

FDA Workshop: Non-clinical Immunogenicity Assessment of Generic Peptide Products: Development, Validation, and Sampling

<u>Session 3</u>: Assays monitoring antigen-specific T cell activation: technical challenges and validations

Ex vivo Immunogenicity Assays – Landscape and Limitations

Campbell Bunce

26th Jan 2021

Confidential

Celli

Ex vivo Immunogenicity Assays – Landscape and Limitations

- Drivers of immunogenicity risk and the pre-clinical tools to assess this
- Assay methodologies and readouts
- Case studies

Drivers of Immunogenicity Risk

Product Related

Sequence

- Self or non-self
- T or B cell epitopes

Structural

- Post translational modifications
- B cell Epitopes
- Cryptic T cell epitopes

Formulation

- Excipients
- Contaminants
- Aggregates

Clinical Related

Pharmacology

- Target (cell vs soluble)
- Immunomodulation

Dosing

- Route of administration (*sc* vs *iv*)
- Frequency

Genetic Profile

- Haplotype (e.g. HLA)
- Other genetic factors (e.g. SNPs)

Patient History/Status

- Co-meds (immune suppressants)
- Previous exposure to drug
- Acute or chronic disease

Drivers of Immunogenicity Risk & Evaluation Tools

Using This Suite of Immunogenicity Risk Assessment Tools

Select assays based on what you want to know and do:

- Identify specific sequence liabilities and engineer these out of the drug design
- Compare or rank against similar product candidates to select the best lead candidate for development
- Identify drug product components or contaminants that may promote ADA responses
- Pre-inform a clinical safety management plan if suspect immunogenicity risk

The Immune Axis to ADA Responses

- Uptake of drug by APCs (a)
- Linear peptides derived from drug during antigenprocessing form complexes with MHC class II and activate T cells (b-c)
 - Note: peptide drugs (linear) could bypass processing by APCs and form complexes directly with MHC II molecules
- T cell help (CD4⁺ T cells) → high affinity, isotype switched anti-drug antibody (ADA) responses (d)
- ADA responses can:
- neutralise drug activity
- reduce half-life by enhancing clearance
- promote injection site/allergic reactions
- cross-react with endogenous counterparts to result in 'autoimmune'-like reactions

In silico Immunogenicity Risk Evaluation

- Algorithms have been established predicting strength of peptide binding across the four major MHC class II pockets (HLA-DP, DQ and DR allele coverage)
- MHC-peptide binding strength has been shown to correlate with peptide immunogenicity

Limitations and Solutions

- Prospective machine learning
- Can be over-predictive \rightarrow combine with other assay systems (e.g., proteomics)

EpiScreen™ Time Course and DC:T Assays

Assay readouts:

- Proliferation (% response rates & magnitude)
- Cytokine release
- Cell phenotyping (activation markers)

Limitations and Solutions:

- Drug pharmacology e.g., immune regulator \rightarrow alternative assay
- Different protocols between labs \rightarrow standardize methods
- Different controls for benchmarking against clinical data → harmonize through same controls and source

EpiScreen™ T cell Epitope Mapping (TCEM)

Designing Out Peptide Binding

- TCEM identified a T cell epitope in wt sequence
- Variants designed based on in silico evaluation (iTopeAI) of this region
- Variants peptides synthesized and assessed in TCEM
- Removal of T cell epitope from wt in variants 1, 4, 5, 6 & 7

Note: careful not to engineer out function.

Peptide	% Response Rate
Wild type	14%
Variant 1	0%
Variant 2	22%
Variant 3	16%
Variant 4	0%
Variant 5	0%
Variant 6	0%
Variant 7	0%

Identification of 'hot spots': MHC-Associated Peptide Proteomics (MAPPs)

Case Study 1: Immunogenicity of Bydureon

- Bydureon⁺ slow release exenatide (39aa peptide)
- Improve glycaemic control in Type 2 diabetic patients
- 45% of patients are ADA positive
- Associated with increased injection site reactions
- ADAs do not significantly cross-reactive with endogenous peptides (e.g.,GLP-1)
- Ex vivo immunogenicity risk assessment aligned with clinical ADA data

⁺ EMA: Byrudeon EPAR – appendix 1

Exenatide: synthetic peptide (39 aa), sequence derived from lizard salivary hormone (exendin-4) with antihyperglycemic activity (mimics glucagon-like peptide-1).

Case Study 2: Impact of Formulation on Immunogenicity Risk

	RNF1	RNF2	Current IFN beta-1a formulation	IFN beta standard
Mean cpm	41,903	35,719	55,612	55,012
Mean SI	0.9^{*}	$0.7^{*,\dagger}$	1.4	1.6
Normalised SI ^a (%)	59.65	47.67	90.83	100

cpm, counts per minute; IFN, interferon; KLH, keyhole limit haemocyanin; RNF, Rebif[®] New Formulation; SI, stimulation index.

^a SI were normalised to SI of IFN beta standard.

p < 0.05 vs. the IFN beta standard.

 $\dagger p < 0.05$ vs. the current IFN beta-1a formulation.

- EpiScreen[™] was utilised in the programme to identify less immunogenic formulations of Rebif.
- HSA suspected to be involved in aggregation of IFN and replace with alternative stabilising excipients.
- Multiple formulation parameters were screened for physicochemical stability prior to progressing leads for immunogenicity assessment (RNF 1 and 2).

p<0.05

Case Study 2 (cont.): Ex vivo Immunogenicity Aligned With Clinical Immunogenicity

- Reduced levels of neutralising antibodies with new formulation
- The safety profile was also improved.

Study	Persistent Nab Response	Injection Site reactions
EVIDENCE	14% patients / high titres	84% patients
RNF2	2.5% patients / low titres	30% patients

Case Study 3: Effect Of Aggregation On Immunogenicity

- Stress induced aggregate formation (antibody) different particle size.
- Aggregation induced significant increase in CD4⁺ T cell responses in Episcreen assay
- Aggregates promoted cytokine responses in whole blood

CD4⁺ T cell Proliferation & PBMC Responses

Cytokine Screen[™] (Whole Blood)

Case Study 4: Ex vivo Assay Donor Cohort Size Comparisons

Study comparing results from testing 10, 20, 30, 40 and 50 donors in the Episcreen[™] Time Course Assay SI indicates stimulation index and graphs show maximum SI over the 4-day time course

- Overall percentage response rate is similar
- Increased cohort size strengthens significance from 40 donors

Number of donors	Sample 1	Sample 3
10	ns	ns
20	ns	ns
30	ns	ns
40	*	**
50	**	***

Significance against Sample 2 using repeated measures one-way ANOVA (Friedman's test) using Dunns post-test pairs comparison

Number of donors	Sample 1	Sample 2	Sample 3
10	20	0	20
20	15	0	15
30	13	0	10
40	20	0	15
50	20	0	14

% response rate using different donor cohort numbers

Summary

- Many factors can contribute to immunogenicity with CD4+ T cell epitopes critical drivers of ADA induction.
- Other factors that can promote immunogenicity risk include excipients, contaminants and aggregates.
- Many pre-clinical assessment tools available to evaluate potential immunogenicity risk
- These can be used individually or in combination to fully interrogate what components of the drug are the drivers of immunogenicity risk.
- Limitations and appropriate powering of assays important considerations when interpreting the data

Campbell Bunce CSO campbell.bunce@abzena.com

 $-\mathbf{O}$

00

O 🕒

Cell Lin

LOOL GAA

GMP