claim Synergis	Using Combination Index Metho (CI < 1 determined syner)				
the Chou-Talalay CI Method.		A+B > A, $A+B > B$ (p<0.001). Axiom Does Not No A Proof !		ethod.			

Conclusion: Synergy is Not determined by *p* values but rather by the CI values Synergy is Not a Statistical Issue but rather a Mass-Action Law Issue [*Chou T.C. Integrative Biol. 3: 548-559, 2011. p.557 and Chou TC. Synergy 1: 3-21, 2014. Table 4*]

Trends of Drug Combination Methods for Synergy Determination, 1900 to October, 2019*

The Combineties		Thomson Reuters Web of Science Citation Database						
The Combination Index (CI) equation	Method, and Reference Source		Trend of Citation					Average
is actually			2016	2017	2018	2019*	Total Citations Since Publication	Citations per year
"mathematically derived" from	A. Chou, TC & Talalay, P Adv. Eng. Regul. 1984; 22:27-55 [MEE & CI Theory]	309	311	329	325	256	<u>4,929</u>	141.5
system analysis of the mass-action law (MAL), and its	B. Chou, TC Pharmacol. Rev. 2006;58: 621-681 [MEE, CI Review]	265	302	319	300	276	<u>2,359</u>	183.9
	C. Chou TC Cancer Res. 2010; 70: 440-446 [CI Perspectives]	242	293	323	340	351	<u>1,989</u>	225.3
algorithm is exactly for general	D. Berenbaum, MC Pharmacol. Rev. 1989; 41: 93-141	40	51	40	43	31	1,123	37.6
"quantitative determination" of synergy. This set the CI method apart from all others Methods.	E. Bliss, CI Ann. Appl. Biol. 1939; 26: 585-615	68	105	88	99	70	1,105	13.8
	F. Greco, WR et al Pharamacol. Rev. 1995; 47: 331-385	73	78	75	63	50	931	39.1
	G. Steel GG & Peckham MJ Int. J. Radiant. Oncol. BioPhys. 1979; 5: 85-91	18	18	22	11	14	765	19.2
	H. Tallarida, RJ J. Pharmacol. Exp. Ther. 2001; 298: 865-872	46	31	36	24	21	488	7.5
	I. Elion GB, Singer S & Hitchings GH J. Biol. Chem. 1954; 208: 477-488	7	3	7	4	1	472	26.5
This Table Is Updated from Zhang N. et al.	J. Prichard, MN & Shipman C Jr Antiviral Res. 1990; 14: 181-205	27	35	30	15	9	450	15.6
	K. Webb J.L. Acad. Press. 1963; 1: 66-79, 488-512	7	7	11	11	6	315#	5.6
Synergy 6: 97-104, 2016. <i>Table 2</i> .	L. Loewe, S Pharmacol. Rev. 1957; 9: 237-242	2	0	2	2	0	126	2.0

*Based on Thomson Reuters Web of Science all database, as of October 21, 2019. (Citation numbers are higher in Google Scholar Citations). *Based on Google Scholar Citations, as of October 21, 2019.

MAL-PD Based Computerized CI Simulation

of Synergism/Antagonism by CompuSyn

[The Practical, Efficient, Econo-Green & Quantitative Bio-Informatics]

Refs. Chou TC.

Pharmacol. Rev. 58: 621-681, 2006. pp.638-643. Cancer Res. 70:440-446, 2010. p.444 Integr. Biol. 3: 548-559, 2011, p. 558. Synergy 1: 3-21, 2014. (Q&A). Synergy 3: 15-30, 2016. Fu J. et al (CompuSyn Report : pp.21-26).

Primary Questions:

- Is there any synergism?
- How much synergism?
- Synergism at what dose levels?
- Synergism at what effect levels?
- What the exhibited isobologram looks like?
- How many folds dose reduction for each drug as results of synergism?

Other Questions:

- Optimal combination ratio (1:1; 3:1; 1:3 which better?)
- Schedule dependency (Simultaneous, A follows B, B follows A)
- Selectivity of synergism (Target vs Host)
- **Condition directed synergism** (Temperature, Pressure, pH, Oxygen Tension ..)

These Questions Are Answered by Combination Index Equation and CompuSyn software.

Among *all* ten Drug Synergy Determination Methods, *"Only* CI Method is Quantitative".

Combination Therapy Is the Mostly Widely Used Treatment for the Most Dreadful Diseases Such As Cancer and AIDS. It is extremely Important to "Quantify Synergy".

