D-VIDE: A Dashboard for Visualizing Infectious Disease Epidemiology and its Applications to COVID-19 for Local Counties

Osman N Yogurtcu^{1a}, Artur A Belov^{1a}, Richard A Forshee¹, Carolyn A Wilson²

¹Center for Biologics Evaluation and Research (CBER), Office of Biostatistics and Epidemiology (OBE), ²Center for Biologics Evaluation and Research (CBER), Immediate Office of the Director (IOD)

[®]Equally contributed

Background

Need for Local Infectious Disease Surveillance

Surveillance of local infectious disease dynamics is a critical aspect of public health safety as it helps make personal and administrative decisions about the daily routines of life. For example, when FDA issued maximal work at home orders due to the SARS-CoV-2 outbreak, many laboratories were shutdown and lab-based Principal Investigators, support scientists and trainees were asked to work from home on non-laboratory-based assignments. In rapidly evolving disease outbreak situations, transparent and easily accessible local epidemiological surveillance tools are much needed.

D-VIDE: Visualizing Infectious Disease Epidemiology

We developed D-VIDE, a versatile data visualization and analysis tool, to raise awareness on local infectious disease trends based on real-time epidemiological data. D-VIDE may be instrumental in identifying emerging public health risks early and accordingly taking mitigatory actions such as those about allowing employees or students to return to their laboratories, workplace, and college campuses. D-VIDE can be quickly customized for any infectious disease and locality.

Method

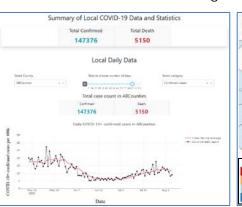
- 1. Import data on local infectious disease cases and deaths.
- Analyze the data to determine whether certain guidelines have been met regarding relaxation of non-therapeutic risk mitigations.
- 3. Present data and analysis in a daily updating dashboard.

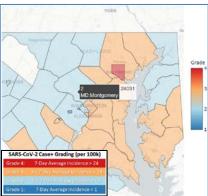
The front end of our framework is written in Python/Dash and served through Heroku. The statistical analysis back end code is written in R and updated automatically to the dashboard. D-VIDE has both a public-facing side and a private side to help keep confidential information and data analysis private to the institution using D-VIDE.

Disclaimer: The views expressed in the article are those of the authors and may not reflect the views of the FDA.

Outbreak surveillance made easy.

Powerful statistical analyses and visualization for infectious disease epidemiology in your web browser.




Scan QR code to access additional information online

Results

The first D-VIDE application focused on analysis of DC-Maryland-Virginia (DMV) local COVID-19 trends

The US county-level data are taken from New York Times COVID-19 database¹. DMV area county populations were obtained from US Census Bureau (2019 Data²). Color scheme of the dashboard was selected such that it is red-green colorblind safe³.

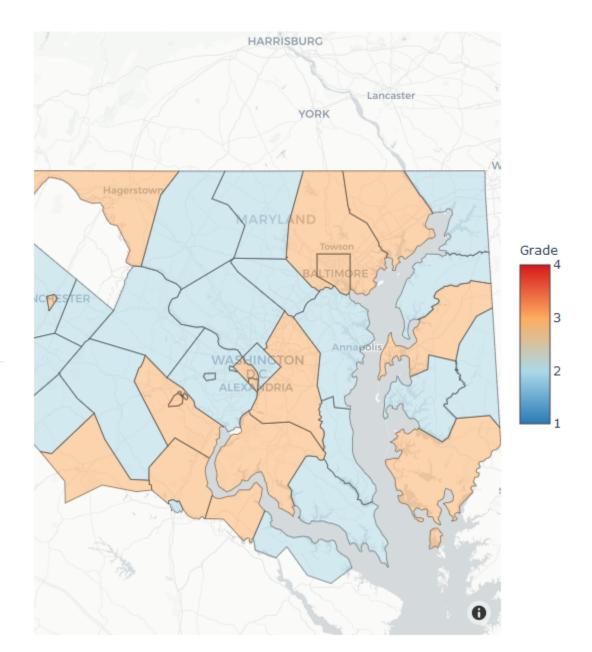
Conclusions & Next Steps

- ✓ D-VIDE framework is flexible. It has public and private sides to secure confidential information while having data transparency.
- Powerful statistics-based epidemiological data analysis & visualization.
- □ Next Step: Incorporate model forecasts based on adaptations to best performing approaches.
- □ D-VIDE for other important infectious diseases (e.g. Influenza).

References

- 1. https://www.nytimes.com/interactive/2020/us/coronavirus-us-cases.html
- 2. U.S. Census Bureau, Economics and Statistics Administration
- 3. Color scheme choice: colorbrewer2.org.

ANALYSIS OF DMV AREA LOCAL COVID-19 TRENDLINES

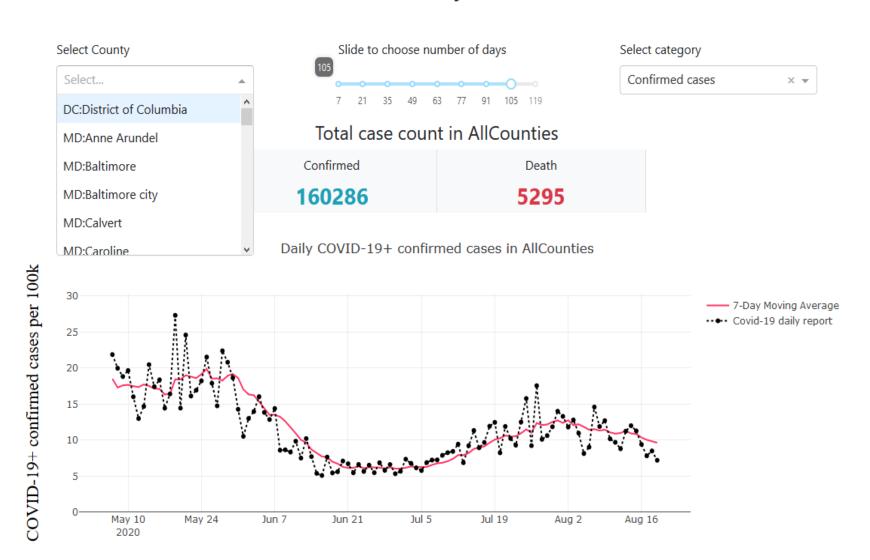

This dashboard presents an analysis of the COVID-19 infection trendlines in the DC-Maryland-Virginia area. This analysis concerns 40 counties in the DMV area - roughly 10 million inhabitants.

- **1.** According to our statistical analysis, as of 2020-08-19, 28 of the 40 local counties have a downward trajectory of documented cases within the last 14-day period as suggested by the White House Opening up America Again Guidelines.
- **2.** There is an overall 18.58% decrease in documented new positive cases today with respect to two weeks ago. This calculation is performed over 7-day rolling averages.
- **3.** Details on our statistical analyses and data can be obtained from our PRIVATE REPORT.

The county risk levels are color-coded based on their 7-day average COVID-19 case+ incidences per 100,000 people as follows:

SARS-CoV-2 Case+ Grading (per 100k)

Grade 4:	7-Day Average Incidence > 24
Grade 3:	9 < 7-Day Average Incidence < 24
Grade 2:	1 < 7-Day Average Incidence < 9
Grade 1:	7-Day Average Incidence < 1


Total Confirmed

Total Death

160286

5295

Local Daily Data

New Positive Case Trends

Jul 30-Aug 05

Aug 06-Aug 12

Aug 13-Aug 19

Population

County

New COVID-19 Death Trends

Jul 30-Aug 05

Aug 06-Aug 12

Aug 13-Aug 19

Population

DC:District of Columbia	705749	444			DC:District of Columbia				
MD:Anne Arundel			366		MD:Anne Arundel	579234			1
MD:Baltimore	827370	1243	797	718	MD:Baltimore	827370		12	14
MD:Baltimore city	593490	1128	1039	651	MD:Baltimore city	593490			10
MD:Calvert					MD:Calvert	92525			
MD:Caroline					MD:Caroline				
MD:Carroll	168447				MD:Carroll	168447			
MD:Cecil			42		MD:Cecil				
MD:Charles	163257	151	137	129	MD:Charles	163257			2
MD:Dorchester	31929	34		30	MD:Dorchester	31929			0
MD:Frederick				149	MD:Frederick	259547			
MD:Harford	255441	202	156	168	MD:Harford	255441			0
MD:Howard					MD:Howard	325690			
MD:Kent	19422				MD:Kent				
MD:Montgomery					MD:Montgomery				
MD:Prince George's	909327	1123	940	841	MD:Prince George's	909327	12	18	5
MD:Queen Anne's	50381	26	38	55	MD:Queen Anne's	50381			0
MD:St. Mary's		82			MD:St. Mary's				
MD:Talbot	37181	46			MD:Talbot	37181			
MD:Washington	151049	58		119	MD:Washington	151049			0
VA:Alexandria city	159428		142	151	VA:Alexandria city	159428			1
VA:Arlington	236842	140	121		VA:Arlington	236842			0
VA:Clarke				3	VA:Clarke	14619			
VA:Culpeper	52605		48	38	VA:Culpeper	52605			1
VA:Fairfax		449		588	VA:Fairfax				

County