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Standard bioequivalence (BE) studies
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• BE determined by comparing 
the 90% confidence interval 
of the ratio (comparator vs. 
reference) of geometric 
means of secondary 
(summary) PK parameters 
with predetermined limits.
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Potential problems with standard BE approaches: 
Problems with NCA calculations

AUC

T1/2Tmax

Cmax
• Sparse data problems

• Assume equal weight for all 
observations 

• Sensitivity to missing data

• Sensitivity to data below the 
limit of quantification

• Interpolation problems from 
the last observation to ∞

• Hard to separate variability 
sources (BSV/WSV/RUV)

• Ad hoc design of sampling 
times
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Problems of standard bioequivalence 
evaluation
• Drugs with long half-life (e.g. LAI)

⎼ Long-term BE trial
⎼ Parallel study leading to low power

• Steady-state BE studies
⎼ Methods for establishing steady state can be inaccurate

• Highly variable drugs (HVD)
⎼ BE design needs 3- or 4-way crossover study
⎼ Estimation of between occasion variability can be biased/imprecise

• Others
⎼ Designs can be inefficient
⎼ Special formulations, e.g. local drug product needs clinical endpoint BE study
⎼ …
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Population (NLME) model based approaches 
in general can handle these problems

• Built to handle sparse data and works well with 
parallel-group studies

• NCA Problems solved:
⎼ assumption about equal weight of all observations 
⎼ sensitivity to missing data
⎼ sensitivity to data below the limit of quantification
⎼ interpolation problems from the last observation to ∞
⎼ Sparse data problems

• Can separate variation of different levels
⎼ Between subject variation (BSV) on PK parameters
⎼ Within subject variation (WSV, occasion variation) on 

PK parameters
⎼ Residual error on concentration

• Higher power

• Can optimize design (for even higher power)
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How modeling can help with BE problems and 
method improvements
• Model-informed BE approach

⎼ Use pharmacometric models to understand and optimize the operating 
characteristics of standard BE methods and designs

• Model-based BE analysis

• Optimal design approaches for better BE study design
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Two types of BE study designs for long-acting 
injectables (LAI)

Is there a 
long-term 

side effect?

No

Yes

Healthy 
voluteer

Patients
Multiple-dose

Crossover steady state

Single-dose
Parallel study

• Contraceptive
- Medroxyprogesterone 

acetate

• To treat alcohol/drug 
dependence
- Naltrexone

• Antipsychotic
- Paliperidone palmitate
- Aripiprazole
- Risperidone
- Olanzapine Pamoate
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Multiple covariates affects LAI absorption, 
increasing variation 
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Affecting Factors

• BMI

• Sex

• Age

• Injection site

• …

Between-subject 
variation

Power
Subject 
number

Single-dose parallel BE study



Potential solution to increase power:
Adding fixed covariate effects in the analysis
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log 𝐴𝑈𝐶 𝑖 = 𝜇 + 𝑓𝑜𝑟𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 + 𝑜𝑡ℎ𝑒𝑟 𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑡𝑒𝑠 + 𝜀𝑖

log 𝐴𝑈𝐶 𝑖 = 𝜇 + 𝑓𝑜𝑟𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 + 𝜀𝑖
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125%

Power

H0: 𝜇𝑡𝑒𝑠𝑡 − 𝜇0 ≥ 0.22

Ha: 𝜇𝑡𝑒𝑠𝑡 − 𝜇0 < 0.22



Assesment of steady state?
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• Standard Assessment of SS uses linear 
regression of last 3 trough concentrations.

• Systems with high within occasion (WSV) or 
residual variability (RUV) will have highly 
uncertain linear regression, and thus more 
likely be (wrongly) assessed as at SS

• Model based methods can asses SS ignoring 
WSV and RUV

Switch study, different KA in test 
compound



Possible solution to reduce BE study duration:
use switch study instead of requiring steady state 
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• BE evaluation for switch study:
• What PK metrics to use?

• What BE limit to use?
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crossover steady state study

Ctrough for determining ss

Reference

Test
Switch 
study

Crossover steady state study 

ss

1 2 3

ss

Surrogate Criteria

Surrogate PK metrics
E.g.: 𝑨𝑼𝑪𝟏, 𝑪𝒎𝒂𝒙,𝟏, 𝒑𝑨𝑼𝑪,…

Surrogate limit



Our developed model-based BE method
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Estimate 
model and 
parameter 
uncertainty

BE data

Model(s)

Model(s) 
fitting

Pop. sim 1

Pop. sim 2

Pop. sim N

Mean of ratio
of Cmax, AUC

Mean of ratio
of Cmax, AUC

Mean of ratio
of Cmax, AUC

Distribution of 
ratio mean

90% CI of
ratio mean

BE Conclusion

TRT effect on 
absorption 
parameters

Uncertainty
Methods: 

SIR, Bootstrap, 
Model 

averaging

Sampling from model and 
parameter uncertainty

Compute individual Cmax, AUC

Modeling
Uncertainty 
estimation

Simulation Conclusion

• ACOP 2019, Andrew Hooker, Development and comparison of model-based bioequivalence analysis methods on sparse data.

• ACOP 2019, Xiaomei Chen, Model-based bioequivalence evaluation for ophthalmic products using model averaging approaches.  



Type I error is controlled for this model-based BE method
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Model-based method showed higher power than NCA-based 
method
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BE for highly variable drugs (HVD) using reference-
scaled average bioequivalence (RSABE) 
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• RSABE: when within-subject 
variability (WSV) of the 
reference product is > 30% CV

• FDA draft guidance on Progesterone, 2011

• Verbeeck, Musuamba, 2012

Standard RSABE studies

• Study design
⎼ 4-way study with sequences of (TRTR, RTRT)
⎼ 3-way study with sequences of (TRR, RTR, 

RRT)

• Sample size: at least 24 subjects

• Using NCA:
⎼ Requires rich sampling
⎼ Extrapolation for AUCt-inf

Model based RSABE
⎼ Shorter studies?
⎼ Smaller studies?
⎼ Better evaluation of WSV?

• AAPS J. 2012 Dec; 14(4): 915–924, BM Davit, et.al Implementation of a 
Reference-Scaled Average Bioequivalence Approach for Highly Variable 
Generic Drug Products by the US Food and Drug Administration

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3475857/


Potential problems with a model based 
analysis

• Uncertainty in which model best describes the system

• Model building may produce bias 

• Parameters in a model may be biased/misspecified
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Situations where no single PK model may be 
appropriate for BE analysis
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• No prior model

• Can not assume true model

• Identifiability issues

• Avoid estimation bias and overestimation of precision

Model Averaging

Note: An NCA “model” could be one of the averaged models



Ophthalmic drug products 
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• http://www.lumigan.com/Resources/How-to-Apply

• Agrahari, Drug Deliv. And Transl. Res.  2016

Affecting factors

• Solution drainage (naso-lacrimal)
• Lacrimation

• Tear turnover
• Tear dilution
• Conjunctival absorption
• Blinking
• …

Low Bioavailability
High variation

• ACOP 2019, Xiaomei Chen, Model-based bioequivalence evaluation for ophthalmic products using model averaging approaches.  

http://www.lumigan.com/Resources/How-to-Apply


Conclusion
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Model-informed approach

Modify NCA-based BE methods

Model-based approach

Use M&S in BE analysis procedure

Reduce sample size
and/or

Reduce study duration

Make BE studies more 
feasible 

(especially in currently 
challenging situations)

Optimal Design approaches Better BE study design
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Pharmacometric approaches will typically 
have higher power than standard methods
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With pharmacometric models one can  optimize 
the design of experiments for even higher power

Model-Based Analysis
(Default Design)

Traditional Analysis
(Unstructured MMRM model,
LSMeans)

1892 (3.6 X)

1443 (2.2 X)

Model-Based Analysis
(Optimized for power)

(Optimized) Model Based vs. 
Traditional Data Analysis in Alzheimer's

Hooker et al., Model-based Trial Optimization for Phase II and III designs 
in Alzheimer's Disease, ACOP, 2011
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Application of optimal design methodology (OD) for BE studies
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• FIM: Fisher information matrix

• MSE: Mean squared error

Model-based OD

When using model-based BE method

Different ways to 
maximize FIM

To reduce uncertainty of

• Model parameters (D-optimum)

• Parameters of product difference (Ds-opt)

• Secondary model based PK metric (C-optimum)

OD for NCA

When using NCA for BE data

To minimize MSE of 
PK metrics

Improve the accuracy and 
precision of NCA calculations 

(based on model expectations)

Nyberg, Hooker et.al. PopED: An extended, parallelized, nonlinear mixed effects models optimal design tool. Computer Methods and Programs in Biomedicine. 2012
Jawien, W. Searching for an optimal AUC estimation method: a never-ending task? Journal of Pharmacokinetics and Pharmacodynamics 2014


