

JNIVERSIT

Improved bioequivalence assessment through model-informed and model-based strategies

Andrew C. Hooker, Ph.D.

Associate Professor of Pharmacometrics

Xiaomei Chen, Piyanan Assawasuwannakit and Mats O. Karlsson

Dept. of Pharmaceutical Biosciences Uppsala University

Uppsala, Sweden

Standard bioequivalence (BE) studies

 BE determined by comparing the 90% confidence interval of the ratio (comparator vs. reference) of geometric means of secondary (summary) PK parameters with predetermined limits.

Potential problems with standard BE approaches: Problems with NCA calculations

- Sparse data problems
- Assume equal weight for all observations
- Sensitivity to missing data
- Sensitivity to data below the limit of quantification
- Interpolation problems from the last observation to ∞
- Hard to separate variability sources (BSV/WSV/RUV)
- Ad hoc design of sampling times

Problems of standard bioequivalence evaluation

- Drugs with long half-life (e.g. LAI)
 - Long-term BE trial
 - Parallel study leading to low power
- Steady-state BE studies
 - Methods for establishing steady state can be inaccurate
- Highly variable drugs (HVD)
 - BE design needs 3- or 4-way crossover study
 - Estimation of between occasion variability can be biased/imprecise
- Others
 - Designs can be inefficient
 - Special formulations, e.g. local drug product needs clinical endpoint BE study

— ...

Population (NLME) model based approaches in general can handle these problems

- Built to handle sparse data and works well with parallel-group studies
- NCA Problems solved:
 - assumption about equal weight of all observations
 - sensitivity to missing data
 - sensitivity to data below the limit of quantification
 - interpolation problems from the last observation to ∞
 - Sparse data problems
- Can separate variation of different levels
 - Between subject variation (BSV) on PK parameters
 - Within subject variation (WSV, occasion variation) on PK parameters
 - Residual error on concentration
- Higher power
- Can optimize design (for even higher power)

How modeling can help with BE problems and method improvements

- Model-informed BE approach
 - Use pharmacometric models to understand and optimize the operating characteristics of standard BE methods and designs
- Model-based BE analysis
- Optimal design approaches for better BE study design

Two types of BE study designs for long-acting injectables (LAI)

7

Multiple covariates affects LAI absorption, increasing variation

Potential solution to increase power: Adding fixed covariate effects in the analysis

 $\log(AUC)_{i} = \mu + formulation + other covariates + \varepsilon_{i}$ $M \otimes I \longrightarrow \bigcup_{i \in \mathbb{N}} \bigoplus_{i \in \mathbb{N}} \bigoplus_$

Assesment of steady state?

Switch study, different KA in test compound

- Standard Assessment of SS uses linear regression of last 3 trough concentrations.
- Systems with high within occasion (WSV) or residual variability (RUV) will have highly uncertain linear regression, and thus more likely be (wrongly) assessed as at SS
- Model based methods can asses SS ignoring WSV and RUV

Possible solution to reduce BE study duration: use switch study instead of requiring steady state

Our developed model-based BE method

ACOP 2019, Andrew Hooker, Development and comparison of model-based bioequivalence analysis methods on sparse data.

ACOP 2019, Xiaomei Chen, Model-based bioequivalence evaluation for ophthalmic products using model averaging approaches.

Type I error is controlled for this model-based BE method

Overall type I error

Model-based method using SIR - Standard NCA

method

Model-based method showed higher power than NCA-based method

Power for each metric N=40 n=3 N=40 N=24 N=24 n=10 n=10 n=5 100 -•• • ٠ 90 -80 -70 . Power (%) 100 90 -80 -70 -AUCinf AUClast AUCinf AUClast Cmax AUCinf AUClast Cmax AUCinf AUClast Cmax Cmax

method - Model-based method using SIR - Standard NCA

method 🔸 Model-based method using SIR 🔸 Standard NCA

BE for highly variable drugs (HVD) using referencescaled average bioequivalence (RSABE)

 RSABE: when within-subject variability (WSV) of the reference product is > 30% CV

- FDA draft guidance on Progesterone, 2011
- Verbeeck, Musuamba, 2012
- <u>AAPS J</u>. 2012 Dec; 14(4): 915–924, BM Davit, et.al Implementation of a Reference-Scaled Average Bioequivalence Approach for Highly Variable Generic Drug Products by the US Food and Drug Administration

Standard RSABE studies

- Study design
 - 4-way study with sequences of (TRTR, RTRT)
 - 3-way study with sequences of (TRR, RTR, RTR, RRT)
- Sample size: at least 24 subjects
- Using NCA:
 - Requires rich sampling
 - Extrapolation for AUCt-inf

Model based RSABE

- Shorter studies?
- Smaller studies?
- Better evaluation of WSV?

Potential problems with a model based analysis

- Uncertainty in which model best describes the system
- Model building may produce bias
- Parameters in a model may be biased/misspecified

Situations where no single PK model may be appropriate for BE analysis

- No prior model
- Can not assume true model
- Identifiability issues
- Avoid estimation bias and overestimation of precision

Note: An NCA "model" could be one of the averaged models

Ophthalmic drug products

<u>http://www.lumigan.com/Resources/How-to-Apply</u>

Agrahari, Drug Deliv. And Transl. Res. 2016

Affecting factors

- Solution drainage (naso-lacrimal)
- Lacrimation
- Tear turnover
- Tear dilution
- Conjunctival absorption
- Blinking
- ...

Low Bioavailability High variation

• ACOP 2019, Xiaomei Chen, Model-based bioequivalence evaluation for ophthalmic products using model averaging approaches.

Conclusion

Model-informed approach

Modify NCA-based BE methods

Model-based approach

Use M&S in BE analysis procedure

Reduce sample size and/or Reduce study duration Make BE studies more feasible (especially in currently challenging situations)

Optimal Design approaches

Better BE study design

Backup Slides

Pharmacometric approaches will typically have **higher power** than standard methods

Citation: CPT: Pharmacometrics & Systems Pharmacology (2013) 2, e23; doi:10.1038/psp.2012.24 © 2013 ASCPT All rights reserved 2163-8306/12

www.nature.com/psp

ORIGINAL ARTICLE

Comparisons of Analysis Methods for Proof-of-Concept Trials

KE Karlsson¹, C Vong¹, M Bergstrand¹, EN Jonsson^{1,2} and MO I

Drug development struggles with high costs and time con accentuated by many stakeholders in drug development. Thi drug development. Two simulated examples, within the the compare a pharmacometric model-based analysis to a *t*-test investigated examples and scenarios, the conventional statis 80% power. For a scenario with a parallel design of one pla conventional and pharmacometric approach was 4.3- and 8. the model-based power depend on the model assumptions was demonstrated to permit drastic streamlining of POC tria *CPT: Pharmacometrics & Systems Pharmacology* (2013) **2**, e23;

Figure 3 Power curve comparison between the pharmacometric model-based power (gray triangles) and the *t*-test based power (black diamonds), for the proof-of-concept scenario. (a) The power curves for the stroke example in which the difference in study size is a factor of 4.3 (90 vs. 388 total number of patients) is displayed. (b) In the diabetes example, the difference in study size was 8.4-fold (10 vs. 84 total number of patients) in favor of the pharmacometric approach.

With pharmacometric models one can **optimize the design of experiments for even higher power**

Hooker et al., Model-based Trial Optimization for Phase II and III designs in Alzheimer's Disease, ACOP, 2011

Application of optimal design methodology (OD) for BE studies

MSE: Mean squared error

Nyberg, Hooker et.al. PopED: An extended, parallelized, nonlinear mixed effects models optimal design tool. Computer Methods and Programs in Biomedicine. 2012 Jawien, W. Searching for an optimal AUC estimation method: a never-ending task? Journal of Pharmacokinetics and Pharmacodynamics 2014