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Drug Development Need Statement 

In the United States, over 19,000 patients received a kidney transplant in 2017. With the general standard 

of care (SOC) immunosuppressive drug (ISD) therapy, according to the most recently available data 

from the Organ Procurement and Transplantation Network, one-year post-transplant allograft loss rates 

are remarkably low (2.5% and 7.8% for living and deceased donor transplants, respectively)(“National 

Data - OPTN” n.d.). However, long-term allograft failure rates are unacceptably high, with 10-year all- 

cause allograft failure approaching 34% and 50% (Hart et al. 2019) for living and deceased donor 

transplants, respectively. Survival of the transplanted organ has been rated, by patients, as the most 

important outcome, including overall survival of the patient (Howell et al. 2012). There is a clinical need 

for novel individual ISDs or ISD regimens that will lead to improved long-term outcomes. However, the 

deterrents to ISD innovation are complex and multifactorial. Most notably is the lack of short-term 

predictors of long-term outcomes available for use in clinical trials. Such markers could serve as the 

basis for surrogate endpoints or reasonably likely surrogate endpoints that open FDA’s Accelerated 

Approval Program, intended to incentivize and usher innovation. 

 
The historically accepted clinical trial endpoint for novel ISDs in kidney transplantation is the equally 

weighted score of patient survival, graft-loss, biopsy-proven acute rejection (BPAR), and loss to follow 

up at one-year. This primary endpoint is a vestige of an era when graft loss and BPAR were significant 

issues in the first year following kidney transplantation. The short-term success of current ISD regimens 

for this outcome measure and the lack of markers capable of predicting long-term outcomes require 

clinical trials of novel agents to be lengthy, require large numbers of subjects, or be non-inferior in 

design to show superiority over the current standard. Large and lengthy trials are associated with 

prohibitively large costs while the non-inferiority determinations are associated with concerns of 

marketability for newly approved agents in the face of more affordable generically available SOC ISD 

regimens. In this Letter of Intent (LOI) we propose building on previous work in the field that has 

identified clinically relevant measures capable of predicting long-term kidney allograft failure. We aim 

to improve upon the limitations of the historically utilized clinical trial primary endpoint by developing a 

composite score capable of predicting long-term kidney transplant outcomes using measures available in 

the first year following transplantation. 

 
While the underlying physiologic mechanisms leading to allograft loss are complex, recent studies have 

shown that certain key features present relatively early after transplantation (e.g., within the first year) 

can accurately predict which grafts are most likely to fail at later time points (e.g., at 5 years). A key 

learning from prior efforts in the field is no one clinical feature or pathophysiological measure has the 

predictive power to robustly estimate long-term allograft survival (Naesens et al. 2016; Kaplan, and 

Meier‐Kriesche 2003; Yilmaz et al. 2003; Lefaucheur et al. 2010). Recent efforts that have had access to 

large patient cohorts with rigorous and routine clinical assessments collected at baseline and 

longitudinally for five to seven years have demonstrated improved predictability of long-term outcomes 

by assessing composites of multiple clinical features. These composite scores have focused on recipient 

demographics, pre-transplant measures, measures of kidney function within the first-year post transplant, 

and combinations of these measures at different time points (Kaboré et al. 2017; Shabir et al. 2014; 

Gonzales et al. 2016; Loupy et al. 2019). More recently developed composite scores have sought to 

predict long-term graft loss by incorporating a cross section of the relevant pathophysiological measures 

of allograft loss, including kidney function, through estimated glomerular filtration rate (eGFR) 
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calculated using serum creatinine (SCr) and measures of protein excreted into the urine, kidney damage 

as determined by pathological assessment of graft biopsy, and immune response, measured via the 

presence or absence of de novo (i.e., developed after the time of transplant) donor specific anti-human 

leukocyte antigen (HLA) antibodies. Other composite scores have incorporated pathophysiological 

measures along with recipient demographics (Gonzales et al. 2016; Bentall et al. 2019). Discussion of 

notable risk prediction models that have informed this submission can be found in the Supporting 

Information section. 

 
These risk prediction scores have focused on predicting long-term allograft survival at the individual 

patient level to inform clinical decision making. While progress has been made, none of these prognostic 

and predictive tools have been endorsed for use as a reasonably likely surrogate endpoint capable of 

supporting medical product registration studies or as surrogate or reasonably likely surrogate endpoints 

that can open FDA’s Accelerated Approval Program. 

 
The proposed composite marker in this submission is intended to be a reasonably likely surrogate 

endpoint for use in clinical trials evaluating the safety and efficacy of novel ISD therapies in kidney 

transplant patients as a marker for the probability of long-term allograft loss. This would significantly 

improve upon the current standard as it would allow drug sponsors the ability to design trials assessing 

the superiority, rather than non-inferiority, of a novel agent without the need for cumbersomely long, 

large, and prohibitively expensive clinical trials. As a reasonably likely surrogate for the long-term 

outcome of allograft survival, this composite score would allow drug sponsors to seek marketing 

approval of novel agents through FDA’s Accelerated Approval Program, significantly improving the 

drug development landscape by encouraging drug sponsors to engage in this rare disease. Ultimately, 

patients will benefit from increased drug development activity by improving access to ISD therapies 

with better long-term outcomes. 

 
This effort builds on previous work in the field that has identified clinically relevant measures capable of 

predicting long-term allograft failure by aggregating and standardizing multiple clinical trials, real-world 

clinical transplant center datasets, and long-term registry data. A list of prioritized and acquired datasets 

can be seen in Appendix 3. By leveraging a significant amount of patient level data from these sources, 

this effort intends to seek regulatory endorsement of a composite measure capable of predicting five-

year risk of graft loss using data available within the first year after transplantation. Based on existing 

literature and the ongoing work of the Paris Transplant Group, the proposed components of this 

composite score will include eGFR calculated with SCr (referred to as ‘eGFR’), measurement of protein 

excretion into the urine (referred to as ‘proteinuria’), pathophysiological assessment of percutaneous 

kidney graft biopsy (referred to as ‘biopsy histology’), and presence or absence of de novo anti-HLA 

DSA (referred to as ‘dnDSA’). A semi-parametric or parametric survival model will be used to develop 

the composite score to estimate the probability of long-term allograft survival.  

 
To acquire the necessary patient level data to develop a novel reasonably likely surrogate endpoint, the 

Critical Path Institute’s Transplant Therapeutics Consortium (TTC) has led a large data collaboration 

effort across the field of kidney transplantation. Datasets from relevant clinical trials of ISDs and real- 



4  

world data from clinical transplant centers have been prioritized based on the presence of the variables of 

interest and of long-term outcomes. When possible, datasets that lack long-term follow up will be 

integrated, through established processes, with the long-term kidney transplant outcome registry 

managed by the Scientific Registry of Transplant Recipients. 

 
Importantly, as the data collaboration effort across the transplant community is ongoing, the components 

of the final composite score will be dependent on the datasets ultimately available for inclusion and 

analysis. Based on preliminary analysis of the currently available datasets and existing literature, it is 

expected that the four components listed above (i.e., eGFR measured with serum creatinine, measures of 

protein excretion into the urine, pathological assessment of biopsy histology, and presence or absence of 

dnDSA) will be included in the final model. Thus, this LOI will include discussion of these four 

components. As some details regarding these variables or others may not be ascertained until the datasets 

that will underpin the development and assessment of the composite score have been fully analyzed, it 

will be noted in this submission where specific details will be provided in future submissions. 

 

Biomarker Information and Interpretation 

1. Biomarker name: 

The Integrative Box (iBox) Scoring System includes the following component biomarkers, 

taken together in the first year after transplantation: 

 
Estimated Glomerular Filtration Rate (‘eGFR’) [Serum Creatinine]: calculated with serum 

creatinine (a molecular biomarker) and certain patient characteristics using established equations 

(most commonly the Chronic Kidney Disease Epidemiology Collaboration, CKD-Epi equation); 

 
Measurement of protein excretion into the urine (‘proteinuria’): Molecular biomarker 

 
Pathophysiological assessment of percutaneous renal allograft biopsy, based on Banff scoring 

criteria (‘biopsy histology’): Histologic biomarker 

 
Presence or absence of de novo anti-human leukocyte antigen donor-specific 

antibodies. Additionally, the presence of the dnDSA will be refined into categories 

based on MFI values. The specific categorical cut-points in the MFI scale will be 

determined in future submissions once the appropriate patient-level data has been 

curated. It is envisaged these categorical cut-points for subjects with dnDSA will be 

based on those described in Loupy et al 2019 (Loupy et al. 2019) (Appendix 2): 

Molecular biomarker 

 
2. Analytical methods: 

As stated above, this effort is the result of a significant ongoing data collaboration across 

multiple stakeholders in the field. Therefore, the specific analytical methods used in the 

raw measurement of the components of the composite score will be dependent on the 

sources of the data included in the final analysis and will be fully examined in future 

qualification plan submissions. The most common analytical method for each 

component is described here. 
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eGFR: 

Calculated through established equations (most commonly the CDK-Epi equation 

(“Estimating Glomerular Filtration Rate from Serum Creatinine and Cystatin C. - 

PubMed - NCBI” n.d.)) using measurements of serum creatinine, and patient 

characteristics. Creatinine is measured through Jaffe reaction assays or through 

enzymatic assays, both colorimetric assays. 

Proteinuria: 

Proteinuria may be measured in several quantitative or qualitative means. Proteinuria consists of 

excessive protein in the urine that can be categorized based on type of proteins, quantity of those 

proteins, and their concentration compared to creatinine. Total urinary protein over 24 hours, 

total urinary protein to creatinine ratio, and urine albumin to creatinine ratio are the various 

measures to estimate proteinuria. Assays measuring protein in the urine use turbidimetric, 

immuno-turbidimetric, or colorimetric. Turbidimetric assays include sulfosalicylic acid (SSA), 

sulfosalicylic acid with sodium sulphase (SSSS), trichloroacetic acid (TCA), and benzethonium 

chloride. Colorimetric assays involve the addition of a reagent, such as pyrogallol red molybdate 

or Coomassie brilliant blue, and spectrophotometric analysis. The ultimate determination of 

which measure of urinary protein and subsequent assay considerations is data dependent and will 

be discussed in future submission documents once patient level data have been assessed further 

(Yalamati, Karra, and Bhongir 2016). 

Biopsy Histology: 

Percutaneous renal biopsy (PRB) is the current SOC and is often guided by ultrasound and 

performed under local anesthesia. Automatic disposable spring-loaded devices use needles of 

various bore sizes to collect the renal sample. After the kidney sample is retrieved, it is manually 

sectioned, fixed, stained, and analyzed by a pathologist. The Banff Classification (“A 2018 

Reference Guide to the Banff Classification of Renal... : Transplantation” n.d.) was developed to 

provide a schema to analyze signs of acute and chronic rejection through the scoring of kidney 

lesions. In total, 15 Banff Lesions Scores are defined, which document histopathological 

changes in the different compartments of the kidney. 

dnDSA: 

Measurement of dnDSA uses the Luminex Bead-based Multiplex Assay, currently available 

through two vendors. In this assay, insoluble dye-impregnated beads, which present a predefined 

HLA class I (HLA-A, HLA-B, HLA-Cw) or class II (HLA-DR, HLA-DQ, HLA-DP) molecule, 

are incubated with the serum of the allograft recipient. If DSAs are present, they will bind to the 

cognate antigen(s) on the bead. The bead-DSA complex(es) is then exposed to a fluorescent 

phycoerythrin-coupled-IgG which binds the complex and is used to measure the presence of 

DSAs. A negative control serum is used to establish the background value for each bead in a test 

batch. The measure of this assay is expressed as the mean fluorescent intensity (MFI) of the 

phycoerythrin-coupled-IgG that is bound to the DSA and is normalized using appropriate controls. 

MFI values are produced for each DSA type measured (“Detection of HLA Antibodies in Organ 

Transplant Recipients – Triumphs and Challenges of the Solid Phase Bead Assay” n.d.). 

Presence of dnDSA will be refined into categories based on MFI values. The specific categorical 

cut-points in the MFI scale will be determined in future submissions, once the appropriate 

patient-level data has been curated. 

The iBox Scoring System will assess the presence or absence of any dnDSA, and does envisage 
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using MFI values in a semi-quantitative manner. It is anticipated these categorical cut-points for 

subjects with dnDSA will be based on those described in Loupy et al 2019 (Loupy et al. 

2019)(Appendix 2). The appropriateness of these cut-points will be discussed in future 

qualification submissions. 

 
3. Measurement units and limit(s) of detection: 

Units and limits of detection will be dependent on the datasets included in the final analysis and will be 

fully described in future qualification submission documents. 

 
4. Biomarker interpretation and utility: 

 
The Integrative Box (iBox) Scoring System  

The iBox Scoring System has been developed by estimating individual weights for each of the 

proposed components (i.e., eGFR, proteinuria, kidney biopsy histology, and the presence or 

absence of dnDSA). The component measures will be assessed at 12 months post transplantation 

in a clinical trial and entered into the iBox Scoring System. The determined weighting for each 

component will be a coefficient in a survival model. The composite score will be the linear 

combination of weights together with the individual patient features, or 

 

Composite Score = 𝛽1𝑥1 + 𝛽2𝑥2 + ⋯ + 𝛽𝑁𝑥𝑁 

where 𝛽𝑖 is the estimated weight of the patient feature 𝑥𝑖, e.g. eGRF and 𝑖 = 1, … , 𝑁 where 𝑁 is 

the total number of patient features used to compute the score. The output of the iBox Scoring 

System is a five-year graft loss risk prediction capable of indicating the long-term performance 

of therapeutic ISD interventions in a clinical trial. The score will allow for comparative efficacy 

assessments between study control and intervention study arms, guide regulatory decision 

making regarding the long-term efficacy of new therapeutic interventions, and open FDA’s 

Accelerated Approval Program. A brief discussion of the interpretation of each component of 

the iBox follows, and more information can be found in the supporting information section of 

this submission. 

 
eGFR: 

Due to the impact of muscle mass on circulating creatinine levels, estimating equations have 

been developed to account for differences in muscle mass and translate creatinine concentration 

to estimated GFR. These equations account for population average differences by age, race, and 

sex, but cannot account for individual differences. The most widely used equation to estimate 

GFR is the CKD-Epi equation. The CDK-epi equation includes serum creatinine, gender 

(Male/female), Age, and race (black/non-black) as follows: 

 
(Levey et al. 2009) CKD-EPIcreatinine = A x (SCr/B)c x 0.993age x (1.159 if black), where A, B, 
and C are the following: 

 
Female Male 

 

SCr ≤ 0.7 

A = 144  

SCr ≤ 0.9 

A = 141 

B = 0.7 B = 0.9 

C = -0.329 C = -0.411 

 A = 144  A = 141 

B = 0.7 B = 0.9 
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SCr > 0.7 C = -1.209 SCr > 0.9 C = -1.209 

 

Current guidelines recommend reporting of creatinine results by clinical laboratories in terms of 

eGFR 

 

Proteinuria: 

UPCR is a common and clinically accepted alternative to 24-hour urine collection, which is 

otherwise required to assess 24-hour protein excretion rates (Akbari et al. 2014). Urine protein 

concentration is calculated by measuring the urinary protein and urinary creatinine in a spot first- 

or second-morning urine sample and dividing the urinary protein measure by the urinary 

creatinine measure. Units of urinary protein and urinary creatinine are both measured in mg/dL, 

yielding a unitless ratio. In Loupy et al 2019 (Appendix 2), the albumin to creatinine ratio was 

used to assess proteinuria. Yet to be published work by this group has demonstrated the 

performance of the iBox Scoring System with alternate measures of proteinuria, including 

dipstick, 24-hour urine collection, and urinary protein to creatinine ratio. The specific measure to 

be included in the iBox Scoring System will ultimately depend on the data available and will be 

discussed in detail in future submissions. 

 
Biopsy Histology: 

After retrieved kidney biopsy samples are appropriately sectioned, fixed, and stained, they are 

analyzed by a clinical pathologist. While kidney transplant biopsies are subject to issues of 

sample and inter- and intra-rater variability, the Banff allograft pathology criteria allows for a 

core series of semi-quantitated features that encompass specific histopathologic entities seen in 

kidney allografts. Fifteen specific lesions are scored, on a 0-3 scale. In clinical practice, lesion 

scores are then used in the diagnosis of antibody mediated rejection (AMR), suspicious or 

borderline acute T-Cell mediated rejection (TCMR), interstitial fibrosis and tubular atrophy 

(IFTA), or other tissue damages. This effort will consider including all or a pre-specified subset 

of biopsy lesion scores, depending on analysis of the final datasets available. 

 

dnDSA: 

Current assays are available through two vendors, which have somewhat different panels and a 

somewhat different range of responses. There are three types of kits to detect DSAs, which allow 

for assessment at varying levels of specificity (e.g., Class I HLA v. HLA-A, v. HLA-DQA). 

Assays can detect class I (HLA-A, HLA-B, HLA-Cw) and class II (HLA-DR, HLA-DQ, HLA- 

DP) antibodies using the following types of screening beads; 1) mixed antigen screen beads, 

wherein a single bead carries a mixture of purified class I and class II molecules from three or 

more donors; 2) phenotypic beads, that carry multiple HLA class I or class II phenotype antigens 

purified from a single donor; and 3) single antigen beads, where each bead carries a single 

recombinant HLA class I or class II antigen/allele. 

 
These assays express units of measurement as MFI of each bead (generally 0 - >20,000) and are 

used semi-quantitatively in clinical practice. Based on the patient-level data that will be 

available to the consortium, the presence of the dnDSA will be refined into categories based on 

MFI values. The specific categorical cut-points will be determined in future submissions once 

the appropriate patient-level data has been curated. It is anticipated these categorical cut-points 

for subjects with dnDSA will be based on those described in Loupy et al 2019(Loupy et al. 

2019)   (Appendix 2). The appropriateness of these cut-points will be discussed in future 
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qualification submissions. The inter-operability of the assays available commercially from the 

two vendors is discussed in the analytical considerations section, and the analytical performance 

characteristics of the assay reagents will be evaluated in full detail in future submissions. 

 

Future qualification submission documents will also assess which specific kits were used to generate 

dnDSA data in each data set supporting the qualification. These data will inform how dnDSA data will 

be incorporated into the final composite (i.e., any dnDSA versus a specific HLA Class versus specific 

HLA alleles). 

 
Context of Use Statement 

The Integrative Box (iBox) Scoring System of eGFR calculated with serum creatinine, proteinuria, 

kidney biopsy histology assessment using the Banff scoring criteria, and presence or absence of de novo 

anti-HLA donor specific antibodies, taken together in the first year after transplantation is a reasonably 

likely surrogate endpoint for the five-year risk of allograft loss in kidney transplant patients for use in 

clinical trial studies evaluating the safety and efficacy of novel immunosuppressive therapies for 

Accelerated Approval Program submissions. 

 

The target population for this context-of-use will be dependent on patient populations of the datasets that 

underpin the iBox Scoring System. It is expected that the target population will be refined as data sets 

are made available to the consortium and analyzed. Analysis and discussion of the target population for 

the iBox Scoring System will thus be discussed in more detail in the Qualification Plan submission. 

 

Analytical Considerations 

As more data are acquired and aggregated, a deeper understanding of assay variation will be developed. 

Future qualification submission documents in support of the iBox Scoring System will contain full 

assessment of the analytical considerations for each assay based on the “Points of Consideration 

Document: Scientific and Regulatory Considerations for the Analytical Validation of the Assays used in 

the Qualification of Biomarkers in Biological Matrices”. The following represents a brief summary of 

measurement for each component of the composite marker. It is expected there will be some inter-site 

variation in the specific assay used for each component. Strategies to enable the integration of patient-

level data from each dataset will be discussed in future qualification submissions. 

 

eGFR 

The most accepted and direct index of kidney function is the glomerular filtration rate (GFR), 

which provides a measure of the cumulative volume of plasma that is filtered by the glomeruli in 

a given time. Historically, the “gold standard” procedure for measuring GFR involved a 

continuous intravenous infusion of a marker (e.g., inulin, iothalamate), followed by analysis of 

repeated timed blood draws and urine collections to assess clearance of the marker. Directly 

measuring GFR with these procedures are burdensome for patients and staff and impractical in 

many clinical and research settings. As such, estimating GFR (eGFR) using endogenous markers 

is an attractive alternative and is most commonly used in current practice. 

 

The most commonly used of these endogenous markers is serum creatinine. Measurement of 

serum creatinine is second only to glucose as the most common analyte in clinical chemistry. 
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Creatinine is a byproduct of muscle catabolism of creatine. As such, factors affecting muscle 

mass also impact circulating levels of creatinine (see below). Creatinine has several 

characteristics that make it a suitable marker of kidney function: it is freely filtered by the 

glomerulus at a constant rate, with little tubular reabsorption and minimal tubular secretion is 

most circumstances. 

There are two types of assays commercially available and in widespread use for creatinine 

measurements: those based on the Jaffe reaction (alkaline picrate) and those based on enzymatic 

methods. In the former, creatinine forms a complex with picric acid in an alkaline solution. The 

concentration of the colored complex is proportional to the concentration of creatinine in plasma. 

There is some interference from other endogenous substances, so compensated assays have been 

developed which correct by a constant to improve accuracy. There are two types of enzymatic 

assays, with the most common converting creatinine to hydrogen peroxide, which reacts with a 

dye to generate a colored compound. The others use conversion of creatinine to ammonia. 

 
Harmonization efforts by the College of American Pathologists, the National Kidney Disease 

Education Program, the European Federation of Chemistry and Laboratory Medicine, and others, 

and the creation of an international reference standard (SRM 967) by the National Institute of 

Standards and Technology have led to significant improvements in the accuracy of creatinine 

measurements. Nearly all assays are now traceable to isotope dilution-mass spectrometry 

reference standards. This standardization has substantially reduced the bias and minimized the 

influence of interfering substances in the assays. 

 

Proteinuria 

Urinary excretion of protein can be quantified by a 24-hour urine collection or by collection a 

spot urine sample and calculating UPCR (Yalamati, Karra, and Bhongir 2016). The 24-hour 

urine collection is the current gold standard method, but sample collection, storage, and transport 

are cumbersome for the patient and prone to errors in collections. As such, the use of spot urine 

collections is far more common in clinical practice. Excreted protein levels are indexed to 

urinary creatinine to correct for variations in urinary concentration due to varying levels of 

hydration. UPCR is highly correlated with total protein excretion from a 24-hour collection, with 

somewhat weaker correlation due to imprecision of all methods at very low levels. A first 

morning urine specimen most strongly correlates with 24-hour protein excretion. 

 
Protein is detected using turbidimetric, immuno-turbidimetric, or colorimetric assays. 

Turbidimetry involves introduction of a protein precipitant and subsequent quantification of 

the denatured protein. Immuno-turbidimetry uses antibodies to isolate specific sizes (i.e. 

albumin) of proteins prior to turbidimetric analysis. The specific precipitant used, the specific 

proteins present, and the time from introduction of the precipitant to assessment may affect 

the results. Turbidimetric assays include SSA, SSSS, TCA, and benzethonium chloride. 

Colorimetric assay involves addition of a reagent, such as pyrogallol red molybdate or 

Coomassie brilliant blue, and spectrophotometric analysis. Turbidimetric methods of protein 

quantification are commonly used, but concerns of poor precision and sensitivity and variable 

response to different proteins in the urine have been reported. Colorimetric methods have 

better precision and sensitivity, but these assays are also subject to variation in dye-binding to 

various proteins (Yalamati, Karra, and Bhongir 2016). 
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Dipstick tests for urinary protein are also available and are inexpensive, easy to use, are highly 

specific, and provide rough estimates of severity of proteinuria. Dipstick tests, however, are 

insensitive and only provide semi-quantitative results. 

 

A notable limitation of the precision of urinary protein assessment is the inherent variability in 

an individual over time. The within person standard deviation is approximately 40-50% of the 

mean value. Due to this variability, some clinical practice guidelines recommend repeat testing 

in a specified time period be used for diagnosis. 

 
In Loupy et al 2019 (Appendix 2), the urine albumin to creatinine ratio was used to assess 

proteinuria. Yet to published work by this group has demonstrated the performance of the 

iBox Scoring System with alternate measures of proteinuria. Full assessment of the specific 

measures and assays used to assess urinary protein excretion in each dataset and the intra-

operability of these assays will be provided in future qualification submissions. 

 

Biopsy Histology 

The PRB is the current SOC and is often guided by ultrasound and performed under local 

anesthesia. Automatic disposable spring-loaded devices use needles of various bore sizes to 

collect the renal sample. After the kidney sample is retrieved, it is manually sectioned, fixed, 

stained, and analyzed. The Banff Classification was developed to provide a schema to assess 

signs of acute and chronic rejection through the scoring of kidney lesions. In total, 15 Banff 

Lesions Scores are defined which document histopathological changes in the different 

compartments of the kidney. 

 
An important consideration with kidney transplant biopsies is inter-observer variability. A recent 

study from the Mayo Clinic (Smith et al. 2019) involving scoring of biopsies by six different 

pathologists showed only fair to moderate agreement between any two pathologists (kappa 

values between 0.38 and 0.48) for Banff scoring of the key histologic lesions of Antibody- 

mediated rejection (ABMR), glomerulitis, peritubular capillaritis, and transplant glomerulopathy 

(TG), although kappa values for diagnosis of active and chronic active ABMR, based on 

pathologists’ score of histologic lesions, were better (0.70 and 0.59, respectively). Having three 

pathologists grade each biopsy and using a "majority rules" approach resulted in improved kappa 

values for scoring the individual lesions (0.57 - 0.62) and diagnoses (0.82 and 0.70). Overall, 

however, the inter-observer variability for scoring of the individual Banff lesions is no worse 

than that reported for an experienced renal pathologist’s scoring of individual histologic lesions 

comprising other histologic classifications, such as the International Society of Nephrology and 

the Renal Pathology Society classification of lupus nephritis and Oxford classification of IgA 

nephropathy (Furness and Taub 2006; Working Group of the International IgA Nephropathy 

Network and the Renal Pathology Society et al. 2009). Furthermore, a major focus at the 2019 

Banff conference, with input from both pathologists and transplant clinicians, was the 

clarifications of definitions for and reporting of individual Banff lesions, as well as of TCMR 

(borderline, acute, chronic active) and ABMR (active, chronic active), and these modifications 

will be included in the Banff 2019 meeting report. 

 
Appropriate assessments of inter- and intra-observer variability will be performed on the final 

data package. Specific details of this assessment will follow in future qualification submissions. 
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dnDSA 

The development of dnDSA occurs in response to HLA antigens on the transplanted organ and 

do not exist in the recipient prior to transplantation. The details of the currently available 

Luminex Bead-based Multiplex Assays are described above. In short, the assay uses color coded 

beads that contain antibodies for each HLA allele protein in each MHC molecule class. Kits that 

measure different levels of specificity are available allowing for measuring the broader allele or 

more specific antigen level. The bead-antibody complex captures any dnDSAs present in the 

transplant recipient’s serum. After washing, a luminescent phycoerythrin conjugate is then added 

and binds to the bound analyte specific antibodies. Dual lasers are then used to detect the 

identify of any present donor specific antibodies and the relative fluorescent intensity. There are 

several reagent and serum specific considerations that must be made with these assays. 

 
As previously discussed, current assays are available through two vendors which have somewhat 

different panels and a somewhat different range of responses. There are three types of kits to 

detect dnDSAs, which allow for assessment of varying levels of specificity (e.g., antigen v. 

allele) depending on the types of beads being used. Bead types include mixed antigen screen 

beads, wherein a single bead carries a mixture of purified class I and class II molecules from 

three or more donors, phenotypic beads, that carry multiple HLA class I or class II phenotype 

antigens purified from a single donor, and single antigen beads, where each bead carries a single 

recombinant HLA class I or class II antigen/allele. 

 
These assays have been cleared through CDRH’s 501(k) process as in vitro diagnostics with 

FDA. MFI values reported by these assays are routinely used in transplant clinical practice in a 

semi-quantitative manner to inform clinical decision making. The presence of dnDSA will be 

refined into categories based on MFI values, according to the patient level data available to the 

consortium. The specific categorical cut-points in the MFI scale will be determined in future 

submissions once the appropriate patient-level data has been curated. It is anticipated these 

categorical cut-points for subject with dnDSA will be based on those describes in Loupy et al 

2019(ref) (Appendix 2)  but that the appropriateness of these cut-points will be discussed in 

future submissions. As part of the Consortium’s ongoing data aggregation effort, the specific 

assay type, sample handling protocols, and raw MFI measures are being requested from data 

contributors. These data will allow an appropriate set of criteria for the comparison of assays 

between datasets to be established. These criteria will be developed with input of FDA and 

defined in future submissions. 

 
The Consortium is aware of four limitations of this assay and will require the full documentation 

from data contributors before final determination of how these limitations will affect the 

qualification effort. This will be discussed in detail in a future submission.  

 

There have been significant efforts to minimize the inter-laboratory variability of anti-HLA 

DSA testing. Each year the American Society for Histocompatibility and Immunogenetics 

proficiency testing provides clinically based samples to assess a participating laboratory’s 

ability to accurately perform their analyses (“Proficiency Testing Program - American Society 

for Histocompatibility and Immunogenetics” n.d.). The results from these yearly assessments 

are made publicly available. The core laboratories of the Clinical Trials in Organ 



12  

Transplantation (CTOT), a collaborative clinical research organization headquartered at the 

National Institute of Allergy and Infectious Diseases, has also sought to improve anti-HLA DSA 

assay performance across the CTOT laboratories (Reed et al. 2013a; 2013b). These efforts have 

demonstrated and published intra- and inter-laboratory variability. This study determined 

several factors that contribute to overall variability in the inter-laboratory assay results, 

including the individual center, which manufacturer or kit was utilized, and reagent lots. 

 
Furthermore, saturation of the bead-bound antibody has been observed in when higher levels of 

DSA are present than the number of HLA antigen targets on the beads (Anat R. Tambur and 

Wiebe 2018). This presents a significant a challenge to the use of this assay in a semi- 

quantitative or qualitative manner. This limitation can be overcome by serum dilution to ensure 

bead saturation does not occur. 

 
In addition, it has been proposed that inhibition of the reporter antibody can occur due to high 

levels of complement in the serum that binds free DSA in solution and results in a reduced MFI 

value (prozone effect) (A. R. Tambur et al. 2015). This limitation is frequently overcome with 

pre-treatment of the serum with EDTA, other reagents, or dilution or titration studies. 

 
Finally, due to the nature of HLA antigen polymorphism, many HLA antigens share significant 

portions of their protein sequence (Anat R. Tambur et al. 2018). Thus, antibodies can recognize 

a target/epitope that is shared by several HLA antigens. As a result, a specific HLA antigen may 

bind to several beads. Since MFI is measured per single bead, the results may underestimate 

antibody strength. HLA recognition patterns are possible to detect to compensate for cross bead 

binding, but this limitation poses a significant challenge for interpreting the data from this assay 

in a semi-quantitative format.  

 

Considerations will be given to each of these limitations in future submissions when the 

available patient-level data has been curated and the associated assay data has been gathered 

and documented. 

 

Clinical Considerations 

At the 12-month time point post-transplantation, the composite score will be calculated for each 

individual in both the study control and interventional arms. The mean composite scores between the two 

arms will then be calculated. The survival model will take as an input each mean composite score and will 

be used to predict the difference (if one exists) between the five-year failure rates between the two arms. 
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Figure 1: Decision tree for use of the Integrative Box (iBox) Scoring System as a reasonably 

likely surrogate endpoint 
 

 

It is intended that the iBox Scoring System will be used as a reasonably likely surrogate endpoint in 

clinical trials evaluating the safety and efficacy of novel ISD therapies or regimens as part of FDA 

Accelerated Approval Program submissions. The patient population that will be included in the final 

context-of-use for this composite measure will ultimately be dependent on the data sets available to 

support the development of the tool. Future qualification submissions will include detailed analysis of the 

populations included in the data and therefore which populations will be included in the final context-of-

use. 

 
There are inherent risks to drug developers and to patients associated with the use of any surrogate or 

reasonably likely surrogate endpoint in clinical trials. If a surrogate does not actually reflect true long- 

term treatment effects, new therapeutic agents may be approved for use despite no evidence of long-term 

efficacy. This risk is mitigated through post-marketing confirmatory studies required by FDA’s 

Accelerated Approval Program and by analysis of short-term outcomes at the time of long-term risk 

assessment. The proposed scoring system will improve upon the current standing by allowing for short- 

term and long-term assessments of drug efficacy. 

 
The potential benefits of the iBox Scoring System are numerous. With ten-year graft survival rates as 

low as 50% in some kidney transplant populations, there is significant need for better ISDs with 

improved long-term outcomes. However, industry has be reticent to undergo the long-term clinical trials 

required to assess long-term efficacy. Thus, qualification of a reasonably likely surrogate endpoint 

would offer drug sponsors a mechanism to access FDA’s Accelerated Approval Program, thus 

reinvigorating and incentivizing drug development in this therapeutic area. This directly translates to 

improved patient care by providing a mechanism for novel ISDs with improved outcomes to reach 

patients faster. 

 

The current gaps of this effort are largely centered around the ongoing data sharing and collaboration 

work, discussed in more detail below. Specifically, information that will be required for future 
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qualification submission documents will ultimately depend on data sets available to be included in the 

final analysis. Further, while previous work in this field has identified measures important for predicting 

long-term outcomes, this effort must re-analyze the available data to confirm the predictive and 

prognostic capabilities of the individual components, as well as other predictors that should be included in 

the final composite score. Figure 2 provides a brief overview of this Consortium’s plan to address these 

gaps in relation to future qualification submissions. Following submission of this LOI, the future 

Qualification Plan submission will include detailed analyses of the datasets that underpin the iBox 

Scoring System, including appropriate target population, predictive variables to be included in the 

Composite Scoring System, biomarker assay considerations of the identified variables, and aggregated 

data sets to be used for model generation and validation. 

 
Figure 2. Qualification Strategy for the Integrative Box (iBox) Scoring System 

 

 

Supporting Information 
 

Summary of previous composite measures to predict kidney transplant outcomes 

It is well established in the literature that individual markers of kidney transplant health are insufficient to 

predict long-term outcomes with acceptable accuracy. Thus, significant prior efforts have attempted to 

develop Composite Scoring Systems better able to predict the long-term health of the graft. A 2017 meta- 

analysis reviewed risk prediction models for graft failure in kidney transplantation (Kaboré et al. 2017). It 

is important to note that all of these risk prediction models have been geared towards clinical decision 

making, and none has been evaluated or validated for use in ISD development. 

 
A recent meta-analysis identified 39 risk prediction models published in the scientific literature from 

2005-2015. The majority of these studies aimed to predict graft failure (generally defined as dialysis, re- 

transplantation, or death with functioning graft) or death censored graft failure (defined as dialysis/re- 

transplantation). 

 
Of these risk prediction models, 14 studies included predictors measured during the post-transplant 

period, with or without pre-transplant risk factors. Post-transplant predictors included in these studies 
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most notably included creatinine (Ho et al. 2013) or eGFR (Hernández et al. 2005; Moore et al. 2011), 

blood pressure, and proteinuria (Foucher et al. 2010) in the weeks, months, and years following 

transplant. Other predictors assessed included immunological markers and carotid-femoral pulse wave 

velocity. Finally, previous risk prediction modeling efforts have attempted to predict short term (1-4 

years) and long-term (≤ 5 years) outcomes. 

 
Although important and significant work has been done to predict individual patient outcomes, as 

captured by Kabore et al, the validation and overall assessment of these efforts have been limited, and 

these efforts have not been validated for use in drug development. 

 
More recently developed composite scores that have sought to predict long-term graft loss in individual 

patients have incorporated elements of the patient demographics and pathophysiological measures. 

Several recent composite scores are described below. 

 
In 2014, Shabir et al (Shabir et al. 2014,) developed a new prediction instrument to predict five-year risk 

of kidney transplant failure using data available at one-year post transplant. This effort utilized clinical 

data from 651 patients from Birmingham, United Kingdom to develop a model capable of predicting 

death-censored and overall transplant failure at five-years post transplantation. This model, called the 

Birmingham Risk Score, incorporates recipient sex, age, and ethnicity, history of acute rejection, and one- 

year post transplant measurements of eGFR, albumin, and urine albumin to creatinine ratio. The model 

was then validated in 3 international cohorts, including 787 patients from Leeds, United Kingdom, 736 

patients from Tours, France, and 475 patients from Halifax, Canada. The model was determined to have 

adequate predictive value with a C-statistic of 0.78-0.90 for death-censored transplant failure and 0.75- 

0.81 for overall transplant failure. 

 
Building on research assessing the importance of surveillance biopsy and alloantibody data, the 

Birmingham-Mayo model (Gonzales et al. 2016) was developed to evaluate whether risk models were 

improved by the addition of biopsy histology and/or antibody evaluations. In this work, 1465 adults from 

the Mayo Clinic in Rochester, MN had risk scores calculated using the Birmingham risk model. The 

model was then expanded to include Banff scoring criteria and validated on a cohort of 981 subjects. This 

process was repeated for DSA status and validated on a cohort of 622 subjects. While the addition of the 

presence or absence of donor-specific antibodies into the original model failed to improve predictability 

of the model, presence of glomerulitis or chronic interstitial fibrosis on a one-year surveillance biopsy 

improved the model predictability (C-statistic = 0.90), calibration, and resulted in the reclassification of 

the graft failure risk in 29% of patients. The Birmingham-Mayo model has been externally validated in a 

high-risk cohort, performing well (C-statistic = 0.784) when predicting five-year graft loss in patients 

with the presence of DSA. A recent effort has further validated the Birmingham-Mayo model in an 

additional cohort of patients with the presence of DSA (Bentall et al. 2019). 

 

Building on these previous efforts, Loupy et al (Loupy et al. 2019) leveraged the nationalized health care 

system in France to prospectively follow long-term outcomes of kidney transplant patients in to develop a 

new risk prediction model capable of predicting risk of graft loss at 3, 5, and 7-years post-transplant. The 

model was subsequently validated in 2 international cohorts, three Phase II and III clinical trials, and in 

numerous clinical scenarios. The derivation cohort included 4000 consecutive patients over 18 years of 

age from four centers across France with a median follow up time of 7.65 years. Quantitative analyses 
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were performed to identify predictors of long-term outcomes. A scoring system, termed the iBox, was 

then developed using the identified predictors, which include eGFR, proteinuria, kidney biopsy histology, 

and presence or absence of donor specific antibodies. The performance of the iBox scoring system was 

then evaluated in two validation cohorts (n = 3557) from the United States and Europe. Overall, model 

performance showed good calibration and discrimination (C index 0.81, 95% confidence interval 0.79 to 

0.83). The model was also validated against three phase II or III clinical trials, with C-indices determined 

to be 0.87, 0.82, and 0.92 in each of the three studies. Further, the risk score was shown to accurately 

predict the actual observations of graft loss in these studies. The model was then assessed in multiple 

clinical scenarios and in different subpopulations with acceptable performance characteristics in each 

scenario and population, with C-statistics that ranged between 0.78 and 0.84, depending on the scenario. 

 
The iBox Scoring System represents the most advanced prediction system for determining long-term risk 

of graft-loss following a kidney transplantation. This work has recently been published and is available in 

Appendix 2. However, the significant and ongoing external validation efforts have focused on the use of 

the iBox Scoring System in clinical practice. To date, the iBox Scoring System has not yet been validated 

for use in drug development. The current effort seeks to build on the existing clinical validation of the 

iBox scoring system in order to expand its use into the drug development process. 

 
Each component of the iBox Scoring System is individually biologically linked to key aspects of kidney 

health and kidney allograft function, as described below. However, taken together the composite gives 

broader biological insight into the current health of the kidney and the pathologies that lead to allograft 

loss than the individual components in isolation. The individual components provide distinct information 

on the health status of the graft through measurements of allograft function (eGFR and proteinuria), 

direct assessment of allograft health (biopsy histology), and the recipient’s immune response to the 

transplanted organ (presence or absence of dnDSA). Combining these individual measures into one 

composite score allows for improved and more robust predictions of long-term graft survival than is 

possible with any individual component. A discussion of each individual component can be found below. 

 
eGFR 

The most accepted and direct index of kidney function is the glomerular filtration rate (GFR), 

which provides a measure of the cumulative volume of plasma that is filtered by the glomeruli in 

a given time. Historically, the “gold standard” procedure for measuring GFR involved a 

continuous intravenous infusion of a marker (e.g., inulin, iothalamate), followed by analysis of 

repeated timed blood draws and urine collections to assess clearance of the marker. Directly 

measuring GFR with these procedures are burdensome for patients and staff and impractical in 

many clinical and research settings. As such, estimating GFR (eGFR) using endogenous markers 

is an attractive alternative and this is most commonly used in current practice. 

eGFR is a widely used marker of kidney function in clinical practice and clinical trials for most 

or all kidney related disorders, including kidney transplantation. 

 
Proteinuria 

Under normal conditions, waste products are filtered through the glomeruli, while larger proteins 

are selectively conserved. Smaller proteins that may be filtered through the glomeruli are 
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reabsorbed in the proximal tubule. As a result of these processes, excretion of protein in the 

urine is minimal in healthy kidneys. Excretion of more than small amounts of protein into the 

urine indicates excessive passage through the glomerulus, thought to be primarily due to 

endothelial cell injury, and/or decreased reabsorption by epithelial cells in the proximal tubule. 

Assessments of protein excretion (including urinary albumin) is recognized as an important 

identifier or chronic kidney disease. In kidney transplantation, even mild proteinuria has been 

demonstrated to be predictive of decreased long-term graft function (Hohage et al. 1997) and has 

been associated with overall patient mortality (Roodnat et al. 2001). 

 
Biopsy Histology 

Despite the inter- and intra-observer variability, several studies have shown that assessment of 

the kidney transplant biopsy histology predicts outcomes, and when included in composite 

models, has been shown to be predictive in multivariate analyses. In spite of its limitations, the 

grading of biopsies has provided a common ground in diagnosis and further provides 

opportunities to identify relationships between specific features and clinical outcomes. 

 
Using the Banff criteria definitions, TCMR on one-year surveillance biopsy has been shown to 

be an independent risk factor for graft loss (Randhawa 2015). The persistence of TCMR has 

been associated with a substantial risk of graft failure (HR 4.88) in a Mayo Clinic Study that 

included nearly 800 kidney transplants, and several other studies (Gago et al. 2012; El-Zoghby et 

al. 2009; M. Naesens et al. 2013). When co-occurring with antibody mediated rejection 

(ABMR), the presence of TCMR is an independent risk factor for allograft failure (Matignon et 

al. 2012). Even when TCMR is characterized predominantly by vasculitis in the absence of 

extensive inflammation (i) or tubulitis (t), graft loss is significantly more frequent (Sis et al. 

2015; Wu et al. 2014). The incidence of concomitant findings of TCMR and ABMR have been 

variable, but their combined presence is a poor prognostic feature, even when the level of 

tubulitis is minimal (Matignon et al. 2012; Rodrigues et al. 2014). This is further discussed 

below. 

 
Another phenomenon now appreciated with poor prognosis is the presence of inflammation or 

tubulitis in areas of IFTA. Indeed, this finding led to the adoption of a total inflammation score 

(Mengel et al. 2009). Long-term risk outcome has been strongly associated with allograft biopsy 

histology and specifically the presence of IFTA, microvascular injury and 

tubulitis+inflammation in non-scarred areas (Loupy et al. 2019). Multiple studies have found the 

presence of inflammation in scarred areas (i-IFTA) of biopsies performed for allograft 

dysfunction or proteinuria (Mannon et al. 2010; Matas et al. 2019) or on surveillance biopsies 

(i.e., those performed per protocol, independent of transplant functional status) to be an 

independent predictor of allograft failure (Lefaucheur et al. 2018; Nankivell et al. 2018). 

 
A number of investigators have identified specific histopathologic features of ABMR that have a 

negative prognosis for graft outcome. While the presence of C4d immunostaining in ABMR is 

associated with higher rates of allograft loss compared to C4d negative ABMR (Orandi et al. 

2016; Gaston et al. 2010; Sis et al. 2009; Willicombe et al. 2011), the latter is also associated 

with shortened allograft survival. The presence of IFTA also portends a negative outcome for the 

graft. IFTA was an independent predictor of allograft loss (HR, 2.93; 95% CI, 1.62 to 5.29; 
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P<0.001) in a cohort of 278 kidney transplant recipients with active ABMR, as was the presence 

of TG (HR, 2.25;95% CI, 1.29 to 3.92; P=0.004), features often not responsive to treatment 

(Viglietti et al. 2018). Similarly, Moktefi (Moktefi et al. 2017) and Haas (Haas et al. 2017) 

identified IFTA at the time of ABMR biopsy to be a strong independent risk factor for death 

censored allograft failure. 

 
The presence of coincident TCMR with ABMR also has a negative prognosis. This may be in 

part due to the frequency of both ABMR and cell mediated changes in kidney transplant 

recipients with non-adherence (Wiebe et al. 2012). Cell mediated rejection was identified as an 

independent risk factor for graft loss in C4d positive ABMR (Matignon et al. 2012), and with a 

trend to statistical significance in multivariable analysis in a similar sized ABMR cohort that 

included C4d negative biopsies (Haas et al. 2017). Similarly, the presence of vasculitis (“v”) or 

interstitial inflammation (“i”) plus tubulitis (“t”) scores > 3 in ABMR biopsies were important 

independent risk factors for graft failure in a cohort of kidney transplant recipients with biopsy 

proven clinical rejection (Lefaucheur et al. 2013), highlighting the potential contribution of cell- 

mediated injury in the outcome of ABMR. 

 
dnDSA 

The development of dnDSA post transplantation is considered an important marker to predict the 

likelihood of allograft loss (Everly et al. 2013; Anat R. Tambur and Wiebe 2018). 

Physiologically, HLA antigens on the donor allograft represent the major target for the 

recipient’s immune system. Recipient T-cell recognition of the allograft stimulates a cascade of 

immunologic events that ultimately results in a humoral immune response and the production of 

antibodies that specifically target HLA molecules on the transplanted organ, i.e., anti-HLA DSA. 

Thus, unlike the previously discussed features of the composite biomarker, measurements of the 

presence or absence of DSA are not necessarily indicators of current health or function of the 

allograft, but a marker of the recipient’s immune response to the transplanted organ. The 

currently available assays allow for semi-quantitative analysis of the magnitude of immune 

response; however, the literature disagrees as to the overall predictability of the presence or 

absence of DSA compared to the magnitude of immune response as determined by MFI (Lee et 

al. 2009; Anat R. Tambur and Wiebe 2018). 

 
Integrative Box (iBox) Scoring System 

To build a robust data package capable of supporting the utility of the proposed surrogate marker, the 

Transplant Therapeutics Consortium has identified a diverse set of clinical trial data and real-world data 

from clinical transplant centers that capture a wide range of variables, including eGFR, proteinuria, biopsy 

histology, and dnDSA, which, when taken together within the first year post-transplantation are 

potentially predictive of long-term graft loss. The variety in datasets and scope of variability included will 

be fundamental to developing sufficient evidence to support the biological plausibility, causality, 

universality, proportionality, and specificity of the marker. When necessary, to demonstrate the linkage 

between the composite surrogate and the long-term outcome of allograft survival, shorter-term datasets 

(e.g., clinical trials of 24- month duration) will be linked to data from the long-term kidney transplant 

registry managed by the Scientific Registry of Transplant Recipients. 
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Key variables for analysis include, but are not limited to: core variables of interest (creatinine, eGFR, 

proteinuria, DSA, biopsy histology via Banff component scores), baseline parameters (cold ischemia time, 

delayed allograft function), outcome measures (cause of allograft loss, allograft loss date, death cause, 

death date, acute rejection status, loss to follow up, adverse event and safety data), recipient parameters 

(age at transplant, gender, ethnicity, end stage renal disease cause and classification, blood type, comorbid 

conditions, concomitant medications, dates of dialysis, time since dialysis), and donor parameters (age, 

gender, ethnicity, donor type: living or deceased), expanded criteria donor status, blood type, kidney donor 

profile index, kidney donor risk index, baseline creatinine, hypertension status, diabetes status, cause of 

death, hepatitis C status) and other supporting information (clinical trial ID numbers, publications). 

 
Currently, 17 clinical trial datasets from eight pharmaceutical organizations, and datasets from five 

clinical transplant centers have been identified and prioritized by the TTC to support the regulatory 

development of the proposed surrogate marker. While the majority of these datasets are one to three 

years in duration, they will be linked through established processes to the long- term registry database in 

order to capture long term outcomes. 

 
Data received from clinical transplant centers will contain an inherent heterogeneity reflective of the 

diverse kidney transplant recipient population, and thus represent a rich source of long-term data. It is 

expected that some data received will not be included in the final modeling analysis due to normal and 

expected issues with standardization and aggregation across datasets. To date, the TTC has acquired five 

clinical trial data sets and three from clinical transplant centers representing data from over 10,000 

patients. A full list of datasets already acquired by the TTC can be found in Appendix 2. 
 

Acquired individual datasets will be curated and integrated into one aggregated database. A subset of 

variables for analysis will be selected from the aggregated database and used to develop the composite 

risk scoring system. A semi-parametric or parametric survival modeling approach will be used to 

develop the composite score system, and the final model will be validated by an independent dataset or 

through cross-validation. The assessment of which datasets will be used for derivation and validation 

will be described in the Qualification Plan submission. 

 

Previous Qualification Interactions and Other Approvals 

The TTC, as a public-private partnership with FDA, has previously requested and been assigned an FDA- 

liaison. TTC’s current FDA liaison has participated in consortium meetings, including those discussing 

the proposed biomarker and its use in drug development. 

 
On March 26, 2019, the TTC held a Critical Path Innovation Meeting with FDA to discuss the potential 

utility of the composite score as part of a clinical trial simulation tool. In this meeting, there was broad 

agreement of the unmet clinical needs and of the drug development needs that act as barriers to the 

development of novel ISDs for use following kidney transplantation. Previous efforts at developing 

clinically focused risk prediction scores were discussed, and the Agency encouraged the TTC to pursue 

the formal qualification of a composite marker as a surrogate or reasonably likely surrogate for use in 
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clinical trials. 

 
The TTC intends to engage European regulators at the European Medicines Agency (EMA) once 

sufficient data are acquired to support a Briefing Package submission towards the Qualification of Novel 

Methodologies in Drug Development program at EMA. As of the time of this submission, no interactions 

with EMA have been held. 
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1. BACKGROUND 
 
Approximately 19,000 patients received kidney transplants in the United States each year. Nearly all 
patients who receive kidney transplants are prescribed immunosuppressive drugs (ISD) therapy; however, 
a significant number of patients experience allograft loss by 5 and 10 years after transplantation. There is a 
need for development of ISDs with better long-term outcomes. The Critical Path Institute’s Transplant 
Therapeutic Consortium (TTC) requested the CPIM to discuss current needs to accelerate drug 
development for kidney transplant patients and to obtain FDA’s feedback on the development of a clinical 
trial simulation tool to support the evaluation of immunosuppressive drugs in clinical trials. 

 
2. DISCUSSION 

 
Representatives of TTC discussed the challenges associated with the development of novel 
immunosuppressive drugs (ISD). It was noted that the standard of care, immunosuppressive therapy for 
transplant patients have not changed in twenty years and that first-year post-transplant success rates were 
high. Clinical trials for ISDs must aim to be non-inferior to the standard of care regimen or lengthy if they 
are to show superiority to the standard of care. There is a lack of understanding of the complex 
mechanisms that lead to graft loss and diversity of kidney transplant donors and recipients. In addition, 
there are no publicly available drug development tools to optimize clinical trial design for ISDs for better 
long-term graft survival. 

 
Representatives of the TTC described the development of the clinical trial simulation (CTS) tool. The 
proposed context-of use for the CTS tool is to optimize phase II and III clinical trial design for evaluating 
therapeutic candidates for immunosuppression following kidney transplantation. The goal is to develop a 
mathematical representation of longitudinal changes derived from 1-year post-transplant characteristics. 
The Integrative Box (iBox) Scoring System presented as a component of the CTS tool is based on two sets 
of multivariate models. The first set of models describes the 1-year dynamics of disease progression 
measured by proteinuria, eGFR, and donor specific antibodies. These models are enhanced with the Banff 
lesion score to derive the total iBox score, an integrative scoring system that predicts kidney allograft loss. 
The iBox system is based on a large international study of kidney transplant recipients and takes into 
account important allograft loss risk factors including baseline donor and recipient characteristics, 
transplant characteristics, post-transplant injuries, treatment and anti-HLA donor specific antibody 
measurements. TTC representatives noted that the performance of the iBox score was validated in multiple 
cohorts and was able to successfully predict graft survival beyond 1-year post transplantation. As a result 
they concluded that the iBox score is correlated with treatment performance. The results from the first set 
of multivariate models will be used to develop a second parametric time to event (TTE) model that 
describes the time-varying probability of kidney graft failure up to five years. 

 
Additional discussion focused on the potential utility of the proposed CTS tool in ISD clinical trials. There 
were questions as to whether the specific CTS tool would have utility given that longitudinal data for 1 year 
would need to be accrued prior to entry into a clinical trial. Instead, there seemed to be significant interest 
in iBox score as an endpoint to support accelerated approval or as a surrogate endpoint. FDA noted that 
there is a need to understand whether iBox score changes in response to intervention, and additional 
discussion would be needed to support the utility of the iBox as a surrogate endpoint. However, FDA 
expressed openness to discussing the use of iBox as a part of accelerated approval pathways in individual 
drug programs. FDA representatives were interested in seeing the current TTC manuscript under peer 
review, along with the peer reviewers’ comments. TTC representatives discussed the consortium’s future 
plans to compare the iBox score’s ability to predict long-term outcomes in registry data. 
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3. NEXT STEPS 
 
1. TTC will work internally to determine a proposed context of use for iBox and/or the CTS. 
2. TTC will provide FDA with the iBox manuscript under review along with the peer reviewers’ 

comments. 
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