The Impact of Nanoscale TiO₂ and ZnO Used in Sunscreens on Skin Bacteria

Abstract

Background: Nanoscale titanium dioxide (TiO₂) and zinc oxide (ZnO) are two major physical ultraviolet (UV) blockers used in sunscreens. These particles at size of nanoscale can protect human skin from harmful UV light. Several hundred species of skin bacteria form a complex and diverse community commonly termed skin microbiota. The balance of bacteria population in the microbiota is important to keep skin health. Published studies showed that nanoscale metallic particles can inhibit bacterial growth. So, it is important to find out whether these particles in topical sunscreen can affect skin health by changing the balance of skin bacteria population.

Purpose: This study was aimed to evaluate whether nanoscale TiO_2 and ZnOchange the viability of skin bacteria and assess the effects of UV lights on the antimicrobial activities of nanoparticles.

Methodology: Common skin bacterial strains were grown under anaerobic or aerobic conditions. Serial dilutions of bacterial cultures were plated on top of nanoparticle-agar plates with or without further exposure to UVA light (320-400 nm) or UVB light (311 nm). Antimicrobial activities of ten nanoparticles were evaluated by comparing the bacteria colony numbers grown under various condition. Three of these particles are coated nanoparticles, which surfaces are covered with other materials.

Results: Without UV exposure, coated TiO_2 didn't significantly affect the growth of skin bacteria. Uncoated ZnO particles showed dose-dependent antimicrobial activities. One hour-exposure to UVA enhanced bactericidal activities of uncoated ZnO (3.1 mg/mL) against Cutibacterium acnes, Staphylococcus haemolyticus, S. warneri, and S. epidermidis by 10² - 10⁵ folds. Ten minutes-exposure to UVB enhanced about 100 folds bactericidal activities of uncoated ZnO (3.1 mg/mL) against C. acnes. Coated nanoparticles compromised the UVB bactericidal effects by increasing 10-100 folds of bacteria cell numbers.

Conclusion: Nanoparticles in sunscreen products combining the influences of UV radiation may impact skin microbiota in a complex manner. The information from this study could advance the knowledge about the safety of nanoparticles in sunscreens on skin health. The in vitro approach established from this study can help to evaluate the safety of cosmetics or ingredients on skin health.

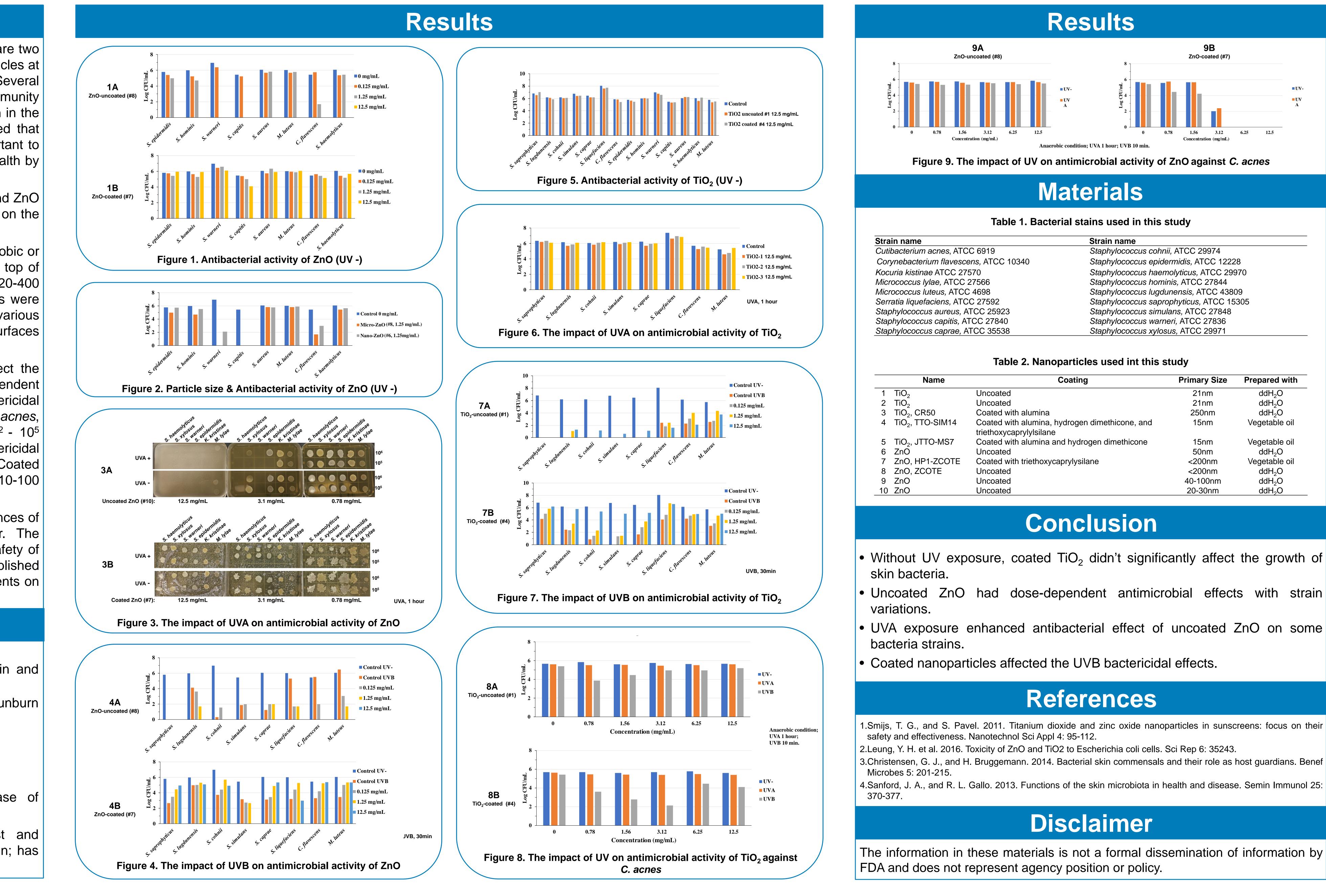
Introduction

UV radiation:

UVA (320-400 nm) penetrates the second layer of skin and causes aging, wrinkling, and skin cancer $^{(1)}$.

UVB (290-320 nm) affects skin's top layer and causes sunburn and skin cancer ⁽¹⁾.

Inorganic UV blockers: reflection, scattering, absorption.


TiO₂ is more effective in blocking UVB $^{(1)}$.

ZnO is more effective in blocking UVA ⁽¹⁾.

Nanoscale or micronized particles: improve cosmesis and ease of application $^{(1)}$; exhibit antibacterial activity $^{(2)}$.

Skin microbiota: a dynamic population influenced by its host and environment ⁽³⁾; prevents many pathogens from establishing in the skin; has implications for infection, metabolism, toxicity, and cancer ⁽⁴⁾.

Jinshan Jin¹, Haijing Hu², Carl E. Cerniglia¹, Huizhong Chen¹ ¹Division of Microbiology, National Center for Toxicological Research, U.S. FDA, Jefferson, AR; ²Office of Dietary Supplement Programs, Center for Food Safety and Applied Nutrition, U.S. FDA, College Park, MD

name	Strain name
octerium acnes, ATCC 6919	Staphylococcus cohnii, ATCC 29974
ebacterium flavescens, ATCC 10340	Staphylococcus epidermidis, ATCC 12228
ia kistinae ATCC 27570	Staphylococcus haemolyticus, ATCC 29970
coccus lylae, ATCC 27566	Staphylococcus hominis, ATCC 27844
coccus luteus, ATCC 4698	Staphylococcus lugdunensis, ATCC 43809
ia liquefaciens, ATCC 27592	Staphylococcus saprophyticus, ATCC 15305
lococcus aureus, ATCC 25923	Staphylococcus simulans, ATCC 27848
vlococcus capitis, ATCC 27840	Staphylococcus warneri, ATCC 27836
vlococcus caprae, ATCC 35538	Staphylococcus xylosus, ATCC 29971

Name Coating		Primary Size	Prepared with
iO ₂	Uncoated	21nm	ddH ₂ O
iO ₂	Uncoated	21nm	ddH_2O
iO_{2}^{-} , CR50	Coated with alumina	250nm	ddH_2O
iO_2^{-} , TTO-SIM14	Coated with alumina, hydrogen dimethicone, and triethoxycaprylylsilane	15nm	Vegetable oil
iO ₂ , JTTO-MS7	Coated with alumina and hydrogen dimethicone	15nm	Vegetable oil
nŌ	Uncoated	50nm	ddH ₂ O
nO, HP1-ZCOTE	Coated with triethoxycaprylysilane	<200nm	Vegetable oil
nO, ZCOTE	Uncoated	<200nm	ddH ₂ O
nO	Uncoated	40-100nm	ddH ₂ O
nO	Uncoated	20-30nm	$ddH_{2}O$