

Animal Models of Coccidioidomycosis

Lisa F. Shubitz, DVM Valley Fever Center for Excellence University of Arizona August 5, 2020

Cocci is Biosafety Level 3 Pathogen

- Must have animal BSL3 (ABSL3) facilities to work with this pathogen
 - Significant aerosol risk to personnel
 - Proper training
 - Class II biosafety cabinet with extra PPE for protection from aerosols or Class III BSC for intranasal infection
 - Guidelines published in the Biosafety in Microbiological and Biomedical Laboratories, 5th Edition (CDC website)

Mice

 Mice constitute the vast majority of animals used to perform preclinical efficacy studies of antifungal candidates to treat Coccidioides infection

Advantages

- Very well-established coccidioidomycosis models
- Small and easy to handle in statistically significant numbers in ABSL3 conditions
- Wide variety of strains, including genetically engineered for metabolic, immune system defects that mimic human disease conditions
- Drawbacks
 - Pharmacokinetics of drugs may differ significantly from humans
 - Coccidioides progresses rapidly in mice

Mice – Routes of administration

High aerosol risk

- This is the usual way the infection enters the human host
- Intranasal or intratracheal in saline suspension
- Aerosol of spores in chamber
- Intravenous rapid, widespread model of dissemination
- Intraperitoneal dissemination model w/ LFB common readout
- Intrathecal –meningitis, technically challenging
- Intracerebral meningitis

Pulmonary

Mice – Pulmonary Model

- IN 50-100 spores in 30-50 µl isotonic saline
 - Under anesthesia
- 4 days to spherule rupture, expansion of infection
 - Some studies treat 48 hrs after pulmonary infection
 - We typically start to treat at 120 hrs, giving time for the infection to establish
 - more similar to human seeking medical care
 - 2-3 weeks to moribundity in untreated
 - Know your model to prevent cage death thin, hunched posture, tachypneic, weak, dehydrated by skin turgor
 - Estimate won't survive another 24 hrs

Mice – Disseminated Models

- Intravenous
 - ~50 spores deaths generally after day 12 (Clemons, et. al., 1984)
 - In published studies, treatment is usually instituted within 48 hrs p.i.
- Intraperitoneal
 - Usually requires more arthroconidia to initiate infection by this route
 - Technically easy to perform at BSL3, reduced aerosol risk vs. IN
 - 2-3 week infection model, similar to IN, IV
 - Granulomas of cranial mesentery, spleen, liver, dissemination to lungs

Mice – Disseminated Models

- Intracerebral, intrathecal meningitis models
 - Clinical signs 6-8 days p.i., deaths usually start by day 8
 - Paresis, paralysis, ataxia, circling, head tilt, seizures, obtundation
 - Need to be evaluated twice daily for animal welfare reasons once onset of clinical signs
 - Generally institute treatment within 48 hrs p.i.
 - Assess fungal burdens or survival
 - Assess lungs and spleens, not just brain and spinal cord

Assessment of Mouse Models

- Survival (moribundity)
- Organ fungal burdens
 - Common assessment, may be the primary measure
 - Eradication vs. reduction in colony-forming units (cfu)
 - Quantitate cfu by 10-fold serial dilutions of homogenized tissues
 - Usually lung and spleen
 - Can qualitatively assess dissemination by incubating whole organs on plates
- Clinical signs, body weight
 - Body weight is a good indicator of progression of infection even before other signs become visible

Rabbits

- Clemons and colleagues developed a reliable model of coccidioidal meningitis/arteritis in rabbits
 - Cisternal infection
 - Size of animal allows some serial cisternal sampling of CSF
 - Post mortem analysis can include histopathology, fungal burden of spinal cord, brain, CSF parameters
 - Meningitis/arteritis in rabbits appears to be a good model for humans
- Understand drug PK in this species
 - Less utilized than mice in development
- Increased cost of animals, labor, housing
 - Potentially fewer animals, less robust statistics
- Facilities need to be able to manage larger model at ABSL3

Nonhuman Primates

- Experimental possible but really costly
 - Intratracheal infection with suspension of arthroconidia
 - Recommend a nebulizer after working out a dog model (Soffler, Bosco-Lauth et al. 2012)
 - Current trends seem to support that most drugs at this stage would be implemented in some kind of human trial
- There could be opportunities to treat naturally infected NHPs in primate centers within the endemic area
 - Administration and monitoring offer challenges

Naturally Infected Dogs

- This is an interesting preclinical assessment of drug efficacy
 - In endemic region such as southern and central AZ, very high case load and it is not difficult to enroll cases
- Possible to assess pulmonary disease improvement with 30-60 days of treatment
 - Radiographs, serology, CBC/serum chemistries
 - Dog owners are both grateful and dedicated
 - <10% dropout rate in 2 studies I have done, compliance is very good
- Drawbacks
 - Cost, time to perform, statistically significant numbers, may not drive your development
 - Often get descriptive data from such a study
- Potential advantages
 - Naturally occurring disease in model that is already sick, like the human that presents for medical care
 - Oral administration using forms of drug that would be used in people
 - Might be preclinical PK/toxicology in this species so you know how to dose them

Summary

- The mouse model is the work horse of pre-clinical testing of antifungal drug candidates
 - Small and cost-effective animal for studies that have to be run at BSL3
- The rabbit is a well-developed meningitis/arteritis model that can be used
 - Costs, facilities and technical expertise with the procedures are a drawback
- Larger animal models, both naturally infected and laboratory induced, exist
 - Weigh benefits and costs of these