NATIONAL CENTER FOR TOXICOLOGICAL RESEARCH

U.S. FOOD & DRUG

ADMINISTRATION

Abstract

- **Introduction:** Pharmacogenomics and genetic studies offer great promise in precision medicine to improve scientific knowledge on how genes affect a person's responses to certain drugs or exposures. In some real-world genetic studies, probands revealed interesting adverse events or phenotypes, but died before providing DNA (due to aging, rapidly progressing lethal diseases, or other reasons). The phenotypic and genotypic data of their relatives are often available or accruable.
- **Methods:** For a simple and realistic occurrence with probands missing genotypes completely at random, a power gain formula for a dichotomous outcome was derived with family data in the case of a single type of relative, such as a parent and a child. With the theoretical power gain result, we further used simulations to mimic more real-world scenarios and explore important factors in the power gain under more complex scenarios.
- **Results:** The power gain formula shows that statistical power can be increased when ungenotyped probands are included in analysis. The data augmentation method that includes ungenotyped probands in analysis helps improve power to discover real world evidence with uncertain genetic information. The missingness mechanism, study design, phenotypic heritability, genetic variation frequency, and genetic variation specific heritability are important factors in the changes in power and effect estimates.
- **Conclusion/Implications:** Our study joins the efforts to leverage real world data with uncertain genetic information for genetic and pharmacogenomic research. Our results show that the inclusion of ungenotyped probands in analysis can help uncover real world evidence on the effects of genetic variants on biological outcomes or responses, such as to toxicity and infectious agents.

Introduction

Precision medicine

- Genetic studies
- Pharmacogenomics
- Improve scientific knowledge
- Genetic factors in a person's responses to Drugs
 - Exposures
- Discover evidence in real-world genetic studies
- Therapeutic treatment
- Best-in-class drug
- Optimal dose, optimal treatment length, etc
- Help prevent adverse events

Single-nucleotide polymorphism (SNP) • In some real-world studies or clinical settings, probands revealed adverse events or interesting phenotypes, but died before providing DNA data, e.g. SNP data (Figure 1; the image source: https://isogg.org/wiki/Single-nucleotide_polymorphism)

- Aging, rapidly progressing lethal diseases, etc.
- The phenotypic and genotypic data of their relatives (e.g. siblings and offspring) are often available or accruable Relatives' cell lines
- SNP genotyping methods
- Sequencing, PCR-based methods, array-based hybridization, etc.
- Used in real-world cross-sectional, case-control, longitudinal studies

Challenges in Data Analysis

- Should we augment probands' genetic data?
- How to properly handle missing genetic data?
- In order to discover differential changes between groups in real-world genetic studies

Important factors to power/error gain

- Family-level parameters
- Population-level parameters
- Missingness mechanism
- MCAR (missing completely at random)
- Whether an observation is missing or observed is completely random • MAR (missing at random)
- Bias may be removed by maximizing the likelihood using all observed data including those missing in the covariate (Little, 2019).
- NMAR (not missing at random) Neither MCAR nor MAR

Figure ' ---- SNP

Power Analysis and Data Augmentation for Real World Evidence with Uncertain Genetic Information Wei (Vivian) Zhuang¹ and Joshua Xu¹ ¹Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, FDA

Theo • Simple A sir •] Power Non • • Qua \bullet Dict • \ Pure

Simu

Pheno

- Pro

retical Proofs	Results		
and realistic data scenarios ngle type of relative per family, suc wo subsets • Individuals are independent in e • One subject per family • For example, parent subs • Phenotypes • Genotypes completely • For example, offspring sul • Phenotypes • Genotypes	ch as a parent and a child each subset et (e.g. Figure 2; Orange) missing at random (MCAR) oset (e.g. Figure 2; Orange)) Female Male	 Simulated and augmented d Full data (FD) Simulated benchmark Fully simulated data with genotyping in reality For example, 4 subje Partial data (PD) Partial data, excluding the For example, 3 subje Data augmentation (DA) Augmented data with the
analysis	Ta	ble 1	• For example 3 subje
analysis -centrality parameter (NCP)	Outcome Type	$\frac{CP(Genotypea + Ungenotypea)}{NCP(Genotyped)}$	per family has pheno
Related to power	Quantitative traits*	$1 - 2\rho r + r^2$	 Statistical results
ANOVA in PASS 16		$\frac{1-\rho^2}{1-\rho^2}$	The nominal type I error rat
NCP can increase more than 20%	Dichotomous traits	$\frac{1-2\rho r_w+{r_w}^2}{4}$	MCAR in genetic data Dreportion with the ratio
 Include ungenotyped parents 	a is phonotypic corrolation	$1 - \rho^2$	 Proportion with the ratio 82.2%-100%
antitative traits	titative traits between relatives		
east square method notomous traits Veighted Least square method e genetic additive model	<i>rw</i> depends on the relationship between relatives, allele frequency, and variance of the outcome given covariants *This equation was published by Visscher and Duffy (2006)		 MAR in genetic data Bias in effect-estimation Quantitative or dichot Bias is defined as
Ilation Design typic heritability portion of phenotypic variance the Analogous to <i>R</i> ² , proportion of phe	at is accounted for by genet enotypic variance that is acc	ic factors counted for by predictor	 The test statistic ratios Mean and Median DA versus PD a Statistical point e.g. the median of File H²=0.3, file
 Relatives' cell lines Chemotherapy cytotoxicity is he E.g. cytotoxicity to the mech 0.26 to 0.65 	eritable, varying with dose (anistically distinct chemothe Table 2	(Watters et al. 2004) erapy agent 5-fluorouracil	Conclusions and Ir
Factors/Parameters for Simulation	Values Based on Rea	l-world Studies	 This study joins the efforts to a
Phenotypic heritability (H^2)	0.1, 0.3, 0	r 0.5 -	 Helping mitigate the barrier
Coefficient of relationship (r)	0.5		Data augmentation with Discovering real world ovid
Effect size of risk allele (b^2)	0.05, 0.2,	$\frac{1}{2}$ by 0.02	 Discovering real-world evid More statistically signific
Probability of dichotomous traits (P) 0.1.0.3.	or 0.5	
alistic data scenarios MCAR MAR • Pedigree of 4 persons • A nuclear family • The parent with the disease • Tends to be ungenotyped	of interest (e.g. a fatal/serio	ous adverse event)	 Power gain formulas To facilitate design real-wor Cost-effectiveness Embrace the advancement help completely address prevention of disease and The additional inclusion uncover the effects of get toxicity and infectious aget
			 Simulations showed the impor
Figure 3	 Pr(G_i=. D_i parent i Female P_g: from 0 Male 	$f_{i}=1) = 0.5P_{d} + P_{g} (1 - P_{d})$ for 0.6 to 1 by 0.1	 analysis, especially for MAR g For unbiased or less biased For increased test statistics
			I his power analysis and data power and sample size softwa
			Deferences
ements wish to thank their Division Director Dr. Weida Tong (Vivian) Zhuang's previous dissertation work in the mpeting & interests disclosure re currently employed by NCTR, US FDA. The auth financial interest in or financial conflict with the sub	g for his great support on this work. This School of Public Health at Boston Univer nors have no other financial relationships ject matter or materials discussed in the	work integrated the authors' research at NCTR rsity, Boston, Massachusetts. or relevant affiliations with any organization or poster other than those disclosed.	 Keterences 1. Little R. Statistical analysis with missing data 2. Liu, J. Z., Erlich, Y., & Pickrell, J. K. (2017). C 325-331. doi:10.1038/ng.3766 3. Marchenko, O., Russek-Cohen, E., Levensor Strategies for Design and Analysis: Real Wor doi:10.1177/2168479017739270 4. Watters, J. W., Kraja, A., Meucci, M. A., Prov
 ion presented in this poster is not a formal discomi	nation of information by the US Food & D	True Administration and does not represent	cytotoxicity. Proceedings of the National Ac

- Rea

Acknowledg

The authors with Dr. Wei

Financial cor All authors a entity with a

FDA disclain The information resented in this poster is not a formal dissemination of information by the US Food & Drug Administration and does not represent agency position or policy.

lata

- th the true values of the subjects who would be unavailable for
- ects per family have phenotypic and genotypic data (Figure 4)
- the subjects who would be unavailable for genotyping ects per family have phenotypic and genotypic data (Figure 3)
- ne inferred genotypic data of the subjects who are ungenotyped in
- ects per family have phenotypic and genotypic data and 1 subject otypic data
- ates are well maintained
- of test statistics ≥1
- enarios (Table 2)
- ns based on PD was completely removed or mitigated by DA tomous outcomes

Figure 4

) Female

Male

- the difference between the true effect size and the effect estimator or FD (the smaller the difference, the less the bias). ence between the true effect size and the effect estimator was to <0.01
- 2.2, h^2 =0.09, P_d =0.3, and P_d =1 (Table 2; Figure 3)

> 1

- and FD versus PD ower is increased with DA
- dian test statistic ratio of DA versus PD is 1.22; the corresponding D versus PD is 1.44 (simulated benchmark)
- $f=0.2, h^2=0.09, P_d=0.3, and P_d=1$ (Table 2; Figure 3)

mplications

- address concerns with bias and limited power in real-world data rs in real-world genetic data
- genetic inheritance laws
- dence with scientific computing
- cant discoveries for biologically relevant consideration
- orld genetic studies where clinical trials are practically infeasible
- nents in biomedical technologies, e.g. cell line developments to safety concerns, therapeutic treatment optimization and the nd adverse events
- of ungenotyped probands in study design and analysis can help enetic variants on biological outcomes/responses, such as to gents
- rtance to incorporate ungenotyped probands in study design and genetic data d effect estimates
- and statistical power

doi:10.1073/pnas.0404580101

- augmentation study complements standard and state-of-the-art are, e.g. PASS (<u>https://www.ncss.com/</u>)
- a (3rd Edition). John Wiley & Sons, Inc, Hoboken, NJ (2019).
- Case-control association mapping by proxy using family history of disease. Nature Genetics, 49(3),
- on, M., Zink, R. C., Krukas-Hampel, M. R., & Jiang, Q. (2018). Sources of Safety Data and Statistical orld Insights. Therapeutic Innovation & Regulatory Science, 52(2), 170-186.
- vince, M. A., & McLeod, H. L. (2004). Genome-wide discovery of loci influencing chemotherapy ademy of Sciences of the United States of America, 101(32), 11809-11814.