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1 Executive Summary 
 

A submission was received from Dr. Ying Yuan and Dr. J. Jack Lee, The University of Texas MD 

Anderson Cancer Center, under the fit-for-purpose (FFP) initiative, intended to support the use of 

the Bayesian Optimal Interval (BOIN) Design as a statistical methodology for phase I dose finding 

clinical trials. The submission states that as a model-assisted design, BOIN combines the simplicity 

of an algorithm-based design (for example, the convention 3+3 design), and superiority of a model-

based design (for example, the continuous reassessment method). 

The Applicant’s submission document contained a brief introduction to the BOIN methodology 

and referred to the paper by Liu and Yuan (2015) for technical details and the derivation of the 

design. Therefore, our methodological review focused on the derivations presented by Liu and 

Yuan (2015). Liu and Yuan (2015) present two versions of the BOIN design, which they refer to 

as the local BOIN design, and the global BOIN design. The information presented in this FFP 

submission document applies only to the local BOIN design, and therefore, our review of this FFP 

submission applies only to the local BOIN design. Throughout this review document unless we 

explicitly mention the global BOIN design, we use the term BOIN design to refer to the local 

BOIN design as described by of Liu and Yuan (2015). The Applicant’s submission document also 

presents a summary of simulation studies where several phase I trial designs were compared.  

During our review, we found some technical issues in the derivations presented in Liu and Yuan 

(2015) which needed to be corrected. As a result, we prepared detailed comments and sent them 

to the Applicant as an information request. The Applicant responded with an updated design and 

derivation, and we reviewed the revised design and derivation and provided additional comments 

to the Applicant. Through this iterative process, we sent a total of three sets of comments to the 
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Applicant, each time receiving a further revised version of the design and/or derivation, which 

improved the rigorousness of the methodological development of the BOIN design. In view of the 

iterative nature of these revisions, our determination applies to the most refined version of the 

revised BOIN design and derivation provided to us by the Applicant. This version of the revised 

BOIN design and derivation is summarized in Section 3.1 of this review.  

The information presented in the original FFP submission document, including the simulation 

studies, focuses on the local BOIN design under the specific case where 𝜋0𝑗 = 𝜋1𝑗 = 𝜋2𝑗 = 1/3 

(the quantities 𝜋0𝑗 , 𝜋1𝑗, 𝜋2𝑗 are defined in Section 3.1 of this review), which is referred to as the 

case of the non-informative prior. Therefore, our FFP determination applies only to the local BOIN 

design under the non-informative prior, as the FFP review was requested for this specific form of 

the BOIN design. We focus here on the local BOIN design under the non-informative prior because 

versions of the BOIN design outside of these conditions are not within the scope of the present 

FFP submission, but this focus is not necessarily a reflection on the methodology itself. Further 

detailed information would be needed to make a determination on the BOIN design outside of the 

conditions of the local design and non-informative prior.  In Section 3, however, we discuss the 

local BOIN design in the more general case where the non-informative prior is not required. 

Additional research may be useful to evaluate the properties of the BOIN design in cases when the 

non-informative prior condition is not required. 

Finally, with regards to the simulation results presented in the Applicant’s submission document, 

where several phase I trial designs were compared, BOIN generally performed well in the 

simulation scenarios considered. This does not imply that other methods did not also perform well 

in the simulation scenarios. As is generally the case, findings from the simulation studies are driven 

by the specific parameters and models used to construct the simulation scenarios. Also, in the 

simulation studies of Zhou, Yuan, and Nie (2018), which are summarized in the Applicant’s 

submission document, specific performance metrics were defined to evaluate accuracy, safety, and 

reliability of the designs, and the conclusions of their simulation studies are based on these metrics. 

If any underlying assumption is violated, the BOIN method may not be able to estimate the dose 

toxicity relationship accurately. For example, in instances with combination therapy, where the 

dose toxicity relationship may not be monotonically increasing or also in the case of therapies with 

delayed onset of toxicities. 

 

1.1 Recommendations 

 

Under the non-informative prior, the local BOIN design, in its revised form, can be designated fit-

for-purpose. Our determination is based on the Applicant’s original submission, the Applicant’s 

responses to our information requests (which present the revised form of the local BOIN design), 

and the relevant statistical literature, including the papers by Liu and Yuan (2015) and Zhou, Yuan, 

and Nie (2018). This recommendation does not preclude the availability and use of other methods 

for phase I dose finding clinical trials, including potentially the BOIN design itself outside of the 

local design and informative prior. In practice, one should carefully consider the requirements of 



3 

 

the specific situation when considering candidate designs for a dose finding clinical trial; and when 

deciding on the trial design, one should carefully evaluate the scientific validity of the candidate 

designs in the context of the intended application. 

 

2 Background and Submission Overview  

 

2.1 Background 

 

A submission was received on March 9, 2020 from Dr. Ying Yuan and Dr. J. Jack Lee, The 

University of Texas MD Anderson Cancer Center, under the Fit-for-Purpose (FFP) initiative, 

intended to support the use of the Bayesian Optimal Interval (BOIN) Design as a statistical 

methodology for phase I dose finding clinical trials. The submission states that as a model-assisted 

design, BOIN combines the simplicity of an algorithm-based design (for example, the convention 

3+3 design), and superiority of a model-based design (for example, the continuous reassessment 

method). During the review of this submission, the Agency sent information requests to Dr. Yuan 

on October 28, 2020, December 22, 2020, and March 18, 2021. The submitter provided responses 

to the information requests and questions posed by the Agency on November 2, 2020, January 7, 

2021, and March 28, 2021. Those interactions led to revisions in the methodology that was 

evaluated and is referred to as the revised form of the BOIN design and derivation.  

Previous interactions between the Agency and Dr. Ying Yuan include an initial face-to-face 

meeting with Dr. Yuan on September 26, 2019 to discuss the initial submission package. On 

December 13, 2019, the Agency invited Dr. Yuan to submit a package for FFP determination for 

the BOIN design. 

 

2.2 Overview of Submission 

 

The Applicant’s submission document provides a brief introduction to the BOIN methodology and 

refers to the paper by Liu and Yuan (2015) for more technical details. Liu and Yuan (2015) 

describe the BOIN design as a method to find the maximum tolerated dose (MTD) of a new drug, 

where the MTD is defined as the dose with dose limiting toxicity (DLT) probability that is closest 

to the target toxicity probability. Liu and Yuan (2015) present two versions of the BOIN design, 

which they refer to as the local BOIN design, and the global BOIN design. The information 

presented in the FFP submission document applies only to the local BOIN design, and therefore, 

our review of this FFP submission applies only to the local BOIN design. Throughout this review 

document unless we explicitly mention the global BOIN design, we use the term BOIN design to 

refer to the local BOIN design as described by of Liu and Yuan (2015). 

The submission document mentions examples of oncology trials where the BOIN design has been 

used, and presents an example demonstrating the implementation of the design. The submission 
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document summarizes simulation results from the paper by Zhou, Yuan, and Nie (2018). Zhou, 

Yuan, and Nie (2018) present simulation results evaluating several methods, including BOIN 

method to the continual reassessment method (CRM), dose escalation with overdose control 

(EWOC), Bayesian logistic regression model (BLRM), the modified toxicity probability interval 

(mTPI) and keyboard (equivalently mTPI-2) designs. Metrics for evaluating accuracy, safety, and 

reliability of these methods were assessed through numerical simulations. The submission 

document also briefly summarizes results of a simulation study by Ruppert and Shoben (2018) 

where the impact of some phase I trial designs on the overall outcome of the drug development 

process was evaluated for a drug considered to be safe and efficacious. Finally, the submission 

document mentions software implementations of the BOIN design for generating dose escalation 

and de-escalation rules and conducting simulations. The software implementations that are 

mentioned include an R package called BOIN, a BOIN Shiny app, and a Windows desktop 

program. 

 

2.3 Data Sources 

 

The primary materials used to conduct this review include the Applicant’s submission document, 

the responses to each of our three information requests, and the papers by Liu and Yuan (2015) 

and Zhou, Yuan, and Nie (2018). 

 

3 Statistical Evaluation of the Methodological Development 
 

The Applicant’s original submission contains a description and brief introduction to the BOIN 

methodology and refers to Liu and Yuan (2015) for more technical details. Therefore, our 

methodological review focused on the derivation of the design as presented in Liu and Yuan 

(2015). During our review, we found that some technical issues in the derivations presented by 

Liu and Yuan (2015) which needed to be corrected. We prepared detailed comments and sent them 

to the Applicant as an information request, and the Applicant responded with an updated design 

and derivation. We reviewed the revised design and derivation and provided additional comments 

to the Applicant. Through this iterative process, we sent a total of three information requests to the 

Applicant, each time receiving a further revised version of the design and/or derivation, which 

improved the rigorousness of the methodological development of the BOIN design. In view of the 

iterative nature of these revisions, our determination applies to the most refined version of the 

revised BOIN design and derivation provided to us by the Applicant. This version of the revised 

BOIN design and derivation is summarized in Section 3.1. 

 

3.1 Description of BOIN Methodology in its Revised Form 
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The following description of the BOIN methodology is based on information from Liu and Yuan 

(2015) while also incorporating the changes and additional information in the revised derivation 

provided by the Applicant in response to our information requests. This description summarizes 

the Applicant’s revised design and derivation. As noted above, the revised design and derivation 

has been iteratively refined during this review, and the summary that follows is based on the most 

refined version of the BOIN methodology presented to us. 

Assume that a total of 𝐽 prespecified doses are under investigation in the study and let ϕ denote 

the target toxicity probability specified by physicians. It is assumed that the dose levels are ordered 

such that dose level 𝑗 = 1 represents the lowest dose under investigation in the study, dose level 

𝑗 = 2 represents the second lowest dose under investigation in the study, and so on with dose level 

𝑗 = 𝐽 representing the highest dose under investigation in the study. At dose level 𝑗, let 𝑛𝑗  denote 

the total number of patients treated, 𝑚𝑗 denote the number of patients who had dose limiting 

toxicity (DLT), and define �̂�𝑗 = 𝑚𝑗/𝑛𝑗. Consider a class of designs as follows. 

1. Patients in the first cohort are treated at the lowest dose level. 

 

2. Let 𝑗 denote the current dose level. Assign a dose to the next cohort of patients as follows. 

• If �̂�𝑗 ≤ λ1𝑗(𝑛𝑗 , ϕ), then escalate the dose level to 𝑗 + 1 (in the case 𝑗 = 𝐽, if �̂�𝑗 ≤

λ1𝑗(𝑛𝑗 , ϕ), then the dose remains at level 𝑗 = 𝐽). 

• If �̂�𝑗 > λ2𝑗(𝑛𝑗 , ϕ), then de-escalate the dose to level 𝑗 − 1 (in the case 𝑗 = 1, if  �̂�𝑗 >

λ2𝑗(𝑛𝑗 , ϕ), then the dose remains at level 𝑗 = 1). 

• Otherwise, i.e., λ1𝑗(𝑛𝑗 , ϕ) < �̂�𝑗 ≤ λ2𝑗(𝑛𝑗 , ϕ), then retain the same dose level, which is 

level 𝑗. 

Here 𝜆1𝑗(𝑛𝑗 , 𝜙) and 𝜆2j(𝑛𝑗 , 𝜙) are functions of 𝑗, 𝑛𝑗  and 𝜙 such that 𝜆1𝑗(𝑛𝑗 , 𝜙) ≤ 𝜆2j(𝑛𝑗 , 𝜙). 

 

3. Repeat step 2 until the maximum sample size is reached or the trial is terminated due to 

excessive toxicity. 

Reviewer’s Comment. The design presented above, which is the revised version, differs from the 

design in Liu and Yuan (2015, page 509) in the following aspects. 

• The condition for  de-escalating the dose originally was �̂�𝑗 ≥ 𝜆2𝑗(𝑛𝑗 , 𝜙), but has been changed 

to �̂�𝑗 > 𝜆2𝑗(𝑛𝑗 , 𝜙). 

• The condition for retaining the same dose level originally was 𝜆1𝑗(𝑛𝑗 , 𝜙) < �̂�𝑗 < 𝜆2𝑗(𝑛𝑗 , 𝜙), 

but has been changed to 𝜆1𝑗(𝑛𝑗 , 𝜙) < �̂�𝑗 ≤ 𝜆2𝑗(𝑛𝑗 , 𝜙). 

• Originally it was stated that 0 ≤ 𝜆1𝑗(𝑛𝑗 ,  𝜙) < 𝜆2𝑗(𝑛𝑗 , 𝜙) ≤ 1; however, this condition has 

been replaced by the condition 𝜆1𝑗(𝑛𝑗 ,  𝜙) ≤ 𝜆2𝑗(𝑛𝑗 , 𝜙). 

 

The reasons for these changes will be explained in Section 3.2.1. 

▀ 
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Next the Applicant considers how to choose λ1𝑗(𝑛𝑗 , ϕ) and λ2𝑗(𝑛𝑗 , ϕ) to minimize the probability 

of making an incorrect decision. For notational brevity, λ1𝑗(𝑛𝑗 , ϕ) and λ2𝑗(𝑛𝑗 , ϕ) are denoted as 

λ1𝑗 and λ2𝑗. Let 𝑝𝑗 denote the true toxicity probability of dose level 𝑗 for 𝑗 = 1,… , 𝐽. For each 𝑗 =

1, … , 𝐽, the following point hypotheses 𝐻0𝑗, 𝐻1𝑗, and 𝐻2𝑗 are formulated: 

𝐻0𝑗: 𝑝𝑗 = ϕ (on target), 

𝐻1𝑗: 𝑝𝑗 = ϕ1 (underdosing), 

𝐻2𝑗: 𝑝𝑗 = ϕ2 (overdosing), 

where 0 < ϕ1 < ϕ < ϕ2 < 1 and ϕ1 denotes the highest toxicity probability that is deemed 

subtherapeutic such that dose escalation should be made, and ϕ2 denotes the lowest toxicity 

probability that is deemed overly toxic such that dose de-escalation is required. Liu and Yuan 

(2015) recommend the default values 

ϕ1 = 0.6ϕ and ϕ2 = 1.4ϕ. 

While the above are default recommendations for ϕ1 and ϕ2, the Applicant mentions that the 

values of ϕ1 and ϕ2 can be calibrated to achieve a particular requirement of the trial.  

The probability of making an incorrect decision is formulated as follows. Let 𝑗 denote the current 

dose level and let ℛ denote the decision to retain the current dose level 𝑗, let ℰ denote the decision 

to escalate the dose level to 𝑗 + 1, and let 𝒟 denote the decision to de-escalate the dose level to 

𝑗 − 1. Also let ℛ̅ denote the decision not to retain the dose level 𝑗 (that is, to to de-escalate the 

dose level to 𝑗 − 1 or escalate the dose to level 𝑗 + 1), let ℰ̅ denote  the decision not to escalate the 

dose level to 𝑗 + 1 (that is to de-escalate the dose to level 𝑗 − 1 or retain the dose level 𝑗), and let 

�̅� denote the decision not to de-escalate the dose level to 𝑗 − 1 (that is to retain the dose level 𝑗 or 

escalate the dose level to 𝑗 + 1). Under each of the three hypotheses 𝐻0𝑗, 𝐻1𝑗, and 𝐻2𝑗 the correct 

and incorrect decisions are assumed to be as follows. 

• If the hypothesis 𝐻0𝑗: 𝑝𝑗 = 𝜙 (on target) is true, then the correct decision is ℛ, and the incorrect 

decision is ℛ̅. 

• If the hypothesis 𝐻1𝑗: 𝑝𝑗 = ϕ1 (underdosing) is true, then the correct decision is ℰ, and the 

incorrect decision is ℰ̅. 

• If the hypothesis 𝐻2𝑗: 𝑝𝑗 = 𝜙2 (overdosing) is true, then the correct decision is 𝒟, and the 

incorrect decision is �̅�. 

Reviewer’s Comment. The general form of the dose escalation/de-escalation/retainment rules, 

and the characterization of correct and incorrect decisions under each hypothesis 𝐻0𝑗 , 𝐻1𝑗 , 𝐻2𝑗 are 

intuitively reasonable under the assumption of a monotonically increasing dose-toxicity 

relationship in the sense that 𝑝1 ≤ 𝑝2 ≤ ⋯ ≤ 𝑝𝐽. 

▀ 
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Under the Bayesian paradigm, each of the hypotheses 𝐻0𝑗, 𝐻1𝑗, and 𝐻2𝑗 is assigned a prior 

probability of being true, denoted by 

π0𝑗 = 𝑃(𝐻0𝑗), π1𝑗 = 𝑃(𝐻1𝑗), π2𝑗 = 𝑃(𝐻2𝑗). 

Then the Applicant obtains the probability of making an incorrect decision at each of the dose 

assignments, denoted by 𝛼(𝜆1𝑗 , 𝜆2𝑗), as follows: 

α(λ1j, λ2j) = 𝑃(𝐻0𝑗)𝑃(ℛ̅|𝐻0𝑗) + 𝑃(𝐻1𝑗)𝑃(ℰ̅|𝐻1𝑗) + 𝑃(𝐻2𝑗)𝑃(�̅�|𝐻2𝑗)

= 𝑃(𝐻0𝑗)𝑃(𝑚𝑗 ≤ 𝑛𝑗𝜆1𝑗 or 𝑚𝑗 > 𝑛𝑗𝜆2𝑗|𝐻0𝑗) + 𝑃(𝐻1𝑗)𝑃(𝑚𝑗 > 𝑛𝑗𝜆1𝑗|𝐻1𝑗)

+ 𝑃(𝐻2𝑗)𝑃(𝑚𝑗 ≤ 𝑛𝑗𝜆2𝑗|𝐻2𝑗)

= 𝜋0𝑗{Bin(𝑛𝑗𝜆1𝑗; 𝑛𝑗 ,  𝜙) + 1 − Bin(𝑛𝑗𝜆2𝑗; 𝑛𝑗 , 𝜙)} + 𝜋1𝑗{1 − Bin(𝑛𝑗𝜆1𝑗; 𝑛𝑗 , 𝜙1)}

+ 𝜋2𝑗Bin(𝑛𝑗𝜆2𝑗; 𝑛𝑗 , 𝜙2) 

 

where Bin(𝑏; 𝑛, 𝑝) denotes the cumulative distribution function of the Binomial(𝑛, 𝑝) distribution 

evaluated at the value 𝑏. The decision error probability 𝛼(𝜆1𝑗, 𝜆2𝑗) is then written as 

𝛼(𝜆1𝑗, 𝜆2𝑗) = 𝛼1(𝜆1𝑗) + 𝛼2(𝜆2𝑗) + 𝜋0𝑗 + 𝜋1𝑗 

Equation 1 

where  

𝛼1(𝜆1𝑗) = 𝜋0𝑗Bin(𝑛𝑗𝜆1𝑗; 𝑛𝑗 ,  𝜙) − 𝜋1𝑗Bin(𝑛𝑗𝜆1𝑗; 𝑛𝑗 ,  𝜙1) 

𝛼2(𝜆2𝑗) = 𝜋2𝑗Bin(𝑛𝑗𝜆2𝑗; 𝑛𝑗 ,  𝜙2) − 𝜋0𝑗Bin(𝑛𝑗𝜆2𝑗; 𝑛𝑗 , 𝜙). 

Equation 2 

Reviewer’s Comment.  

The formulas above for the decision error probability 𝛼(𝜆1𝑗, 𝜆2𝑗) hold if 𝑗 ∈ {2,3, . . . , 𝐽 − 1}. 

However, adjustment is needed if 𝑗 = 1 or 𝑗 = 𝐽. Dose level 𝑗 = 1 represents the lowest dose level 

under investigation in the study, and hence it is not possible to de-escalate the dose to level 𝑗 − 1 

if 𝑗 = 1. Therefore, if 𝑗 = 1, then the dose assignment rule in step 2 of the class of designs is the 

following. 

When the current dose level is 𝑗 = 1, assign a dose to the next cohort of patients as follows. 

• If �̂�1 ≤ λ11(𝑛1, ϕ), then escalate the dose level to level 2. 

• If �̂�1 > λ11(𝑛1, ϕ), then retain the same dose level which is level 1. 

Thus, in the BOIN framework as presented above, if 𝑗 = 1, then the decision error probability is 
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𝑃(𝐻01)𝑃(ℛ̅|𝐻01) + 𝑃(𝐻11)𝑃(ℰ̅|𝐻11) + 𝑃(𝐻21)𝑃(�̅�|𝐻21)

= 𝑃(𝐻01)𝑃(𝑚1 ≤ 𝑛1𝜆11 |𝐻01) + 𝑃(𝐻11)𝑃(𝑚1 > 𝑛1𝜆11|𝐻11) + 𝑃(𝐻21)

= 𝜋01Bin(𝑛1𝜆11; 𝑛1,  𝜙) + 𝜋11{1 − Bin(𝑛1𝜆11; 𝑛1, 𝜙1)} + 𝜋21
= π01Bin(𝑛1𝜆11; 𝑛1,  𝜙) − π11Bin(𝑛1𝜆11; 𝑛1, 𝜙1) + π11 + π21
= α1(λ11) + π11 + π21 

Equation 3 

using 𝛼1(𝜆1𝑗) as defined in Equation 2. Dose level 𝑗 = 𝐽 represents the largest dose under 

investigation in the study, and hence it is not possible to escalate the dose to level 𝑗 + 1 if 𝑗 = 𝐽. 

Therefore, if 𝑗 = 𝐽, then the dose assignment rule in step 2 of the class of designs is the following. 

When the current dose level is 𝑗 = 𝐽, assign a dose to the next cohort of patients as follows. 

• If �̂�𝐽 > λ2𝐽(𝑛𝐽, ϕ), then de-escalate the dose to level 𝐽 − 1. 

• If �̂�𝐽 ≤ λ2𝐽(𝑛𝐽, ϕ), then retain the same dose level, which is level 𝐽. 

Thus, in the BOIN framework as presented above, if 𝑗 = 𝐽, then the decision error probability is 

𝑃(𝐻0𝐽)𝑃(ℛ̅|𝐻0𝐽) + 𝑃(𝐻1𝐽)𝑃(ℰ̅|𝐻1𝐽) + 𝑃(𝐻2𝐽)𝑃(�̅�|𝐻2𝐽)

= 𝑃(𝐻0𝐽)𝑃( 𝑚𝐽 > 𝑛𝐽𝜆2𝐽|𝐻0𝐽) + 𝑃(𝐻1𝐽) + 𝑃(𝐻2𝐽)𝑃(𝑚𝐽 ≤ 𝑛𝐽𝜆2𝐽|𝐻2𝐽)

= 𝜋0𝐽{1 − Bin(𝑛𝐽𝜆2𝐽; 𝑛𝐽, 𝜙)} + 𝜋1𝐽 + 𝜋2𝐽Bin(𝑛𝐽𝜆2𝐽; 𝑛𝐽 , 𝜙2)

= 𝜋2𝐽Bin(𝑛𝑗𝜆2𝐽; 𝑛𝐽 , 𝜙2) − π0𝐽Bin(𝑛𝐽𝜆2𝐽; 𝑛𝐽 , 𝜙) + π0𝐽 + π1𝐽

= 𝛼2(𝜆2𝐽) + 𝜋0𝐽 + 𝜋1𝐽 

Equation 4 

using 𝛼2(𝜆2𝐽) as defined in Equation 2. The Applicant’s approach to minimize the decision error 

probability 𝛼(𝜆1𝑗, 𝜆2𝑗) with respect to λ1𝑗 and λ2𝑗 is to minimize α1(λ1𝑗) and α2(λ2𝑗) separately, 

and therefore, it follows from Equation 3 and Equation 4, that this approach also applies to 

minimize the decision error in the cases 𝑗 = 1 and 𝑗 = 𝐽. 

▀ 

 

To minimize 𝛼(𝜆1𝑗, 𝜆2𝑗), the Applicant minimizes α1(λ1𝑗) and α2(λ2𝑗) separately with regard to 

λ1𝑗 and λ2𝑗, respectively. Let 𝐼(⋅) denote an indicator function. The Applicant obtains that 𝛼1(𝜆1𝑗) 

is minimized when  

𝜆1𝑗 ∈

{
 
 
 

 
 
 [1 −

𝐼(𝑦∗ = 𝑛𝑗)

𝑛𝑗
,  ∞)  if 𝑦∗ ≥ 𝑛𝑗

[
⌈𝑦∗⌉ − 1

𝑛𝑗
,  
⌊𝑦∗⌋ + 1

𝑛𝑗
)  if 0 < 𝑦∗ < 𝑛𝑗

(−∞,  
𝐼(𝑦∗ = 0)

𝑛𝑗
) if 𝑦∗ ≤ 0
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where  

𝑦∗ =

𝑛𝑗 log (
1 − 𝜙1
1 − 𝜙 ) + log

(
𝜋1𝑗
𝜋0𝑗

)

log (
𝜙(1 − 𝜙1)
𝜙1(1 − 𝜙)

)
, 

and 𝛼2(𝜆2𝑗) is minimized when 

𝜆2𝑗 ∈

{
 
 
 

 
 
 [1 −

𝐼(𝑦∗∗ = 𝑛𝑗)

𝑛𝑗
,  ∞)  if 𝑦∗∗ ≥ 𝑛𝑗

[
⌈𝑦∗∗⌉ − 1

𝑛𝑗
,  
⌊𝑦∗∗⌋ + 1

𝑛𝑗
)  if 0 < 𝑦∗∗ < 𝑛𝑗

(−∞,  
𝐼(𝑦∗∗ = 0)

𝑛𝑗
) if 𝑦∗∗ ≤ 0

 

where 

𝑦∗∗ =

𝑛𝑗 log (
1 − 𝜙
1 − 𝜙2

) + log (
𝜋0𝑗
𝜋2𝑗

)

log (
𝜙2(1 − 𝜙)
𝜙 (1 − 𝜙2)

)
 . 

 

 

As discussed in the Applicant’s revised derivation, one specific values of  λ1𝑗 that minimizes 

𝛼1(𝜆1𝑗) is 

 

λ1𝑗
∗ = 𝑦∗/𝑛𝑗 =

log (
1 − 𝜙1
1 − 𝜙 ) + 𝑛𝑗

−1 log (
𝜋1𝑗
𝜋0𝑗

)

log (
𝜙(1 − 𝜙1)
𝜙1(1 − 𝜙)

)
 

Equation 5 

 

 and one specific value of 𝜆2𝑗 that minimizes 𝛼2(𝜆2𝑗) is 

λ2𝑗
∗ = 𝑦∗∗/𝑛𝑗 =

log (
1 − 𝜙
1 − 𝜙2

) + 𝑛𝑗
−1 log (

𝜋0𝑗
𝜋2𝑗

)

log (
𝜙2(1 − 𝜙)
𝜙 (1 − 𝜙2)

)
. 

Equation 6 

This solution, namely λ1𝑗
∗  as defined in Equation 5 and 𝜆2𝑗

∗  as defined in Equation 6, is the solution 

provided by Liu and Yuan (2015), as the values of λ1𝑗 and λ2𝑗, respectively, that minimize the 

decision error probability. 
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When the non-informative prior 𝜋0𝑗 = 𝜋1𝑗 = 𝜋2𝑗 = 1/3 is used (the default setting recommended 

by the Applicant), the optimal dose escalation and de-escalation boundaries λ1𝑗
∗  as defined in 

Equation 5 and 𝜆2𝑗
∗  as defined in Equation 6 can be expressed as 

λ1𝑗
∗ =

log (
1 − 𝜙1
1 − 𝜙 )

log (
𝜙(1 − 𝜙1)
𝜙1(1 − 𝜙)

)
 

 

Equation 7 

and 

λ2𝑗
∗ =

log (
1 − ϕ
1 − ϕ2

)

log (
ϕ2(1 − ϕ)
ϕ (1 − ϕ2)

)
. 

Equation 8 

The boundaries in Equation 7 and Equation 8 remain the same for all dose levels 𝑗 and also remain 

the same for all 𝑛𝑗 . Therefore, the same pair of boundaries can be used throughout the trial if the 

non-informative prior is used, and the boundaries λ1𝑗
∗  and λ2𝑗

∗  can be written as λ1
∗  and λ2

∗ , 

respectively. The Applicant notes that the boundaries in Equation 7 and Equation 8 are the ones 

recommended by Liu and Yuan (2015), implemented in current BOIN software, and used in 

practice. 

If an informative prior is used (that is, if π0𝑗, π1𝑗, π2𝑗 are chosen such that the condition 𝜋0𝑗 =

𝜋1𝑗 = 𝜋2𝑗 = 1/3 does not hold), then with λ1𝑗
∗  and λ2𝑗

∗  as defined in Equation 5 and Equation 6, 

respectively, it is possible that λ1𝑗
∗ > λ2𝑗

∗ . If λ1𝑗
∗ > λ2𝑗

∗ , then these boundaries cannot be used since 

they do not satisfy the condition λ1𝑗
∗ ≤ λ2𝑗

∗ ; and instead, a numerical search can be used to find 

values of λ1𝑗 and λ2𝑗 that minimize the decision error probability 𝛼(𝜆1𝑗, 𝜆2𝑗) under the condition 

λ1𝑗 ≤ λ2𝑗. The Applicant notes that this issue will not occur when the non-informative prior is 

used (that is, when 𝜋0𝑗 = 𝜋1𝑗 = 𝜋2𝑗 = 1/3). The issue does not occur when 𝜋0𝑗 = 𝜋1𝑗 = 𝜋2𝑗 =

1/3 because, the condition 0 < ϕ1 < ϕ < ϕ2 < 1,  implies that 

0 <
log (

1 − 𝜙1
1 − 𝜙 )

log (
𝜙(1 − 𝜙1)
𝜙1(1 − 𝜙)

)
  < ϕ <

log (
1 − ϕ
1 − ϕ2

)

log (
ϕ2(1 − ϕ)
ϕ (1 − ϕ2)

)
< 1. 

The Applicant has provided the following revised version of Theorem 1 of Liu and Yuan (2015). 
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Theorem 1. Under the non-informative prior 𝜋0𝑗 = 𝜋1𝑗 = 𝜋2𝑗, the optimal dose escalation 

boundary λ1
∗  is the boundary at which 𝑃(𝐻1|𝑦𝑗 , 𝑛𝑗) ≥ 𝑃(𝐻0|𝑦𝑗 , 𝑛𝑗), and the optimal dose de-

escalation boundary λ2
∗  is the boundary at which 𝑃(𝐻2|𝑦𝑗 , 𝑛𝑗) > 𝑃(𝐻0|𝑦𝑗 , 𝑛𝑗). 

Reviewer’s Comment. In the above statement of Theorem 1, the subscript 𝑗 is dropped from λ1𝑗
∗ , 

λ2𝑗
∗ , 𝐻0𝑗, 𝐻1𝑗, and 𝐻2𝑗. Also, 𝑦𝑗 is used instead of 𝑚𝑗 to denote the number of patients who had 

DLT at the current dose level 𝑗. 

▀ 

The BOIN design also incorporates the following dose elimination rule (page 515 of Liu and Yuan, 

2015): 

If 𝑃(𝑝𝑗 > 𝜙|𝑚𝑗 ,  𝑛𝑗) > 0.95 and 𝑛𝑗 ≥ 3, dose levels 𝑗 and higher are eliminated from the trial, 

and the trial is terminated if the first dose level is eliminated, where 𝑃(𝑝𝑗 > 𝜙|𝑚𝑗 ,  𝑛𝑗) > 0.95 can 

be evaluated on the basis of a beta-binomial model, assuming that 𝑚𝑗 follows a binomial 

distribution (with size and probability parameters 𝑛𝑗  and 𝑝𝑗) and 𝑝𝑗 follows a vague beta prior, e.g. 

𝑝𝑗 ∼ beta(1,1). 

Once the trial is completed the maximum tolerated dose (MTD) needs to be selected. Let 𝑝1, . . . , 𝑝𝐽 

denote the isotonically transformed values of the observed toxicity probabilities �̂�1, . . . , �̂�𝐽. The 

MTD is selected as the dose level 𝑗∗ for which 𝑝𝑗∗ is closest to ϕ. In the case that there are ties for 

𝑝𝑗∗, if 𝑝𝑗∗ < ϕ, then the highest dose level is selected from the ties as the MTD, and if 𝑝𝑗∗ > 𝜙, 

then the lowest dose level is selected from the ties as the MTD. 

Reviewer’s Comment. The discussion in Liu and Yuan (2015, page 514) on selecting the MTD 

does not specify how to select the MTD if there are ties for 𝑝𝑗∗ and 𝑝𝑗∗ = 𝜙. 

▀ 

 

3.2 Comments on the Methodological Development 

 

The Applicant’s revised methodology and derivations, as summarized above in Section 3.1 address 

some technical issues in the derivations in Liu and Yuan (2015) that were identified during this 

review. Detailed technical comments appear in the three information requests that were sent to the 

Applicant. In the following Section 3.2.1 we describe the technical issues and explain how the 

revised methodology and derivations address these issues. Then in Section 3.2.2 we present some 

additional comments on the methodology. 

 

3.2.1 Comments Addressed by the Revised BOIN Methodological Development 
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The following comments describe some issues pertaining to the original version of the BOIN 

design as presented in Liu and Yuan (2015), and explain how the revised BOIN methodological 

development, as summarized in Section 3.1, addresses these issues. 

1. There was an issue with the original expression of the decision error probability and its 

minimization as presented in Liu and Yuan (2015). As explained in Comment 1 of Information 

Request 1, the last equality of Equation (1) of Liu and Yuan (2015) does not hold in general. 

Furthermore, in Appendix A of Liu and Yuan (2015), the decision error probability is written 

as 𝛼(𝜆1𝑗 , 𝜆2𝑗) = 𝛼1(𝜆1𝑗) + 𝛼2(𝜆2𝑗) + 𝜋0𝑗 + 𝜋1𝑗 where 𝛼1(𝜆1𝑗) = 𝜋0𝑗Bin(𝑛𝑗𝜆1𝑗; 𝑛𝑗 ,  𝜙) −

𝜋1𝑗Bin(𝑛𝑗𝜆1𝑗; 𝑛𝑗 ,  𝜙1) and 𝛼2(𝜆2𝑗) = 𝜋2𝑗Bin(𝑛𝑗𝜆2𝑗 − 1; 𝑛𝑗 ,  𝜙2) − 𝜋0𝑗Bin(𝑛𝑗𝜆2𝑗 −

1; 𝑛𝑗 , 𝜙). Note that this definition of 𝛼2(𝜆2𝑗) from Appendix A of Liu and Yuan (2015) differs 

from the definition of 𝛼2(𝜆2𝑗) in the Applicant’s revised derivation as summarized in Section 

3.1 (see Equation 2). Comment 2 of Information Request 1 provides an example where the 

function 𝛼2(𝜆2𝑗) = 𝜋2𝑗Bin(𝑛𝑗𝜆2𝑗 − 1; 𝑛𝑗 ,  𝜙2) − 𝜋0𝑗Bin(𝑛𝑗𝜆2𝑗 − 1; 𝑛𝑗 , 𝜙) is not minimized 

at the value claimed in Liu and Yuan (2015). To correct these issues, the Applicant made the 

following revisions. 

 

a. The condition for  de-escalating the dose originally was �̂�𝑗 ≥ 𝜆2𝑗(𝑛𝑗 , 𝜙), but has been 

changed to �̂�𝑗 > 𝜆2𝑗(𝑛𝑗 , 𝜙). 

b. The condition for retaining the same dose level originally was 𝜆1𝑗(𝑛𝑗 , 𝜙) < �̂�𝑗 <

𝜆2𝑗(𝑛𝑗 , 𝜙), but has been changed to 𝜆1𝑗(𝑛𝑗 , 𝜙) < �̂�𝑗 ≤ 𝜆2𝑗(𝑛𝑗 , 𝜙). 

The Applicant has re-derived and minimized the decision error probability under these 

revisions to the design, as summarized in Section 3.1, to address these issues. 

 

2. Liu and Yuan (2015) originally stated the condition 0 ≤ 𝜆1𝑗(𝑛𝑗 ,  𝜙) < 𝜆2𝑗(𝑛𝑗 , 𝜙) ≤ 1. 

However, Example 2 in Information Request 2 presents an example where the decision error 

probability is minimized when λ1 ∈ (−∞, 0)  and λ2 ∈ [1,∞); thus, demonstrating that the 

minimizing values can occur outside of the interval [0,1]. In view of this observation, and in 

view of the changes to the dose de-escalation and dose retainment conditions (discussed in the 

preceding comment) under which the situation 𝜆1𝑗(𝑛𝑗 ,  𝜙) = 𝜆2𝑗(𝑛𝑗 , 𝜙) would not cause a 

problem in the decision rules; the condition 0 ≤ 𝜆1𝑗(𝑛𝑗 ,  𝜙) < 𝜆2𝑗(𝑛𝑗 , 𝜙) ≤ 1 has been 

replaced by the condition 𝜆1𝑗(𝑛𝑗 ,  𝜙) ≤ 𝜆2𝑗(𝑛𝑗 , 𝜙) in the revised BOIN methodological 

development. Note that in addition to changing 𝜆1𝑗(𝑛𝑗 ,  𝜙) < 𝜆2𝑗(𝑛𝑗 , 𝜙) to 𝜆1𝑗(𝑛𝑗 ,  𝜙) ≤

𝜆2𝑗(𝑛𝑗 , 𝜙), the revised condition also allows 𝜆1𝑗(𝑛𝑗 ,  𝜙) and 𝜆2𝑗(𝑛𝑗 ,  𝜙) to occur outside of the 

interval [0,1]. 
 

 

3. The revised BOIN methodological development clarifies that the decision error probability is 

minimized over a set of values for λ1𝑗 and λ2𝑗, not just at a single point; and the Applicant has 
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formulated the general solution. Our information requests present some numerical examples 

that illustrate this point. 

 

4. The revised BOIN methodological development clarifies that if the condition 𝜋0𝑗 = 𝜋1𝑗 =

𝜋2𝑗 = 1/3 does not hold, then the decision boundaries 𝜆1𝑗
∗  and 𝜆2𝑗

∗  defined by 

𝜆1𝑗
∗ =

log (
1 − 𝜙1
1 − 𝜙 ) + 𝑛𝑗

−1 log (
𝜋1𝑗
𝜋0𝑗

)

log {
𝜙(1 − 𝜙1)
𝜙1(1 − 𝜙)

}
 

and      

𝜆2𝑗
∗ =

log (
1 − 𝜙
1 − 𝜙2

) + 𝑛𝑗
−1 log (

𝜋0𝑗
𝜋2𝑗

)

log {
𝜙2(1 − 𝜙)
𝜙 (1 − 𝜙2)

}
 

can be such that 𝜆1𝑗
∗ > 𝜆2𝑗

∗ . If λ1𝑗
∗ > λ2𝑗

∗ , then these boundaries cannot be used since they do 

not satisfy the condition λ1𝑗
∗ ≤ λ2𝑗

∗ ; and instead, a numerical search can be used to find values 

of λ1𝑗 and λ2𝑗 that minimize the decision error probability 𝛼(𝜆1𝑗, 𝜆2𝑗) under the condition 

λ1𝑗 ≤ λ2𝑗. An example to illustrate this situation is presented in Example 3 of Information 

Request 2. The revised derivation also points out that this issue will not occur when the non-

informative prior is used (that is, when 𝜋0𝑗 = 𝜋1𝑗 = 𝜋2𝑗 = 1/3). The issue does not occur 

when 𝜋0𝑗 = 𝜋1𝑗 = 𝜋2𝑗 = 1/3 because, the condition 0 < ϕ1 < ϕ < ϕ2 < 1,  implies that 

0 <
log (

1 − 𝜙1
1 − 𝜙 )

log (
𝜙(1 − 𝜙1)
𝜙1(1 − 𝜙)

)
  < ϕ <

log (
1 − ϕ
1 − ϕ2

)

log (
ϕ2(1 − ϕ)
ϕ (1 − ϕ2)

)
< 1. 

 

5. In the revised BOIN methodological development, Theorem 1 is re-stated under the 

assumption that 𝜋0𝑗 = 𝜋1𝑗 = 𝜋2𝑗. The assumption  𝜋0𝑗 = 𝜋1𝑗 = 𝜋2𝑗 is included to ensure that 

𝜆1𝑗
∗ ≤ 𝜆2𝑗

∗  (where λ1𝑗
∗  and λ2𝑗

∗  are defined by Equation 5 and Equation 6, respectively). If the 

assumption 𝜋0𝑗 = 𝜋1𝑗 = 𝜋2𝑗 = 1/3 is omitted from Theorem 1, then it is possible that 𝜆1𝑗
∗ >

𝜆2𝑗
∗ , and if 𝜆1𝑗

∗ > 𝜆2𝑗
∗ , then the conclusion of Theorem 1 may not hold. 

 

6. The submission package describes simulation studies to assess the operating characteristics of 

phase I trial designs, including the BOIN design. The simulation results are discussed later in 

Section 4 of this review. These simulation results use the original version of the BOIN design 

as described in Liu and Yuan (2015), not the revised design described above in Section 3.1. 

However, the revisions to the BOIN design will not affect these specific simulation results 

because of the following reasons. 
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a. The simulation results presented in the submission package are for the case when 

𝜋0𝑗 = 𝜋1𝑗 = 𝜋2𝑗 = 1/3. As noted above, the condition 0 < ϕ1 < ϕ < ϕ2 < 1,  

implies that 

0 <
log (

1 − 𝜙1
1 − 𝜙 )

log (
𝜙(1 − 𝜙1)
𝜙1(1 − 𝜙)

)
  < ϕ <

log (
1 − ϕ
1 − ϕ2

)

log (
ϕ2(1 − ϕ)
ϕ (1 − ϕ2)

)
< 1, 

and hence the condition 0 < 𝜆1𝑗
∗ < 𝜆2𝑗

∗ < 1 holds in the simulation scenarios. The 

simulation scenarios cannot result in 𝜆1𝑗
∗ > 𝜆2𝑗

∗ , which, as discussed above, is 

possible if 𝜋0𝑗 = 𝜋1𝑗 = 𝜋2𝑗 = 1/3 does not hold. 

 

b. The simulation scenarios considered are such that 𝜆2𝑗
∗  does not take any value in 

the finite set {
0

𝑛𝑗
,
1

𝑛𝑗
,
2

𝑛𝑗
, . . . ,

𝑛𝑗−1

𝑛𝑗
,
𝑛𝑗

𝑛𝑗
}, and hence the event �̂�𝑗 = λ2𝑗

∗  has probability 

zero in the simulation scenarios. Also, as noted above, the condition 0 < 𝜆1𝑗
∗ <

𝜆2𝑗
∗ < 1 holds in the simulation scenarios. Hence changing the de-escalation 

condition from �̂�𝑗 ≥ 𝜆2𝑗(𝑛𝑗 , 𝜙) to �̂�𝑗 > 𝜆2𝑗(𝑛𝑗 , 𝜙) and changing the retainment 

condition from 𝜆1𝑗(𝑛𝑗 , 𝜙) < �̂�𝑗 < 𝜆2𝑗(𝑛𝑗 , 𝜙)  to 𝜆1𝑗(𝑛𝑗 , 𝜙) < �̂�𝑗 ≤ 𝜆2𝑗(𝑛𝑗 , 𝜙) will 

not change the escalation, de-escalation, or retainment decisions in the simulated 

trials. 

 

3.2.2 Additional Comments 

 

The following are some additional comments on the methodological development of the BOIN 

design. 

7. The BOIN methodology is developed under a Bayesian paradigm, and we note that the prior 

distribution used to derive the values λ1𝑗 and λ2𝑗 (which determine the conditions for dose 

escalation, de-escalation, and retainment) differs from the prior distribution used to obtain the 

dose elimination rule.  The values λ1𝑗 and λ2𝑗 are chosen to minimize the probability of making 

an incorrect decision under the Bayesian paradigm where the prior distribution of 𝑝𝑗 is such 

that 𝑃(𝑝𝑗 = ϕ) = π0𝑗, 𝑃(𝑝𝑗 = ϕ1) = π1𝑗, 𝑃(𝑝𝑗 = ϕ2) = π2𝑗, where π0𝑗 + π2𝑗 + π2𝑗 = 1; 

that is, under this prior distribution 𝑝𝑗 takes values ϕ, ϕ1, ϕ2 with probabilities π0𝑗, π1𝑗, π2𝑗, 

respectively. However, the dose elimination rule is obtained under the assumption that the prior 

distribution for 𝑝𝑗 is the beta(1,1) distribution. The beta(1,1) distribution is equivalent to the 

continuous uniform distribution over the interval (0,1) 
 

8. Let 𝑁𝑗 denote the total number of patients that are treated at dose level 𝑗 during the trial, for 

𝑗 = 1,… , 𝐽. We note that (𝑁1, … , 𝑁𝐽) is a random vector. In contrast, at each decision-making 
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step, the BOIN design is derived by minimizing the decision error probability at the current 

step by treating the cumulative number of subjects treated at the current dose level 𝑗, namely 

𝑛𝑗 , as fixed. 

 

9. There exist scenarios where there is more than one design that minimizes the decision error 

probability 𝛼(𝜆1𝑗, 𝜆2𝑗), subject to λ1𝑗 ≤ λ2𝑗. Two examples of such scenarios are presented 

below. The following Example 1 is also discussed in Comments 3 and 4 of Information 

Request 3, and Comment 4 of Information Request 3 specifically discusses the non-uniqueness 

situation. 

 

Example 1. Suppose 𝑛𝑗 = 3, ϕ = 0.25, ϕ1 = 0.6ϕ = 0.15, ϕ2 = 1.4ϕ = 0.35, π2𝑗 = 0.15, 

π0𝑗 = (0.15)(1.4
3) = 0.4116, π1𝑗 = 1 − π0𝑗 − π2𝑗 = 0.4384, and suppose 𝑗 ∈ {2,3, … , 𝐽} 

so that 𝑗 > 1. It can be shown here that α1(λ1𝑗) and α2(λ2𝑗) (as defined in Equation 2) are 

minimized, respectively, when λ1𝑗 ∈ [0,1/3) and λ2𝑗 ∈ [2/3,∞), and observe the constraint 

λ1𝑗 ≤ λ2𝑗 is satisfied if λ1𝑗 ∈ [0,1/3) and λ2𝑗 ∈ [2/3,∞). Hence, if one chooses λ1𝑗 ∈ [0,1/3) 

and λ2𝑗 ∈ [2/3,1), then if �̂�𝑗 = 1, the current dose level would be de-escalated to level 𝑗 − 1; 

and if one chooses λ1𝑗 ∈ [0,1/3) and λ2𝑗 ∈ [1,∞), then if �̂�𝑗 = 1, the current dose would be 

retained. Thus, this example shows that minimizing 𝛼(𝜆1𝑗, 𝜆2𝑗), subject to λ1𝑗 ≤ λ2𝑗, may not 

lead to a unique design. Observe that in this case, applying Equation 5 and Equation 6 we 

obtain λ1𝑗
∗ ≈ 0.2299 and λ2𝑗

∗ = 1; and hence if �̂�𝑗 = 1, while minimization of 𝛼(𝜆1𝑗, 𝜆2𝑗), 

subject to λ1𝑗 ≤ λ2𝑗, allows for either retaining or de-escalation, the choice of the BOIN design 

would be to retain the current dose level. 

 

Example 2. Suppose 𝑛𝑗 = 3, ϕ = 0.25, ϕ1 = 0.6ϕ = 0.15, ϕ2 = 1.4ϕ = 0.35, π0𝑗 =

(0.6)(1 − (0.6)(0.25))
2
= 0.4335, π1𝑗 = (1 − 0.25)

2 = 0.5625, π2𝑗 = 1 − π0𝑗 − π1𝑗 =

0.004, and suppose 𝑗 ∈ {1,2, … , 𝐽 − 1} so that 𝑗 < 𝐽. It can be shown here that α1(λ1𝑗) and 

α2(λ2𝑗) (as defined in Equation 2) are minimized, respectively, when λ1𝑗 ∈ [0,2/3) and λ2𝑗 ∈

[1,∞), and observe the constraint λ1𝑗 ≤ λ2𝑗 is satisfied if λ1𝑗 ∈ [0,2/3) and λ2𝑗 ∈ [1,∞). 

Hence, if one chooses λ1𝑗 ∈ [0,1/3) and λ2𝑗 ∈ [1,∞), then if �̂�𝑗 = 1/3, the current dose level 

would be retained; and if  one chooses λ1𝑗 ∈ [1/3, 2/3) and λ2𝑗 ∈ [1,∞), then if �̂�𝑗 = 1/3, 

the dose level would be escalated to dose level 𝑗 + 1. Thus, this example shows that 

minimizing 𝛼(𝜆1𝑗, 𝜆2𝑗), subject to λ1𝑗 ≤ λ2𝑗, may not lead to a unique design. Observe that in 

this case, applying Equation 5 and Equation 6 we obtain λ1𝑗
∗ = 1/3 and λ2𝑗

∗ ≈ 3.5552; and 

hence if �̂�𝑗 = 1/3, while minimization of 𝛼(𝜆1𝑗, 𝜆2𝑗), subject to λ1𝑗 ≤ λ2𝑗, allows for either 

retaining or escalation, the choice of the BOIN design would be to escalate the dose to level 

𝑗 + 1. 

 

 

The two examples above were carefully constructed to illustrate the point that minimization of 

the decision error probability 𝛼(𝜆1𝑗, 𝜆2𝑗), subject to λ1𝑗 ≤ λ2𝑗, might not lead to a unique 
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design. Nevertheless, in practice one may want to be aware of this possibility of non-

uniqueness and one may want to verify if the chosen values of π0𝑗, π1𝑗, π2𝑗, ϕ, ϕ1, ϕ2, and 

the cohort size (noting that 𝑛𝑗  can change throughout the trial) will result in a unique design. 

 

4 Simulation 
 

4.1 Description of Simulation 

 

The Applicant submitted simulation study results published by Zhou, Yuan, and Nie (ZYN, 2018). 

The simulation study performed by ZYN evaluated and compared the operating characteristics of 

the BOIN design with three model-based phase I designs, the continual reassessment method 

(CRM), dose escalation with overdose control (EWOC), and Bayesian logistic regression model 

(BLRM), and two model-assisted designs, the modified toxicity probability interval (mTPI) and 

keyboard (equivalently mTPI-2) designs. The results for each design were evaluated relative to the 

3+3 design. 

Model-Based Designs 

 

CRM. The CRM (O'Quigley et al., 1990) is a model-based design that assumes a parametric model 

for the dose–toxicity curve. After each patient cohort is treated, the CRM updates the estimate of 

the dose–toxicity curve based on the accumulating DLT data across all dose levels and assigns the 

next cohort of patients to the "optimal" dose, defined as the dose whose posterior mean estimate 

of the DLT probability is closest to the target ϕ. The trial continues in this manner until the 

prespecified sample size is exhausted. At that point, the MTD is selected as the dose with an 

estimated DLT probability closest to φ. The particular CRM the Applicant considered is a modified 

version of CRM, sometimes referred as modified CRM, which does not allow dose skipping during 

the dose escalation.  

 

EWOC. The EWOC is a modification of the CRM. The EWOC employs a two-parameter logistic 

regression model to provide extra flexibility to model the dose–toxicity curve. Similar to the CRM, 

the EWOC continuously updates the estimate of the dose–toxicity curve based on the accumulating 

data and assigns the next cohort of patients to the currently estimated "optimal" dose. EWOC uses 

a different definition of the optimal dose to actively control the risk of overdosing and defines the 

optimal dose as the highest dose whose posterior probability of being higher than the MTD is equal 

to or less than a prespecified threshold a, with the recommended value of 25%. In the EWOC, dose 

skipping is not allowed, and dose escalation and de-escalation are restricted to one level at a time. 

 

BLRM. The BLRM uses the similar two-parameter logistic regression model as the EWOC, and 

similar to CRM and EWOC, the BLRM continuously updates the estimate of the dose – toxicity  

curve based on the accumulating data and assigns the next cohort of patients to the currently 

estimated “optimal” dose, where the “optimal” dose is defined as the dose that has the highest 
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posterior probability of being within (δ1, δ2), and (δ1, δ2) denotes the proper dosing interval 

meaning that any dose with the DLT probability within that interval can be approximately accepted 

as the MTD. Typically, BLRM imposes an overdose control rule similar to the EWOC. In the 

BLRM, dose skipping is not allowed.  

 

Model-Assisted Designs 

 

mTPI design. The mTPI design specified three intervals: the proper dosing interval (δ1, δ2), the 

underdosing interval (0, δ1), and the overdosing interval (δ2, 1). The Mtpi design uses a beta-

binomial model locally to describe the toxicities at the current dose only and makes the decision 

of dose escalation and de-escalation based on the unit probability mass (UPM) of the three 

intervals. The UPM of an interval is defined as the posterior probability that the DLT probability 

of the current dose is within the interval divided by the length of the interval. Therefore, UPM of 

an interval is equal to the area under the posterior distribution curve within the interval divided by 

the interval length. Let UPM1, UPM2, and UPM3 denote the UPM for the underdosing, proper 

dosing, and overdosing intervals, respectively. The mTPI design determines dose escalation/de-

escalation as follows: 

 

• Escalate to the next higher dose if UPM1 is the maximum of the three UPMs. 

• Stay at the current dose if UMP2 is the maximum of the three UPMs 

• De-escalate to the next lower dose if UMP3 is the maximum of the three UPMs 

 

The trial continues until the prespecified sample size is reached, and the MTD is selected as the 

dose for which the isotonic estimate of the DLT probability is closest to ϕ. In mTPI design, if the 

observed data suggest that the posterior probability that the DLT rate of the current dose is greater 

than the target ϕ exceeds 0.95, the current dose and higher doses are excluded from the trial, and 

if the lowest dose is excluded, the trial is terminated.  

Different from the model-based designs, the mTPI  design determines the dose escalation and de-

escalation decision  at each of the dose levels before the onset of the trial.  

Keyboard design. The Keyboard design is a modified version of mTPI design. The difference is 

that it constructs a series of equal-width dosing intervals, referred to as keys, to guide dose 

escalation and de-escalation. By eliciting a proper dosing interval (referred to as the target key) 

from clinicians,  the keyboard design forms series of equal-width keys on both sides of the target 

key, then the decision of dose escalation and de-escalation is determined based on the location of 

the “strongest” key, relative to the target key, where “strongest” key is defined as the key that has 

the largest area under the posterior distribution curves of DLT probability under the current dose. 

The strongest key represents the interval in which the DLT probability under the current dose is 

most likely located. Therefore, if the strongest key is on the left side of (i.e., smaller than) the 

target key, it means that the current dose is underdosing patients, and the trial needs to escalate to 

the next higher dose. If the strongest key on the right side of (i.e., greater than) the target key, it 
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means that the current dose is overdosing patients, and the trial needs to de-escalate to the next 

lower dose. If the strongest key is the target key, stay at the current dose level.  

Simulation Setting 

In ZYN’s simulation study, three target DLT probabilities ϕ = 0.2, 0.25, and 0.30 are considered, 

with 6 dose levels and maximum sample size of 36. The starting dose level is 1. For mTPI, 

Keyboard, and BLRM, the proper dosing interval (δ1, δ2) = (ϕ − 0.05, ϕ + 0.05), while 

(ϕ1, ϕ2) = (0.6ϕ, 1.4ϕ). If the 3+3 design selects the MTD before reaching it maximum sample 

size, an expansion cohort is assumed to be treated at the MTD to reach the total sample size of 36.  

The target DLT probability is assumed to be ϕ = 0.25.  

The design parameters for the six models are summarized in the figure below.  

 

Source: Table S1, Supplementary Data, ZYN (2018). 

The ZYN’s simulation used 1000 randomly simulated dose-toxicity scenarios (or curves) using 

the pseudo-uniform scenario algorithm (Clertant and O’Quigley, 2017) as the basis for evaluating 

and comparing phase I dose escalation designs. Note that this algorithm generated scenarios where 

all doses have equal probability for being overly toxic.  

In the simulation, if the DLT probability for the lowest dose > target DLT probability + 0.1, all 

doses are deemed as overly toxic, the trial is terminated early, and no doses are selected as the 

MTD.  

Under each scenario, the Applicant conducted 2000 simulated trials, with patients recruited in  

cohort sizes of three with the target DLT probability of 0.25.  The simulation results were evaluated 

based on accuracy, safety, and reliability. The definitions of these criteria are presented in the 

Table 1. 

Table 1 Performance metrics for evaluating the operating characteristics of phase I designs 
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Source: Table 4, DDT-application-BOIN-YuanLee_V5, Applicant’s submission. 

Simulation Results  

Accuracy 

In terms of the percentage of correct selection, the BOIN design was found to be comparable to 

the CRM, mTPI, and Keyboard design. On an average these methods outperform the ‘3 + 3’ design 

by about 15% - 20% . The ‘3+3’ design outperforms the BLRM by about 5% - 10% but has 

comparable performance to EWOC. The BOIN design appears to have comparable variation with 

mTPI and Keyboard design, while BLRM and EWOC had larger variations.  

For percentage of patients treated at MTD, BOIN design outperforms 3+3 design, BLRM and 

EWOC. The performance of BOIN is similar to the performance of the keyboard design. CRM 

and mTPI outperforms the BOIN design. The BOIN design appears to have comparable variation 

with mTPI and keyboard design, while BLRM and EWOC have larger variations.  

Safety 

In terms of percentage of selecting doses with DLT probability ≥ 0.33 as MTD, and percentage of 

patients treated at doses with DLT probability ≥ 0.33, BOIN was not able to outperform the 3+3 

design, and BOIN has similar performance as mTPI, keyboard and CRM. The BLRM and EWOC 
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designs outperform 3+3 design, and the other novel phase I designs included in the comparison. 

BOIN has relatively comparable variation with CRM, BLRM, mTPI and keyboard design. On an 

average, BLRM outperforms 3+3 and all the other designs in terms of safety.  

Reliability 

In terms of the risk of overdosing 50% of the patients treated at doses above the MTD, the BOIN 

design was found to be comparable to Keyboard design, and both designs outperform 3+3 design. 

BLRM outperforms all the other designs in this metric. BOIN has relatively comparable variation 

with all the other design, except for EWOC which has larger variation.  

In terms of risk of treating fewer than 6 patients at the MTD, on an average the designs including 

CRM, mTPI, BOIN and Keyboard designs have smaller risk than the 3 + 3 design, while BLRM 

and EWOC has a higher risk in this metric. Additionally, the BLRM and EWOC designs have 

larger variation than the other designs.  

 

4.2 Comments on the Simulation Results 

 

Simulation results, summarized above in Section 4.1, were submitted comparing the BOIN method 

to other model-based, model-assisted, and algorithmic trial designs. These simulations were 

evaluated and compared based on specific metrics of accuracy, reliability, and safety of the 

methods. There are several design parameters in each of the individual methods that need to be 

adjusted when the method is used in practice. Depending upon the settings of the parameters 

different simulation results can be observed in the operating characteristics. The submission 

document also briefly summarizes results of a simulation study by Ruppert and Shoben (2018) 

where the impact of some phase I trial designs on the overall outcome of the drug development 

process was evaluated for a drug considered to be safe and efficacious. Based on their analysis 

results, Ruppert and Shoben (2018) discuss some general guidelines on phase I design selection 

depending on whether or not there is a strong a prior belief in the general shape of the dose-toxicity 

curve. 

As with other methods, the performance of BOIN is affected by the choice of design parameters. 

If any underlying assumption is violated, the BOIN method may not be able to estimate the dose 

toxicity relationship accurately. For example, in instances with combination therapy, where the 

dose-toxicity relationship may not be monotonically increasing or also in the case of therapies with 

delayed onset of toxicities. 

 

5 Conclusion and Recommendations 
 

The Applicant’s submission document contained a brief introduction to the BOIN methodology 

and referred to the paper by Liu and Yuan (2015) for the technical details and the derivation of the 
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design. Therefore, our methodological review focused on the derivations presented in Liu and 

Yuan (2015). Liu and Yuan (2015) present two versions of the BOIN design, which they refer to 

as the local BOIN design, and the global BOIN design. The information presented in this FFP 

submission document applies only to the local BOIN design, and therefore, our review of this FFP 

submission applies only to the local BOIN design. 

During our review, we found some technical issues in the derivations presented in Liu and Yuan 

(2015) which needed to be corrected. As a result, we prepared detailed comments and sent them 

to the Applicant as an information request. The Applicant responded with an updated design and 

derivation, and we reviewed the revised design and derivation and provided additional comments 

to the Applicant. Through this iterative process, we sent a total of three sets of comments to the 

Applicant, each time receiving a further revised version of the design and/or derivation, which 

improved the rigorousness of the methodological development of the BOIN design. In view of the 

iterative nature of these revisions, our determination applies to the most refined version of the 

revised BOIN design and derivation provided to us by the Applicant. This version of the revised 

BOIN design and derivation is summarized in Section 3.1 of this review.  

The information presented in the original FFP submission document, including the simulation 

studies, focuses on the local BOIN design under the specific case where 𝜋0𝑗 = 𝜋1𝑗 = 𝜋2𝑗 = 1/3 

(the quantities 𝜋0𝑗 , 𝜋1𝑗, 𝜋2𝑗 are defined in Section 3.1 of this review), which is referred to as the 

case of the non-informative prior. Therefore, our FFP determination applies only to the local BOIN 

design under the non-informative prior, as the FFP review was requested for this specific form of 

the BOIN design. We focus here on the local BOIN design under the non-informative prior because 

versions of the BOIN design outside of these conditions are not within the scope of the present 

FFP submission, but this focus is not necessarily a reflection on the methodology itself. Further 

detailed information would be needed to make a determination on the BOIN design outside of the 

conditions of the local design and non-informative prior.  In Section 3, however, we discuss the 

local BOIN design in the more general case where the non-informative prior is not required. 

Additional research may be useful to evaluate the properties of the BOIN design in cases when the 

non-informative prior condition is not required. 

Finally, with regards to the simulation results presented in the Applicant’s submission document, 

where several phase I trial designs were compared, BOIN generally performed well in the 

simulation scenarios considered. This statement does not imply that other methods did not also 

perform well in the simulation scenarios. As is generally the case, findings from the simulation 

studies are driven by the specific parameters and models used to construct the simulation scenarios. 

Also, in the simulation studies of Zhou, Yuan, and Nie (2018), which are summarized in the 

Applicant’s submission document, specific performance metrics were defined to evaluate 

accuracy, safety, and reliability of the designs, and the conclusions of their simulation studies are 

based on these metrics. If any underlying assumption is violated, the BOIN method may not be 

able to estimate the dose toxicity relationship accurately. For example, in instances with 

combination therapy, where the dose toxicity relationship may not be monotonically increasing or 

also in the case of therapies with delayed onset of toxicities. 
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We recommend that the Applicant submit an erratum to Liu and Yuan (2015) to help communicate 

the revisions of the BOIN design and derivation (as summarized in Section 3.1 of this review) with 

the scientific community, and we recommend that the Applicant ensure that their software 

implementations of the BOIN design are in alignment with the revisions. Under the non-

informative prior, the local BOIN design, in its revised form, can be designated fit-for-purpose. 

Our determination is based on the Applicant’s original submission, the Applicant’s responses to 

our information requests (which present the revised form of the local BOIN design), and the 

relevant statistical literature, including the papers by Liu and Yuan (2015) and Zhou, Yuan, and 

Nie (2018). This recommendation does not preclude the availability and use of other methods for 

phase I dose finding clinical trials, including potentially the BOIN design itself outside of the local 

design and informative prior. In practice, one should carefully consider the requirements of the 

specific situation when considering candidate designs for a dose finding clinical trial; and when 

deciding on the trial design, one should carefully evaluate the scientific validity of the candidate 

designs in the context of the intended application.  
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Fit-For-Purpose Initiative: Request for Information 
Submission:  Bayesian optimal interval (BOIN) design as an efficient statistical methodology 
for phase I dose finding trials 
 

The BOIN method proposed in your submission seems to be based on the article of Liu and 

Yuan (2015)1. We have the following questions after we reviewed the paper.   

Given that Liu and Yuan (2015) forms the basis of the BOIN design, the effects of the following 

findings on the methods on the operating characteristics in terms of selecting the correct dose 

need to be addressed. Please respond at the earliest so that we can complete the review of 

your submission. 

In the comments below, we utilize the notation of Liu and Yuan (2015). 

Comment 1.  

The final expression for the probability of making an incorrect decision in Equation (1) of Liu 

and Yuan (2015) does not hold in general. Equation (1) of Liu and Yuan (2015) states the 

following: 
 

𝛼(𝜆1𝑗 , 𝜆2𝑗) = 𝑃(𝐻0𝑗)𝑃(�̅�|𝐻0𝑗) + 𝑃(𝐻1𝑗)𝑃(�̅�|𝐻1𝑗) + 𝑃(𝐻2𝑗)𝑃(�̅�|𝐻2𝑗) 

= 𝑃(𝐻0𝑗)𝑃(𝑚𝑗 ≤ 𝑛𝑗𝜆1𝑗  𝑜𝑟 𝑚𝑗 ≥ 𝑛𝑗𝜆2𝑗|𝐻0𝑗) + 𝑃(𝐻1𝑗)𝑃(𝑚𝑗 > 𝑛𝑗𝜆1𝑗|𝐻1𝑗) + 𝑃(𝐻2𝑗)𝑃(𝑚𝑗
< 𝑛𝑗𝜆2𝑗|𝐻2𝑗) 

= 𝜋0𝑗{𝐵𝑖𝑛(𝑛𝑗𝜆1𝑗; 𝑛𝑗 , 𝜙) + 1 − 𝐵𝑖𝑛(𝑛𝑗𝜆2𝑗 − 1; 𝑛𝑗 , 𝜙)} + 𝜋1𝑗{1 − 𝐵𝑖𝑛(𝑛𝑗𝜆1𝑗; 𝑛𝑗 , 𝜙1)} + 𝜋2𝑗𝐵𝑖𝑛(𝑛𝑗𝜆2𝑗
− 1; 𝑛𝑗 , 𝜙2) 

The last equality above does not hold in general because the equations  

𝑃(𝑚𝑗 ≥ 𝑛𝑗𝜆2𝑗  |𝐻0𝑗  ) = 1 − 𝐵𝑖𝑛(𝑛𝑗𝜆2𝑗 − 1; 𝑛𝑗 , 𝜙)  

and 

𝑃(𝑚𝑗 < 𝑛𝑗𝜆2𝑗|𝐻2𝑗) = 𝐵𝑖𝑛(𝑛𝑗𝜆2𝑗 − 1; 𝑛𝑗 , 𝜙2) 

do not hold if 𝑛𝑗𝜆2𝑗 ∈ [0, 𝑛 + 1] ∩ {0,1,2, …𝑛 + 1}
𝑐  (that is, 𝑛𝑗𝜆2𝑗 is a non-integer in the interval [0, 𝑛 +

1]). Please clarify. 

 

 

                                                            
1 Liu, S., Yuan, Y. (2015). Bayesian Optimal Interval Designs for Phase I Clinical Trials. Journal of the Royal Statistical 
Society, Series C, 64, Part 3, pp. 507-523. 
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Comment 2. 

In view of Comment 1, clarification is needed regarding the values of λ1𝑗and λ2𝑗 that minimize 

the probability of making an incorrect decision. Furthermore, the condition 0 ≤ 𝜆1𝑗 < 𝜆2𝑗 ≤ 1 

(Liu and Yuan (2015), page 509) may not hold if 𝜆1𝑗and 𝜆2𝑗 are defined as in Equations (2) and 

(3) of Liu and Yuan (2015).  We note that the condition 𝜆1𝑗 < 𝜆2𝑗 is used in Equation (1) of Liu 

and Yuan (2015), in order to write 

𝑃(𝑚𝑗 ≤ 𝑛𝑗𝜆1𝑗  𝑜𝑟 𝑚𝑗 ≥ 𝑛𝑗𝜆2𝑗|𝐻0𝑗) = 𝑃(𝑚𝑗 ≤ 𝑛𝑗𝜆1𝑗|𝐻0𝑗) + 𝑃(𝑚𝑗 ≥ 𝑛𝑗𝜆2𝑗|𝐻0𝑗). 

 

Consider the following examples where 𝛼1(𝜆1𝑗) and 𝛼2(𝜆2𝑗) are the functions defined in 

Appendix A of Liu and Yuan (2015). 

Example 1. 

Consider the case when  𝜋0𝑗 = 𝜋1𝑗 = 𝜋2𝑗 =
1

3
, 𝑛𝑗 = 3 ,  𝜙 = 0.25, 𝜙1 = 0.6𝜙 = 0.15, 𝜙2 =

1.4𝜙 = 0.35.  

The expression for 𝛼1 is given by the following expression: 

𝛼1(𝜆1𝑗) = (
1

3
)𝐵𝑖𝑛(𝑛𝑗𝜆1𝑗; 𝑛𝑗 = 3,𝜙 = 0.25) − (

1

3
)𝐵𝑖𝑛(𝑛𝑗𝜆1𝑗; 𝑛𝑗 = 3,𝜙1 = 0.15) 

=

{
 
 

 
 

0,  𝜆1𝑗 < 0

−0.064,  0 ≤ 𝜆1𝑗 < 1/3

−0.032,  1/3 ≤ 𝜆1𝑗 < 2/3

−0.004,  2/3 ≤ 𝜆1𝑗 < 1

0,  𝜆1𝑗 ≥ 1

 

 

According to Equation (2) of Liu and Yuan (2015), 𝛼1(𝜆1𝑗) is minimized when 

𝜆1𝑗 =
log(

1−𝜙1
1−𝜙

)+𝑛𝑗
−1 log(

𝜋1𝑗

𝜋0𝑗
)

log{
𝜙(1−𝜙1)

𝜙1(1−𝜙)
}

= 0.1968. 

We observe here that 𝛼1(𝜆1𝑗) is minimized for any 𝜆1𝑗 ∈ [0,
1

3
) and the value of 0.1968 belongs in 

this interval. 

The corresponding expression for 𝛼2 is: 
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𝛼2(𝜆2𝑗) = (
1

3
)𝐵𝑖𝑛(𝑛𝑗𝜆2𝑗 − 1; 𝑛𝑗 = 3,𝜙2 = 0.35) − (

1

3
)𝐵𝑖𝑛(𝑛𝑗𝜆2𝑗 − 1; 𝑛𝑗 = 3,𝜙 = 0.25) 

=

{
 
 

 
 

0,  𝜆2𝑗 < 1/3

−0.049,  1/3 ≤ 𝜆2𝑗 < 2/3

−0.042,  2/3 ≤ 𝜆2𝑗 < 3/3

−0.009,  3/3 ≤ 𝜆2𝑗 < 4/3

0,  𝜆2𝑗 ≥ 4/3

 

 

According to Equation (3) of Liu and Yuan (2015), the value of 𝜆2𝑗 that minimizes 𝛼2(𝜆2𝑗) is 

𝜆2𝑗 =
log(

1−𝜙

1−𝜙2
)+𝑛𝑗

−1 log(
𝜋0𝑗

𝜋2𝑗
)

log{
𝜙2(1−𝜙)

𝜙 (1−𝜙2)
}

= 0.2984. However, based on the above expression we observe that 

𝛼2(𝜆2𝑗) is minimized when 𝜆2𝑗 ∈ [
1

3
,
2

3
) which contradicts the claim that it is minimized when 

𝜆2𝑗 = 0.2984. 

 

In view of Comment 1, we believe the expression for 𝛼2(λ2𝑗) needs to be modified to account 

for this discrepancy. In Appendix A of Liu and Yuan (2015) the decision error is written as  

𝛼(𝜆1𝑗 , 𝜆2𝑗) = 𝛼1(𝜆1𝑗) + 𝛼2(𝜆2𝑗) + 𝜋0𝑗 + 𝜋1𝑗. 

We believe the above expression can be corrected by replacing  𝛼2(𝜆2𝑗)  by the following: 

𝛼2
∗(𝜆2𝑗) = 𝜋2𝑗[𝐵𝑖𝑛(𝑛𝑗𝜆2𝑗; 𝑛𝑗 , 𝜙2) − 𝑏𝑖𝑛(𝑛𝑗𝜆2𝑗; 𝑛𝑗 , 𝜙2)] − 𝜋0𝑗[𝐵𝑖𝑛(𝑛𝑗𝜆2𝑗; 𝑛𝑗 , 𝜙) −

𝑏𝑖𝑛(𝑛𝑗𝜆2𝑗; 𝑛𝑗 , 𝜙)]  

where  𝑏𝑖𝑛(𝑥; 𝑛, 𝑝) is the binomial(𝑛, 𝑝) p.m.f. and 𝐵𝑖𝑛(𝑥; 𝑛, 𝑝) is the binomial(𝑛, 𝑝) c.d.f., i.e.,  

𝑏𝑖𝑛(𝑥; 𝑛, 𝑝) = {
(
𝑛

𝑥
) 𝑝𝑥(1 − 𝑝)𝑛−𝑥, 𝑖𝑓 𝑥 = 0,1,2, … , 𝑛

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

and 

𝐵𝑖𝑛(𝑥; 𝑛, 𝑝) =

{
 

 
0,   𝑖𝑓 𝑥 < 0

∑ 𝑏𝑖𝑛(𝑖; 𝑛, 𝑝), 𝑖𝑓 𝑘 ≤ 𝑥 < 𝑘 + 1, 𝑘 ∈ {0,1,2, … , 𝑛 − 1}
𝑘

𝑖=0

1, 𝑖𝑓 𝑥 ≥ 𝑛

 

 

 

Example 2. 

Further, when we consider 𝜋0𝑗 = 0.6, 𝜋1𝑗 = 𝜋2𝑗 = 0.2, 𝑛𝑗 = 3 ,  𝜙 = 0.25, 𝜙1 = 0.6𝜙 = 0.15,

𝜙2 = 1.4𝜙 = 0.35, Equations (2) and (3) of Liu and Yuan (2015) provide values of 𝜆1𝑗 =

log(
1−𝜙1
1−𝜙

)+𝑛𝑗
−1 log(

𝜋1𝑗

𝜋0𝑗
)

log{
𝜙(1−𝜙1)

𝜙1(1−𝜙)
}

= −0.379 and 𝜆2𝑗 =
log(

1−𝜙

1−𝜙2
)+𝑛𝑗

−1 log(
𝜋0𝑗

𝜋2𝑗
)

log{
𝜙2(1−𝜙)

𝜙 (1−𝜙2)
}

= 1.062. 
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In this instance, the condition 0 ≤ 𝜆1𝑗 < 𝜆2𝑗 ≤ 1 (Liu and Yuan (2015), page 509) does not hold 

and the resulting decision rule is 

 

If �̂�𝑗 ∈ {0,
1

3
,
2

3
, 1} (i.e. 𝜆1𝑗 < �̂�𝑗 < 𝜆2𝑗, which is always satisfied with 𝑛𝑗 = 3), then retain the dose 

to level 𝑗. 

Also, we find that  

𝛼2(𝜆2𝑗) = (0.2)𝐵𝑖𝑛(𝑛𝑗𝜆2𝑗 − 1; 𝑛𝑗 = 3,𝜙2 = 0.35) − (0.6)𝐵𝑖𝑛(𝑛𝑗𝜆2𝑗 − 1; 𝑛𝑗 = 3,𝜙 = 0.25) 

=

{
 
 

 
 

0,  𝜆2𝑗 < 1/3

−0.198,  1/3 ≤ 𝜆2𝑗 < 2/3

−0.363,  2/3 ≤ 𝜆2𝑗 < 3/3

−0.399,  3/3 ≤ 𝜆2𝑗 < 4/3

−0.4,  𝜆2𝑗 ≥ 4/3

 

Therefore 𝛼2(𝜆2𝑗) is minimized when 𝜆2𝑗 ∈ [
4

3
, ∞ ) which contradicts the claim that it is 

minimized when 𝜆2𝑗 = 1.062. 

Example 3. 

In another example when we consider 𝜋0𝑗 = 0.25, 𝜋1𝑗 = 0.45, 𝜋2𝑗 = 0.30, 𝑛𝑗 = 3 ,  𝜙 =

0.25, 𝜙1 = 0.6𝜙 = 0.15, 𝜙2 = 1.4𝜙 = 0.35, Equations (2) and (3) of Liu and Yuan (2015) 
provide values of 𝜆1𝑗 = 0.5049 and 𝜆2𝑗 = 0.1717  

In this instance, the condition 0 ≤ 𝜆1𝑗 < 𝜆2𝑗 ≤ 1 (Liu and Yuan (2015), page 509) does not hold 

and the resulting decision rule is: 

If �̂�𝑗 ∈ {0,
1

3
} (i.e., �̂�𝑗 ≤ 𝜆1𝑗), then escalate the dose to level 𝑗 + 1. 

If �̂�𝑗 ∈ {
1

3
,
2

3
, 1} (i.e., �̂�𝑗 ≥ 𝜆2𝑗), then de-escalate the dose to level 𝑗 − 1. 

The above rule is ambiguous when �̂�𝑗 =
1

3
. 

Also, we find that 

𝛼2(𝜆2𝑗) = (0.3)𝐵𝑖𝑛(𝑛𝑗𝜆2𝑗 − 1; 𝑛𝑗 = 3,𝜙2 = 0.35) − (0.25)𝐵𝑖𝑛(𝑛𝑗𝜆2𝑗 − 1; 𝑛𝑗 = 3, 𝜙 = 0.25) 

=

{
 
 

 
 

0,  𝜆2𝑗 < 1/3

−0.023,  1/3 ≤ 𝜆2𝑗 < 2/3

0.005,  2/3 ≤ 𝜆2𝑗 < 3/3

0.041,  3/3 ≤ 𝜆2𝑗 < 4/3

0.05,  𝜆2𝑗 ≥ 4/3
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Therefore 𝛼2(𝜆2𝑗) is minimized when 𝜆2𝑗 ∈ [
1

3
,
2

3
 ) which contradicts the claim that it is 

minimized when 𝜆2𝑗 = 0.1717. 

  

 
As demonstrated in the examples above, the constraint 0 ≤ 𝜆1𝑗 < 𝜆2𝑗 < 1 which is assumed on 

page 509 of Liu and Yuan (2015) is not always satisfied. The examples show that 𝜆1𝑗 and 𝜆2𝑗 can 

fall outside of the interval [0,1], and it is also possible to have 𝜆1𝑗 > 𝜆2𝑗. 

In the examples above, the stated value of 𝜆2𝑗  (Equation (3) of Liu and Yuan (2015)) does not 

minimize the function 𝛼2(𝜆2𝑗) as claimed in Appendix A of Liu and Yuan (2015). The functions 

𝛼1(𝜆1𝑗) and 𝛼2(𝜆2𝑗) are both stepwise constant functions. A precise and complete 

mathematical description/derivation of the minimizing values is needed, giving full 

consideration to the stepwise nature of these functions.  

Furthermore, the constraint 0 ≤ 𝜆1𝑗 < 𝜆2𝑗 < 1 should be accounted for in the theoretical 

development. Clarification is needed regarding conditions under which the procedure leads to a 

well-defined design. In view of Comment 1, the function 𝛼2(𝜆2𝑗) needs adjustment, or the set 

of possible values of 𝜆2𝑗 would need to be appropriately restricted. The effect of this 

adjustment on the operating characteristics needs to be characterized. 

Comment 3. 

Please clarify Theorem 1 of Liu and Yuan (2015) because the values of 𝜆1𝑗 and 𝜆2𝑗 fall in a 

continuous space, while �̂�𝑗 falls in a discrete space. 

 

Specifically, Theorem 1 of Liu and Yuan (2015) states that 

𝜆1𝑗 = arg max
𝑝𝑗

{𝑃(𝐻1|𝑛𝑗 , 𝑚𝑗) > 𝑃(𝐻0|𝑛𝑗 , 𝑚𝑗)} (*) 

𝜆2𝑗 = arg min
𝑝𝑗

{𝑃(𝐻2|𝑛𝑗 , 𝑚𝑗) > 𝑃(𝐻0|𝑛𝑗 , 𝑚𝑗)} (**) 

where 

𝜆1𝑗 =
log(

1−𝜙1
1−𝜙

)+𝑛𝑗
−1 log(

𝜋1𝑗

𝜋0𝑗
)

log{
𝜙(1−𝜙1)

𝜙1(1−𝜙)
}

 and 𝜆2𝑗 =
log(

1−𝜙

1−𝜙2
)+𝑛𝑗

−1 log(
𝜋0𝑗

𝜋2𝑗
)

log{
𝜙2(1−𝜙)

𝜙 (1−𝜙2)
}

  (***) 

Clarification is needed because �̂�𝑗 ∈ {
0

𝑛𝑗
,
1

𝑛𝑗
,
2

𝑛𝑗
, … ,

𝑛𝑗

𝑛𝑗
}, hence, according to (*) and (**), 𝜆1𝑗 ∈

{
0

𝑛𝑗
,
1

𝑛𝑗
,
2

𝑛𝑗
, … ,

𝑛𝑗

𝑛𝑗
} and 𝜆2𝑗 ∈ {

0

𝑛𝑗
,
1

𝑛𝑗
,
2

𝑛𝑗
, … ,

𝑛𝑗

𝑛𝑗
}, but based on (***), 𝜆1𝑗 and 𝜆2𝑗 are not necessarily in 

the set {
0

𝑛𝑗
,
1

𝑛𝑗
,
2

𝑛𝑗
, … ,

𝑛𝑗

𝑛𝑗
}. 
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Comment 4. 

The cumulative number of subjects treated at a given dose seems to be a random variable but 

is treated as a fixed variable in the calculation and minimization of the decision error 

probability. Please clarify. 

 

Comment 5. 

According to the paper the dose elimination rule is given as follows: If 𝑃(𝑝𝑗 > 𝜙|𝑚𝑗 , 𝑛𝑗) > 0.95 

and 𝑛𝑗 ≥ 3, dose levels 𝑗 and higher are eliminated from the trial, and the trial is terminated if 

the first dose level is eliminated, where 𝑃(𝑝𝑗 > 𝜙|𝑚𝑗 , 𝑛𝑗) > 0.95 can be evaluated on the basis of 

a beta-binomial model, assuming that 𝑚𝑗 follows a binomial distribution (with size and 

probability parameters 𝑛𝑗 and 𝑝𝑗) and 𝑝𝑗 follows a vague beta prior, e.g. 𝑝𝑗 ∼ 𝑏𝑒𝑡𝑎(1,1).  

 

We note that the prior distribution used to derive the design boundaries (which is that 𝑝𝑗 takes 

values 𝜙,𝜙1, 𝜙2 with probabilities 𝜋0𝑗 , 𝜋1𝑗 , 𝜋2𝑗, respectively) differs from the prior distribution 

used for the early stopping rule. Please comment on the implications of using two different 

prior distributions. 

 

 



Fit-For-Purpose Initiative: Request for Information
Submission: Bayesian Optimal Interval (BOIN) Design

We have reviewed your revised derivation, and have the following comments. These comments
use the BOIN design and notations as defined in the revised derivation. Please note that Section
1 of this document contains our comments, and Section 2 presents a set of examples (Examples
1-5) along with detailed calculations for each example. Some of the comments in Section 1 refer to
examples in Section 2.

We note that in Example 1 of Section 2, it is observed that α1(λ1j) is minimized when λ1j ∈
[0, 1/3), and α2(λ2j) is minimized when λ2j ∈ [0, 1/3). When we apply the formulas from the
revised derivation, the results are in agreement with these observations.

We also note that in Example 3 of Section 2, it is observed that λ1j > λ2j when λ1j and λ2j are
computed using equations (1) and (3) in the revised derivation, respectively. Therefore, a numerical
search is needed to find the values of λ1j and λ2j that minimize α(λ1j , λ2j) under the constraint
that λ1j ≤ λ2j . In Example 3 we enumerated all possible values of α(λ1j , λ2j) in order to find the
minimum value under this constraint.

The remaining examples from Section 2 are discussed in the following comments. Please provide
detailed responses so that we can proceed with the review of your submission.

1 Comments

Comment 1

We recommend that you publish an errata to Liu and Yuan (2015)1 and ensure that the BOIN
software packages are in alignment with the errata.

(a) Please discuss any plans you may have to communicate your revised derivation, and changes
to the BOIN design, with the scientific community.

(b) Please discuss which, if any, of the currently available BOIN software packages have been, or
will be updated to reflect the changes in the design presented in your revised derivation.

Comment 2

(a) In Example 2, we observe that α1(λ1j) is minimized when λ1j ∈ (−∞, 0). When we apply
the formulas from the revised derivation, we obtain that α1(λ1j) is minimized when λ1j ∈
[0,−1/3), which differs from our observation that α1(λ1j) is minimized when λ1j ∈ (−∞, 0),
and the meaning of the interval [0,−1/3) is unclear. The formulas in the revised derivation

further yield that an optimal bound is λ1j = y∗/nj =
log

(
1−φ1
1−φ

)
+n−1

j log

(
π1j
π0j

)
log

(
φ(1−φ1)
φ1(1−φ)

) ≈ −0.3790, and

because this value is negative, the revised derivation states that one should take λ1j = 0.
However, the value λ1j = 0 is not contained in the interval (−∞, 0) on which α1(λ1j) is
minimized; and λ1j = 0 will yield a different design than λ1j ∈ (−∞, 0). If λ1j = 0 then the
dose would be escalated if p̂j = 0, but if λ1j ∈ (−∞, 0) then p̂j = 0 would not lead to dose
escalation.

1Liu, S., Yuan, Y. (2015). Bayesian Optimal Interval Designs for Phase I Clinical Trials. Journal of the Royal
Statistical Society, Series C, 64, Part 3, pp. 507-523.
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(b) In Example 2, we observe that α2(λ2j) is minimized when λ2j ∈ [1,∞). When we apply the
formulas from the revised derivation, we obtain that α2(λ2j) is minimized when λ2j is in the
interval [1, 1), which differs from our observation that α2(λ2j) is minimized when λ2j ∈ [1,∞),
and the meaning of the interval [1, 1) is unclear. The formulas in the revised derivation further

yield that an optimal bound is λ2j = y∗∗/nj =
log

(
1−φ
1−φ2

)
+n−1

j log

(
π0j
π2j

)
log

(
φ2(1−φ)
φ(1−φ2)

) ≈ 1.0620, and because

this value is greater than 1, the revised derivation states that one should take λ2j = 1. The
value λ2j = 1 is contained in the interval [1,∞) on which α2(λ2j) is minimized.

Please clarify the details of the revised derivation in view of the comments (a) and (b) above,
and provide a precise and complete mathematical derivation that covers the complete range of
scenarios, including those noted above. Regarding (a), if the value λ1j = 0 results from the
restriction 0 ≤ λ1j ≤ 1, please justify why this value is more appropriate than choosing λ1j < 0
which minimizes α1(λ1j).

Comment 3

(a) In Example 4, observe that because of the choice of values π0j = π1j , φ = 1−0.6−1/2

0.6−0.6−1/2 ,

and φ1 = 0.6φ, we obtain y∗ = 1, and hence the function α1(λ1j) takes the same value
when λ1j ∈ [0, 1/3) and when λ1j ∈ [1/3, 2/3), and is minimized at this value. There-
fore, we observe here that α1(λ1j) is minimized when λ1j ∈ [0, 2/3). Applying the for-
mulas provided in the revised derivation we obtain that α1(λ1j) is minimized when λ1j ∈
[max{0, floor(y∗)/nj},min{1, (floor(y∗) + 1)/nj}) = [1/3, 2/3), which does not describe the
full set of minimizing values. In this case we also observe that α2(λ2j) is minimized when
λ2j ∈ [1/3, 2/3), which agrees with the results obtained from the formulas in the revised
derivation. Because α1(λ1j) is minimized when λ1j ∈ [0, 2/3), it appears that if p̂j = 1/3, one
could either retain the dose (take λ1j ∈ [0, 1/3)) or escalate the dose (take λ1j ∈ [1/3, 2/3)),
and both design choices would minimize the decision error probability.

(b) In Example 5, observe that because of the choice of values π0j = π2j , φ = 1−1.4−1/2

1.4−1.4−1/2 ,
and φ2 = 1.4φ, we obtain y∗∗ = 1, which leads to a similar situation as Example 4.
The situation in Example 5 is that α2(λ2j) is minimized when λ2j ∈ [0, 2/3), but ap-
plying the formulas in the revised derivation one obtains that α2(λ2j) is minimized when
λ2j ∈ [max{0,floor(y∗∗)/nj},min{1, (floor(y∗∗) + 1)/nj}) = [1/3, 2/3), which does not de-
scribe the full set of minimizing values. Because α2(λ2j) is minimized when λ2j ∈ [0, 2/3), it
appears that if p̂j = 1/3, one could either de-escalate the dose (take λ2j ∈ [0, 1/3)) or retain
the dose (take λ2j ∈ [1/3, 2/3)), and both design choices would minimize the decision error
probability.

While Examples 4 and 5 use a careful setting of design parameters, nevertheless, it is desirable
that the theoretical development, as well as software implementations of the design, can properly
handle all cases. Please clarify the details of the revised derivation in view of the comment above,
and provide a precise and complete mathematical derivation that covers the complete range of
scenarios, including those discussed in Examples 4 and 5. In Example 4 it appears if p̂j = 1/3 one
can either retain or escalate the dose, and both options minimize the decision error probability;
please clarify how this scenario is handled by the theoretical derivation of the design, and software
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implementations of the design. In Example 5 it appears that if p̂j = 1/3, one could either de-
escalate the dose or retain the dose, and both design choices would minimize the decision error
probability; please clarify how this scenario is handled by the theoretical derivation of the design,
and software implementations of the design.

Comment 4

In Example 5, we also observe that because of the choice of values π0j = π2j , φ = 1−1.4−1/2

1.4−1.4−1/2 , and

φ2 = 1.4φ, we obtain λ2j = y∗∗/nj =
log

(
1−φ
1−φ2

)
+n−1

j log

(
π0j
π2j

)
log

(
φ2(1−φ)
φ(1−φ2)

) = 1
3 . In this example, if λ2j = 1/3,

then the change in the design in the revised derivation (change p̂j ≥ λ2j(nj , φ) to p̂j > λ2j(nj , φ),
and change λ1j(nj , φ) < p̂j < λ2j(nj , φ) to λ1j(nj , φ) < p̂j ≤ λ2j(nj , φ)) will have an effect since
when p̂j = 1/3 the decision under the original design is de-escalate the dose, but in the revision,
the decision is to retain the dose. This example illustrates that the likelihood of the event p̂j = λ2j

depends on the choice of the design parameters π0j , π2j , φ, φ2.
We note that the revised derivation (page 4) states: “One potential concern is that in the revised

derivation, the de-escalation rule is p̂j > λ2j , rather than p̂j ≥ λ2j , presented in the submission.
This difference has negligible impact on the operating characteristics of the design because λ2j is a
continuous variable and the probability of p̂j = λ2j is ignorable.”

In view of Example 5 and the discussion above, the probability of the event p̂j = λ2j may
be nonzero (in Example 5 if λ2j = 1/3 we have P (p̂j = λ2j) = P (mj = 1) ≈ 0.81, 0.93, 0.66,
when pj = φ, φ1, φ2, respectively), depending on the choice of design parameters. However, if
λ2j /∈ { 0

nj
, 1
nj
, 2
nj
, . . . ,

nj
nj
}, then the probability of the event p̂j = λ2j equals zero. Please discuss this

issue and provide a precise analysis of the effect the change will have on the operating characteristics.

Comment 5

Please provide a precise statement of Theorem 1 of Liu and Yuan (2015). In case equations (2)
and (3) of Liu and Yuan (2015) yield λ1j > λ2j , and therefore a numerical search is needed to find
the minimizing values subject to λ1j ≤ λ2j , will the statement of the theorem be affected? Also,
will this theorem be affected by the change to the design presented in your revised derivation? If
any adjustment is needed to the proof of the theorem, please also provide the details.

Comment 6

In view of your revised derivation, including the key changes (change p̂j ≥ λ2j(nj , φ) to p̂j >
λ2j(nj , φ), and change λ1j(nj , φ) < p̂j < λ2j(nj , φ) to λ1j(nj , φ) < p̂j ≤ λ2j(nj , φ)), please discuss
if any adjustment is needed to Theorem 2 and Theorem 3 of Liu and Yuan (2015). In case an
adjustment is needed to the theorems, please provide the precise mathematical statement. If any
adjustment is needed to the proofs of the theorems, please also provide the details.

Comment 7

Please confirm if all numerical results presented in the submission package are for the case π0j =
π1j = π2j = 1/3.
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Comment 8

If the equations (1) and (3) in the revised derivation yield λ1j > λ2j , do the currently available
BOIN software packages implement a numerical search to minimize α(λ1j , λ2j) under the constraint
that λ1j ≤ λ2j?

Comment 9

Do the currently available BOIN software packages enable users to specify values of the prior
probabilities π0j , π1j , π2j , or do the software packages only allow users to specify designs with
equal prior probabilities π0j = π1j = π2j = 1/3? Please discuss this for each of the available BOIN
software packages.

Comment 10

Currently, are there any published evaluations of the BOIN design in cases other than π0j = π1j =
π2j = 1/3? If so, do these studies ensure that λ1j ≤ λ2j?

Comment 11

Please confirm whether or not the changes to the BOIN design presented in your revised deriva-
tion (change p̂j ≥ λ2j(nj , φ) to p̂j > λ2j(nj , φ), and change λ1j(nj , φ) < p̂j < λ2j(nj , φ) to
λ1j(nj , φ) < p̂j ≤ λ2j(nj , φ)) will have any effect on the numerical results presented in the sub-
mission package. If the changes have no effect on these numerical results, then please provide an
appropriate justification. If the changes will have an effect on these numerical results, please present
an updated set of results.

Comment 12

(a) On page 2 of the revised derivation, please clarify the meaning of the summation

njλ1j∑
y=0

because

the upper limit of the summation, njλ1j , may not be an integer. Also, in this equation, is
njλ1j < 0 considered, in which case α1(λ1j) = 0?

(b) On page 3 of the revised derivation, in the equations on Line 2, Line 4, and Line 17, it appears
that the “=” should be “∈”. Please also see our comments above about these formulas.

(c) On page 3 of the revised derivation, in the equation on Line 17, it appears that min
(
nj ,

floor(y∗∗)+1
nj

)
should be min

(
1, floor(y∗∗)+1

nj

)
. Please also see our comments above about this formula.

2 Examples

In the revised derivation, the decision error α(λ1j , λ2j) is written as

α(λ1j , λ2j) = α1(λ1j) + α2(λ2j) + π0j + π1j
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where

α1(λ1j) = π0jBin(njλ1j ;nj , φ)− π1jBin(njλ1j ;nj , φ1)

α2(λ2j) = π2jBin(njλ2j ;nj , φ2)− π0jBin(njλ2j ;nj , φ).

Example 1

Let π0j = π1j = π2j = 1/3, nj = 3, φ = 0.25, φ1 = 0.6φ = 0.15, φ2 = 1.4φ = 0.35.
We have,

α1(λ1j) = π0jBin(njλ1j ;nj , φ)− π1jBin(njλ1j ;nj , φ1) ≈



0, if λ1j < 0

−0.064, if 0 ≤ λ1j < 1/3

−0.032, if 1/3 ≤ λ1j < 2/3

−0.004, if 2/3 ≤ λ1j < 1

0, if λ1j ≥ 1

and

α2(λ2j) = π2jBin(njλ2j ;nj , φ2)− π0jBin(njλ2j ;nj , φ) ≈



0, if λ2j < 0

−0.049, if 0 ≤ λ2j < 1/3

−0.042, if 1/3 ≤ λ2j < 2/3

−0.009, if 2/3 ≤ λ2j < 1

0, if λ2j ≥ 1

and hence α1(λ1j) and α2(λ2j) are minimized, respectively, when

λ1j ∈
[
0,

1

3

)
and λ2j ∈

[
0,

1

3

)
.

Applying the definitions of y∗ and y∗∗ provided in the revised derivation, we obtain

y∗ =
nj log

(
1−φ1
1−φ

)
+ log

(
π1j
π0j

)
log
(
φ(1−φ1)
φ1(1−φ)

) ≈ 0.5904, y∗∗ =
nj log

(
1−φ
1−φ2

)
+ log

(
π0j
π2j

)
log
(
φ2(1−φ)
φ(1−φ2)

) ≈ 0.8952.

Therefore, according to the theoretical development presented in the revised derivation, α1(λ1j)
is minimized when λ1j is in the interval[

max

(
0,

floor(y∗)

nj

)
,min

(
1,

floor(y∗) + 1

nj

))
=

[
max

(
0,

0

3

)
,min

(
1,

1

3

))
=

[
0,

1

3

)
,

and one specific value located in the above interval is

λ1j = y∗/nj =
log
(

1−φ1
1−φ

)
+ n−1

j log
(
π1j
π0j

)
log
(
φ(1−φ1)
φ1(1−φ)

) ≈ 0.1968.
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Also, according to the theoretical development presented in the revised derivation, α2(λ2j) is
minimized when λ2j is in the interval[

max

(
0,

floor(y∗∗)

nj

)
,min

(
1,

floor(y∗∗) + 1

nj

))
=

[
max

(
0,

0

3

)
,min

(
1,

1

3

))
=

[
0,

1

3

)
,

and one specific value located in the above interval is

λ2j = y∗∗/nj =
log
(

1−φ
1−φ2

)
+ n−1

j log
(
π0j
π2j

)
log
(
φ2(1−φ)
φ(1−φ2)

) ≈ 0.2984.

Example 2

Let π0j = 0.6, π1j = π2j = 0.2, nj = 3, φ = 0.25, φ1 = 0.6φ = 0.15, φ2 = 1.4φ = 0.35.
We have,

α1(λ1j) = π0jBin(njλ1j ;nj , φ)− π1jBin(njλ1j ;nj , φ1) ≈



0, if λ1j < 0

0.130, if 0 ≤ λ1j < 1/3

0.318, if 1/3 ≤ λ1j < 2/3

0.391, if 2/3 ≤ λ1j < 1

0.4, if λ1j ≥ 1

and

α2(λ2j) = π2jBin(njλ2j ;nj , φ2)− π0jBin(njλ2j ;nj , φ) ≈



0, if λ2j < 0

−0.198, if 0 ≤ λ2j < 1/3

−0.363, if 1/3 ≤ λ2j < 2/3

−0.399, if 2/3 ≤ λ2j < 1

−0.4, if λ2j ≥ 1

and hence α1(λ1j) and α2(λ2j) are minimized, respectively, when

λ1j ∈ (−∞, 0) and λ2j ∈ [1,∞) .

Applying the definitions of y∗ and y∗∗ provided in the revised derivation, we obtain

y∗ =
nj log

(
1−φ1
1−φ

)
+ log

(
π1j
π0j

)
log
(
φ(1−φ1)
φ1(1−φ)

) ≈ −1.1370, y∗∗ =
nj log

(
1−φ
1−φ2

)
+ log

(
π0j
π2j

)
log
(
φ2(1−φ)
φ(1−φ2)

) ≈ 3.1860.

Therefore, according to the theoretical development presented in the revised derivation, α1(λ1j)
is minimized when λ1j is in the interval[

max

(
0,

floor(y∗)

nj

)
,min

(
1,

floor(y∗) + 1

nj

))
=

[
max(0,−2

3
),min

(
1,−1

3

))
=

[
0,−1

3

)
,
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and one specific value located in the above interval is

λ1j = y∗/nj =
log
(

1−φ1
1−φ

)
+ n−1

j log
(
π1j
π0j

)
log
(
φ(1−φ1)
φ1(1−φ)

) ≈ −0.3790.

Since the value above is negative, according to the restriction described under equation (1) in the
revised derivation, λ1j will be set to zero, that is, set λ1j = 0.

Also, according to the theoretical development presented in the revised derivation, α2(λ2j) is
minimized when λ2j is in the interval[

max

(
0,

floor(y∗∗)

nj

)
,min

(
1,

floor(y∗∗) + 1

nj

))
=

[
max(0,

3

3
),min

(
1,

4

3

))
= [1, 1) ,

and one specific value located in the above interval is

λ2j = y∗∗/nj =
log
(

1−φ
1−φ2

)
+ n−1

j log
(
π0j
π2j

)
log
(
φ2(1−φ)
φ(1−φ2)

) ≈ 1.0620.

Since the value above is greater than 1, according to the restriction described under equation (3)
in the revised derivation, λ2j will be set to one, that is, set λ2j = 1.

Example 3

Let π0j = 0.25, π1j = 0.45, π2j = 0.30, nj = 3, φ = 0.25, φ1 = 0.6φ = 0.15, φ2 = 1.4φ = 0.35.
We have

α1(λ1j) = π0jBin(njλ1j ;nj , φ)− π1jBin(njλ1j ;nj , φ1) ≈



0, if λ1j < 0

−0.171, if 0 ≤ λ1j < 1/3

−0.212, if 1/3 ≤ λ1j < 2/3

−0.202, if 2/3 ≤ λ1j < 1

−0.2, if λ1j ≥ 1

and

α2(λ2j) = π2jBin(njλ2j ;nj , φ2)− π0jBin(njλ2j ;nj , φ) ≈



0, if λ2j < 0

−0.023, if 0 ≤ λ2j < 1/3

0.005, if 1/3 ≤ λ2j < 2/3

0.041, if 2/3 ≤ λ2j < 1

0.05, if λ2j ≥ 1

Here we have,

λ1j =
log
(

1−φ1
1−φ

)
+ n−1

j log
(
π1j
π0j

)
log
(
φ(1−φ1)
φ1(1−φ)

) ≈ 0.5049, λ2j =
log
(

1−φ
1−φ2

)
+ n−1

j log
(
π0j
π2j

)
log
(
φ2(1−φ)
φ(1−φ2)

) ≈ 0.1717,
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and therefore, according to the revised derivation, because λ1j > λ2j , a numerical search is necessary
to find the optimal boundary. We have

α(λ1j , λ2j) = α1(λ1j) + α2(λ2j) + π0j + π1j ≈



0.7, if λ1j < 0, λ2j < 0

0.677, if λ1j < 0, 0 ≤ λ2j < 1/3

0.705, if λ1j < 0, 1/3 ≤ λ2j < 2/3

0.741, if λ1j < 0, 2/3 ≤ λ2j < 1

0.75, if λ1j < 0, λ2j ≥ 1

0.529, if 0 ≤ λ1j < 1/3, λ2j < 0

0.506, if 0 ≤ λ1j < 1/3, 0 ≤ λ2j < 1/3

0.534, if 0 ≤ λ1j < 1/3, 1/3 ≤ λ2j < 2/3

0.570, if 0 ≤ λ1j < 1/3, 2/3 ≤ λ2j < 1

0.579, if 0 ≤ λ1j < 1/3, λ2j ≥ 1

0.488, if 1/3 ≤ λ1j < 2/3, λ2j < 0

0.465, if 1/3 ≤ λ1j < 2/3, 0 ≤ λ2j < 1/3

0.493, if 1/3 ≤ λ1j < 2/3, 1/3 ≤ λ2j < 2/3

0.529, if 1/3 ≤ λ1j < 2/3, 2/3 ≤ λ2j < 1

0.538, if 1/3 ≤ λ1j < 2/3, λ2j ≥ 1

0.498, if 2/3 ≤ λ1j < 1, λ2j < 0

0.475, if 2/3 ≤ λ1j < 1, 0 ≤ λ2j < 1/3

0.502, if 2/3 ≤ λ1j < 1, 1/3 ≤ λ2j < 2/3

0.539, if 2/3 ≤ λ1j < 1, 2/3 ≤ λ2j < 1

0.548, if 2/3 ≤ λ1j < 1, λ2j ≥ 1

0.5, if λ1j ≥ 1, λ2j < 0

0.477, if λ1j ≥ 1, 0 ≤ λ2j < 1/3

0.505, if λ1j ≥ 1, 1/3 ≤ λ2j < 2/3

0.541, if λ1j ≥ 1, 2/3 ≤ λ2j < 1

0.550, if λ1j ≥ 1, λ2j ≥ 1.

Therefore, we observe that the unconstrained minimum of α(λ1j , λ2j) occurs when λ1j ∈ [1/3, 2/3)
and λ2j ∈ [0, 1/3). We also observe that under the constraint λ1j ≤ λ2j , α(λ1j , λ2j) is minimized
when 1/3 ≤ λ1j ≤ λ2j < 2/3.

Example 4

Let π0j = π1j = π2j = 1/3, nj = 3, φ =
1− 0.6−1/2

0.6− 0.6−1/2
≈ 0.4211, φ1 = 0.6φ ≈ 0.2527, φ2 = 1.4φ ≈

0.5896.
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We have

α1(λ1j) = π0jBin(njλ1j ;nj , φ)− π1jBin(njλ1j ;nj , φ1) ≈



0, if λ1j < 0

−0.074, if 0 ≤ λ1j < 1/3

−0.074, if 1/3 ≤ λ1j < 2/3

−0.020, if 2/3 ≤ λ1j < 1

0, if λ1j ≥ 1

and

α2(λ2j) = π2jBin(njλ2j ;nj , φ2)− π0jBin(njλ2j ;nj , φ) ≈



0, if λ2j < 0

−0.042, if 0 ≤ λ2j < 1/3

−0.083, if 1/3 ≤ λ2j < 2/3

−0.043, if 2/3 ≤ λ2j < 1

0, if λ2j ≥ 1

and hence α1(λ1j) and α2(λ2j) are minimized, respectively, when

λ1j ∈
[
0,

2

3

)
and λ2j ∈

[
1

3
,
2

3

)
.

Applying the definitions of y∗ and y∗∗ provided in the revised derivation, we obtain

y∗ =
nj log

(
1−φ1
1−φ

)
+ log

(
π1j
π0j

)
log
(
φ(1−φ1)
φ1(1−φ)

) = 1, y∗∗ =
nj log

(
1−φ
1−φ2

)
+ log

(
π0j
π2j

)
log
(
φ2(1−φ)
φ(1−φ2)

) ≈ 1.5164.

Therefore, according to the theoretical development presented in the revised derivation, α1(λ1j)
is minimized when λ1j is in the interval[

max

(
0,

floor(y∗)

nj

)
,min

(
1,

floor(y∗) + 1

nj

))
=

[
max(0,

1

3
),min

(
1,

2

3

))
=

[
1

3
,
2

3

)
,

and one specific value located in the above interval is

λ1j = y∗/nj =
log
(

1−φ1
1−φ

)
+ n−1

j log
(
π1j
π0j

)
log
(
φ(1−φ1)
φ1(1−φ)

) =
1

3
.

Also, according to the theoretical development presented in the revised derivation, α2(λ2j) is
minimized when λ2j is in the interval[

max

(
0,

floor(y∗∗)

nj

)
,min

(
1,

floor(y∗∗) + 1

nj

))
=

[
max(0,

1

3
),min

(
1,

2

3

))
=

[
1

3
,
2

3

)
,

and one specific value located in the above interval is

λ2j = y∗∗/nj =
log
(

1−φ
1−φ2

)
+ n−1

j log
(
π0j
π2j

)
log
(
φ2(1−φ)
φ(1−φ2)

) ≈ 0.5055.
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Example 5

Let π0j = π1j = π2j = 1/3, nj = 3, φ =
1− 1.4−1/2

1.4− 1.4−1/2
≈ 0.2791 φ1 = 0.6φ ≈ 0.1674, φ2 = 1.4φ ≈

0.3907.
We have

α1(λ1j) = π0jBin(njλ1j ;nj , φ)− π1jBin(njλ1j ;nj , φ1) ≈



0, if λ1j < 0

−0.067, if 0 ≤ λ1j < 1/3

−0.038, if 1/3 ≤ λ1j < 2/3

−0.006, if 2/3 ≤ λ1j < 1

0, if λ1j ≥ 1

and

α2(λ2j) = π2jBin(njλ2j ;nj , φ2)− π0jBin(njλ2j ;nj , φ) ≈



0, if λ2j < 0

−0.049, if 0 ≤ λ2j < 1/3

−0.049, if 1/3 ≤ λ2j < 2/3

−0.013, if 2/3 ≤ λ2j < 1

0, if λ2j ≥ 1

and hence α1(λ1j) and α2(λ2j) are minimized, respectively, when

λ1j ∈
[
0,

1

3

)
and λ2j ∈

[
0,

2

3

)
.

Applying the definitions of y∗ and y∗∗ provided in the revised derivation, we obtain

y∗ =
nj log

(
1−φ1
1−φ

)
+ log

(
π1j
π0j

)
log
(
φ(1−φ1)
φ1(1−φ)

) ≈ 0.6596, y∗∗ =
nj log

(
1−φ
1−φ2

)
+ log

(
π0j
π2j

)
log
(
φ2(1−φ)
φ(1−φ2)

) = 1.

Therefore, according to the theoretical development presented in the revised derivation, α1(λ1j)
is minimized when λ1j is in the interval[

max

(
0,

floor(y∗)

nj

)
,min

(
1,

floor(y∗) + 1

nj

))
=

[
max(0,

0

3
),min

(
1,

1

3

))
=

[
0,

1

3

)
,

and one specific value located in the above interval is

λ1j = y∗/nj =
log
(

1−φ1
1−φ

)
+ n−1

j log
(
π1j
π0j

)
log
(
φ(1−φ1)
φ1(1−φ)

) ≈ 0.2199.

Also, according to the theoretical development presented in the revised derivation, α2(λ2j) is
minimized when λ2j is in the interval[

max

(
0,

floor(y∗∗)

nj

)
,min

(
1,

floor(y∗∗) + 1

nj

))
=

[
max(0,

1

3
),min

(
1,

2

3

))
=

[
1

3
,
2

3

)
,
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and one specific value located in the above interval is

λ2j = y∗∗/nj =
log
(

1−φ
1−φ2

)
+ n−1

j log
(
π0j
π2j

)
log
(
φ2(1−φ)
φ(1−φ2)

) =
1

3
.
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Fit-For-Purpose Initiative: Request for Information
Submission: Bayesian Optimal Interval (BOIN) Design

We have reviewed your revised derivation (January 2021 version), and have the following comments.

Comment 1

Liu and Yuan (2015)1 describe the BOIN method for the general case where the condition π0j =
π1j = π2j = 1/3 is not required. However, based on your responses to the previous informa-
tion requests, it seems that the method is currently implemented and recommended for the non-
informative prior case, namely π0j = π1j = π2j = 1/3. Furthermore, your submission document
focuses on the non-informative prior case, and currently, it appears that published evaluations of
the operating characteristics of BOIN also focus on the non-informative prior case. Please confirm
that for this submission, the fit-for-purpose designation for the BOIN method is desired only for
the case of the non-informative prior π0j = π1j = π2j = 1/3.

Comment 2

The last paragraph on page 5 of your revised derivation states the following.

“When an informative prior is used, under certain setting of π0j , π1j and π2j , it is
possible that λ∗1j > λ∗2j . Let λL1j and λU1j respectively denote the lower and upper

boundaries of the interval solution of λ1j given by equation (1), and define λL2j and λU2j
similarly for λ2j given by equation (2). λ∗1j > λ∗2j occurs only when (a) λU1j > λL2j or (b)

λL1j ≥ λU2j . In case (a), any pair of (λ1j , λ2j) ∈ [λL2j , λ
U
1j) and satisfying λ1j ≤ λ2j can be

used. In case (b), there is no closed form solution. Numerical search can be employed
to find the solution that minimizes the error.”

Consider the following example. This is the same as Example 3 in our previous set of comments.
Let π0j = 0.25, π1j = 0.45, π2j = 0.30, nj = 3, φ = 0.25, φ1 = 0.6φ = 0.15, φ2 = 1.4φ = 0.35. We
have

α1(λ1j) = π0jBin(njλ1j ;nj , φ)− π1jBin(njλ1j ;nj , φ1) ≈



0, if λ1j < 0

−0.171, if 0 ≤ λ1j < 1/3

−0.212, if 1/3 ≤ λ1j < 2/3

−0.202, if 2/3 ≤ λ1j < 1

−0.2, if λ1j ≥ 1

α2(λ2j) = π2jBin(njλ2j ;nj , φ2)− π0jBin(njλ2j ;nj , φ) ≈



0, if λ2j < 0

−0.023, if 0 ≤ λ2j < 1/3

0.005, if 1/3 ≤ λ2j < 2/3

0.041, if 2/3 ≤ λ2j < 1

0.05, if λ2j ≥ 1

1Liu, S., Yuan, Y. (2015). Bayesian Optimal Interval Designs for Phase I Clinical Trials. Journal of the Royal
Statistical Society, Series C, 64, Part 3, pp. 507-523.
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and

α(λ1j , λ2j) = α1(λ1j) + α2(λ2j) + π0j + π1j ≈



0.7, if λ1j < 0, λ2j < 0

0.677, if λ1j < 0, 0 ≤ λ2j < 1/3

0.705, if λ1j < 0, 1/3 ≤ λ2j < 2/3

0.741, if λ1j < 0, 2/3 ≤ λ2j < 1

0.75, if λ1j < 0, λ2j ≥ 1

0.529, if 0 ≤ λ1j < 1/3, λ2j < 0

0.506, if 0 ≤ λ1j < 1/3, 0 ≤ λ2j < 1/3

0.534, if 0 ≤ λ1j < 1/3, 1/3 ≤ λ2j < 2/3

0.570, if 0 ≤ λ1j < 1/3, 2/3 ≤ λ2j < 1

0.579, if 0 ≤ λ1j < 1/3, λ2j ≥ 1

0.488, if 1/3 ≤ λ1j < 2/3, λ2j < 0

0.465, if 1/3 ≤ λ1j < 2/3, 0 ≤ λ2j < 1/3

0.493, if 1/3 ≤ λ1j < 2/3, 1/3 ≤ λ2j < 2/3

0.529, if 1/3 ≤ λ1j < 2/3, 2/3 ≤ λ2j < 1

0.538, if 1/3 ≤ λ1j < 2/3, λ2j ≥ 1

0.498, if 2/3 ≤ λ1j < 1, λ2j < 0

0.475, if 2/3 ≤ λ1j < 1, 0 ≤ λ2j < 1/3

0.502, if 2/3 ≤ λ1j < 1, 1/3 ≤ λ2j < 2/3

0.539, if 2/3 ≤ λ1j < 1, 2/3 ≤ λ2j < 1

0.548, if 2/3 ≤ λ1j < 1, λ2j ≥ 1

0.5, if λ1j ≥ 1, λ2j < 0

0.477, if λ1j ≥ 1, 0 ≤ λ2j < 1/3

0.505, if λ1j ≥ 1, 1/3 ≤ λ2j < 2/3

0.541, if λ1j ≥ 1, 2/3 ≤ λ2j < 1

0.550, if λ1j ≥ 1, λ2j ≥ 1.

Therefore, we observe that the unconstrained minimum of α(λ1j , λ2j) occurs when λ1j ∈
[1/3, 2/3) and λ2j ∈ [0, 1/3). We also observe that under the constraint λ1j ≤ λ2j , α(λ1j , λ2j)
is minimized when 1/3 ≤ λ1j ≤ λ2j < 2/3.

Here we note that,

λ∗1j =
log
(
1−φ1
1−φ

)
+ n−1

j log
(
π1j
π0j

)
log
(
φ(1−φ1)
φ1(1−φ)

) ≈ 0.5049, λ∗2j =
log
(

1−φ
1−φ2

)
+ n−1

j log
(
π0j
π2j

)
log
(
φ2(1−φ)
φ(1−φ2)

) ≈ 0.1717,

and therefore in this case the discussion in the last paragraph of page 5 of the revised derivation
applies because the boundaries do not satisfy the constraint λ∗1j ≤ λ∗2j . Note that

y∗ =
nj log

(
1−φ1
1−φ

)
+ log

(
π1j
π0j

)
log
(
φ(1−φ1)
φ1(1−φ)

) ≈ 1.5146, y∗∗ =
nj log

(
1−φ
1−φ2

)
+ log

(
π0j
π2j

)
log
(
φ2(1−φ)
φ(1−φ2)

) ≈ 0.5150.
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Therefore, applying equations (1) and (2) in the revised derivation, we obtain

[λL1j , λ
U
1j) =

[1

3
,
2

3

)
, [λL2j , λ

U
2j) =

[
0,

1

3

)
,

and the above intervals are in agreement with the unconstrained minimizing values observed based
on the expressions above for α1(λ1j) and α2(λ2j).

However, applying the discussion in the last paragraph of page 5 of the revised derivation, we
observe that conditions (a) λU1j > λL2j and (b) λL1j ≥ λU2j are both satisfied. That is, conditions
(a) and (b) are not mutually exclusive. Furthermore, according to the description in the last
paragraph of page 5, since (a) is satisfied, any pair λ1j , λ2j ∈ [λL2j , λ

U
1j) = [0, 2/3) and satisfying

λ1j ≤ λ2j can be used. But the solution interval [0, 2/3) appears to be too large, and it disagrees
with our observation above, based on enumeration of all values of α(λ1j , λ2j), that under the
constraint λ1j ≤ λ2j , α(λ1j , λ2j) is minimized when 1/3 ≤ λ1j ≤ λ2j < 2/3. There are values
λ1j , λ2j ∈ [λL2j , λ

U
1j) = [0, 2/3) satisfying λ1j ≤ λ2j that do not minimize α(λ1j , λ2j) under the

constraint λ1j ≤ λ2j , for example λ1j = 0, λ2j = 1/3. Please clarify, and as needed, provided an
updated derivation that covers all cases, as well as numerical examples to validate the derivation.

Comment 3

Consider the following example. Let nj = 3, φ = 0.25, φ1 = 0.6φ = 0.15, φ2 = 1.4φ = 0.35,
π2j = 0.15, π0j = (0.15)(1.43) = 0.4116, π1j = 1− π0j − π2j = 0.4384. We have,

α1(λ1j) = π0jBin(njλ1j ;nj , φ)− π1jBin(njλ1j ;nj , φ1) ≈



0, if λ1j < 0

−0.096, if 0 ≤ λ1j < 1/3

−0.064, if 1/3 ≤ λ1j < 2/3

−0.032, if 2/3 ≤ λ1j < 1

−0.027, if λ1j ≥ 1

and

α2(λ2j) = π2jBin(njλ2j ;nj , φ2)− π0jBin(njλ2j ;nj , φ) ≈



0, if λ2j < 0

−0.132, if 0 ≤ λ2j < 1/3

−0.240, if 1/3 ≤ λ2j < 2/3

−0.262, if 2/3 ≤ λ2j < 1

−0.262, if λ2j ≥ 1

and hence α1(λ1j) and α2(λ2j) are minimized, respectively, when

λ1j ∈
[
0,

1

3

)
and λ2j ∈

[
2

3
,∞
)
.

Applying the definitions of y∗ and y∗∗ provided in the revised derivation, we obtain

y∗ =
nj log

(
1−φ1
1−φ

)
+ log

(
π1j
π0j

)
log
(
φ(1−φ1)
φ1(1−φ)

) ≈ 0.6896, y∗∗ =
nj log

(
1−φ
1−φ2

)
+ log

(
π0j
π2j

)
log
(
φ2(1−φ)
φ(1−φ2)

) = 3.

3



According to the theoretical development presented in your revised derivation, since y∗∗ = nj ,
α2(λ2j) is minimized when λ2j is in the interval [1,∞); however, according to our observation
above, α2(λ2j) is minimized when λ2j ∈ [2/3,∞). Therefore, it appears the minimizing interval in
the revised derivation does not include all minimizing values.

Please clarify this issue and provide a precise and complete mathematical derivation that covers
the complete range of scenarios, including the scenario discussed above. Please demonstrate that
the mathematical development covers special cases such as in the example above, and our previous
set of examples, and if necessary, present additional examples demonstrating the validity of the
mathematical development.

Comment 4

In some scenarios there may be more than one design that minimizes α(λ1j , λ2j). The example
presented in Comment 3 provides one such scenario because in that example α1(λ1j) is minimized
when λ1j ∈ [0, 1/3) and α2(λ2j) is minimized when λ2j ∈ [2/3,∞); therefore if p̂j = 1 the cur-
rent dose could either be retained or de-escalated and both choices yield a design that minimizes
α(λ1j , λ2j). It appears the issue of non-uniqueness of the design may occur if y∗ ∈ {0, 1, . . . , nj} or
y∗∗ ∈ {0, 1, . . . , nj}. The revised derivation uses the design with λ∗1j and λ∗2j defined by equation
(3) and (4) (in the revised derivation) if λ∗1j ≤ λ∗2j , even if there are other choices that also min-
imize α(λ1j , λ2j). Please clarify the conditions under which the design that minimizes α(λ1j , λ2j)
is unique, and the conditions under which the design that minimizes α(λ1j , λ2j) is not unique. For
cases when the design that minimizes α(λ1j , λ2j) is not unique, please describe, with justification,
which design should be used. Also, in the discussion please indicate if any special consideration is
needed when λ∗1j > λ∗2j .
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