
High Performance Computing Techniques for Big Data Processing
Mikailov, Mike, FDA/CDRH; Li, Weizhe, FDA/CDRH; Petrick, Nicholas, FDA/CDRH; Guo, Yan, FDA/CDER; Xu, Lei, FDA/CDER;

Weaver, James, FDA/CDER; Hyland, Paula, FDA/CDER; Luo, Fu-Jyh, FDA/CDRH
U.S. Food and Drug Administration

In their mission to protect and promote public health, scientists at the FDA
increasingly rely on innovative techniques on High Performance
Computing (HPC) platforms for processing exponentially growing data in
Artificial Intelligence (AI), Machine Learning (ML), Deep Learning (DL),
Bioinformatics, Modeling & Simulation. Thousands of CPUs can be
marshaled to process data on a scale and at speeds unthinkable in the
recent past. However, the traditional techniques for processing large
datasets are not adequate anymore and may overwhelm even massively
parallel super computers – HPC clusters.

Abstract

In this work, we demonstrated:
• The usefulness of our parallelization technique for processing large

amount of image data in a high-performance computing environment.
• A genome analysis pipeline which combines shared-memory

parallelization techniques with distributed-memory parallelization
techniques in processing many NGS datasets in parallel and scalable
manner.

Important benefits of our big data methodologies include broadening the
range of investigations that can be performed in silico; increasing the speed
of innovation; and potentially improving confidence in devices and drug
regulatory decisions using novel evidence obtained through efficient big
data processing.

Conclusion

of the application are launched using an SGE array job of M tasks on
the HPC cluster to process M NGS datasets in parallel. The pipeline
order is maintained using SGE advanced job dependencies options "-
hold_jid" and "-hold_jid_ad“ which allows ordering tasks within
neighboring steps.

Materials and Methods cont.
Applying the methodologies for
processing large data sets
reduced the processing times
from years to days.
• Processing the CAMELYON

datasets containing 399
whole slide digital pathology
images reduced the
theoretical processing time of
18 years on a single CPU or
30 days on a single GPU to
less than 45 hours on an HPC
cluster of over 4,000 CPU
cores.

• The scalable genome analysis
pipeline implementation
reduced a week of
computation to less than 6
hours.

Genome Analysis Pipeline

This work presents novel techniques to overcome the problems associated
with traditional computational techniques through efficient parallelization
of data and computing and reduce the overall computation time needed for
processing large datasets in digital pathology and next generation
sequencing (NGS) applications.
• Digital pathology whole-slide images (WSIs) are large-size gigapixel

images and image analysis based on deep learning AI technology
involves pixel-wise testing of a trained deep learning neural network
(DLNN) on hundreds of WSI images, which is time consuming. We take
advantage of HPC facilities to parallelize this procedure. However,
traditional software parallelization techniques and regular file formats
can have significant scaling problems on HPC clusters. A novel
algorithm is designed to localize and extract relevant patches in WSI
files and group them in HDF5 files well suited for parallel I/O. HPC’s
array job facilities are adapted for hierarchical scaling and
parallelization of WSI pre-processing and testing of trained algorithms.

• Numerous Bioinformatics software packages are used in assembly and
alignment of many large NGS datasets, measured in hundreds of GBs.
Traditional ways of conducting the research using these applications
take advantage of the application-level built-in parallelization
techniques such as POSIX multi-threading, OpenMP which are limited
by the number of available CPU cores on a computing node. An
approach is proposed to combine the application-level parallelization
with distributed parallelization in processing many NGS datasets in
parallel across the HPC cluster.

Introduction

Figure 1. Extracting and grouping WSI patches in HDF5 files
using independent/parallel array job tasks of the job scheduler

Figure 3. Scalable microbial genome analysis pipeline for Illumina NGS data processing

Figure 2. Hierarchical scaling technique and Heatmap construction

X, Y Tissue

… …
(25, 30) 1
(25, 31) 1
(25, 32) 0

… …

Stitch

Task-1

Task-G1

Array job-1

HDF5-1

Task-1

Task-GN

Array job-N

HDF5-N

Master job

Prediction-1

Prediction-N

HDF5-N

WSI N

WSI 1

SI for
ARG_BAM-N

SI for
ARG_BAM-1

Pair end
reads - 1

Start

start_auto.sh: Prepares input data and submits auto_launch.sh

Step 1:Creating indexes and dictionary for the reference file

Step 2: BWA MEM
Mapping

Task 1: BWA MEM
Mapping for input 1

Task N: BWA MEM
Mapping for input NPair end

reads - N

Reference
database

SAM-1

SAM-N

Step 3 (a): SAM to
BAM Conversion

Task 1: Sam to
bam for input 1

. . .

Task N: Sam to
bam for input N

BAM-1

. . .

BAM-N

Step 3 (b): Add or replace
read groups (ARRG)

Task 1: ARRG for
input 1

Task N: ARRG for
input N

ARG_BAM-1

ARG_BAM-N

. . .

Step 4: Creating
Samtools indexes (SIS)

Task 1: Creating
SIs for input 1

Task N: Creating
SIs for input N

. . .

SI for BAM-1

SI for BAM-N

Step 5(a): Creating
vcf-files

VCF-1

VCF-N

Task 1: Creating
vcf-file for input 1

Task N: Creating
vcf-file for input N

. . .

Step 5(b): Filtering
vcf-files

Task 1: Filtering
vcf-file for input 1

Task N: Filtering
vcf-file for input N

. . .
FLTR_VCF-1

FLTR_VCF-N

Step 6: Polishing

Task 1: Polishing
for input 1

Polished
FASTA-N

Task N: Polishing
for input N

. . .

Polished
FASTA-1

Step 7: Rapid genome
annotation (GA) using

Prokka

Task 1: Rapid GA
for input 1

Task 1: Rapid GA
for input N

Reference
database

GA-1

GA-1

. . . Stop

Reference
database

ARG_BAM-1

ARG_BAM-N

Reference
database

Materials and Methods

Results

For digital pathology WSI image processing, images are partitioned into
smaller subsets and grouped in HDF5 files. The job scheduler’s, Son of Grid
Engine’s (SGE) array job of N tasks (see Figure 1) is formed and launched to
partition N WSIs in parallel: each task processes one WSI and partition it
into patches of a given size, then group the patches in an HDF5 file format.
Then a lookup table is generated to associate the groups with the HDF5
files. The lookup table is used in the following stage (Figure 2) by the SGE
array job (master job) to determine the number N of the HDF5 files and
launch N tasks to process each HDF5 file in parallel. Every task in turn
determines the number of groups Gi in the HDF5 file and launches another
SGE array job of Gi tasks to process each group in parallel.

For NGS research, a flexible and scalable genome analysis pipeline (see
Figure 3) is created to combine and launch a set of Bioinformatics
applications in a predefined order. At every step of the pipeline M instances

	Slide Number 1

