
Bridging Knowledge Gaps in PBPK through Open Science

Marc R. Gastonguay, Ph.D. Matthew M. Riggs, Ph.D.

Contributors to Knowledge Gaps in PBPK

- **Growth of Science (Global Knowledge Gaps)**
 - Emerging information on quantitative physiology: e.g. ontogeny, expression levels
 - New therapeutic modalities and targets
 - ² Closed Science (Local Knowledge Gaps / Silos)
 - Currently, most published PBPK modeling results are not reproducible
 - Missed opportunity to share precompetitive learnings

PBPK Models Disentangled from PBPK Software

Separate Software from Science

• Goals are not always aligned

Evaluate Models Independent of Software

• Performance of each is important but should be independently verified and validated

Let Physiology be Free and Open

• Allows for interoperability, accessibility, shared learning

Transparent and Reproducible Model Specification

Structural Model Transparency

• Provide complete mathematical specification for the model structure

Statistical Model Transparency

• Provide complete specification of parameters, distributions, and related hierarchical structure

Specific Software Implementation

• Provide complete model specification code set and code for generation of derived tables and figures for the tool or tools used to conduct the work.

Open Provenance of Model Parameter Derivation

Define for Each Parameter

• Source, species, units, sample size, precision, disease state, functional relationships, optimized or experimentally derived

Explore Alternative Parameters/Sources

• If available, other cited values or the plausible range of values used in global and local sensitivity analyses

Interoperability Standards

- Develop parameter specification standards for content and format (e.g. XML)
- Allows for automated connectivity with various software tools.

Quality Software & Model Development Life Cycle Management

Software Development Life Cycle

- Professional software development standards and best practices
- Peer reviewed
- Iterative or pre-specified requirements, implementation, tests, acceptance, and documentation
- Commercial or open-source

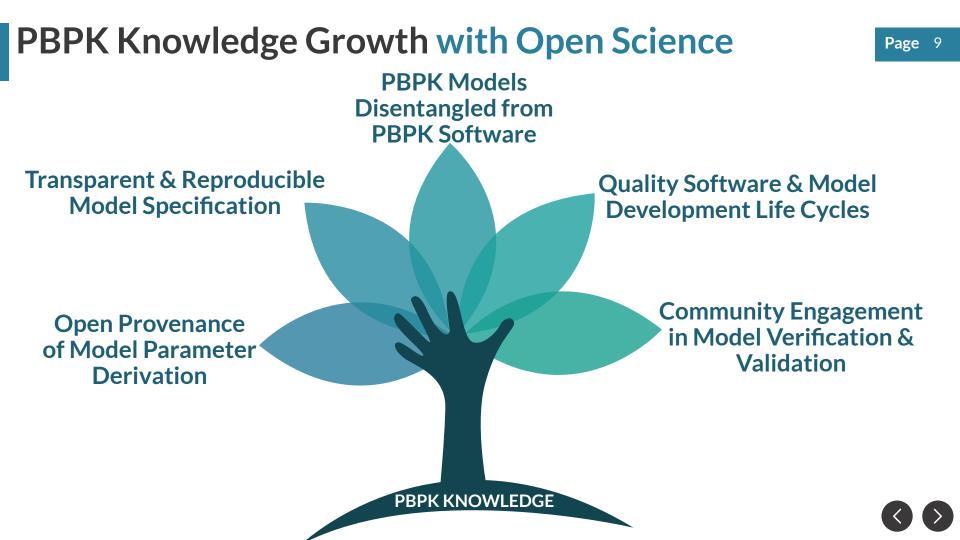
Model Development Life Cycle

• Similar principles and processes applied to model development

Community Engagement in Model Verification & Validation

Quality

• "Given enough eyeballs, all bugs are shallow." -E.S. Raymond


Scientific Relevance

• Allows varied scientific expertise to impact the model

Credibility

• Widespread, documented, qualified testing and use leads to credibility = understanding and documentation of how (and where) the models work (or don't).

Thank You

Presentation available: https://metrumrg.com/publications/

