Vaccines and Related Biological Products Advisory Committee Meeting

Individuals using assistive technology may not be able to fully access the information contained in this file. For assistance, please send an e-mail to: ocod@fda.hhs.gov and include 508 Accommodation and the title of the document in the subject line of your e-mail.

mRNA-1273.214 Moderna COVID-19 Investigational Bivalent Vaccine (Original + Omicron)

Moderna, Inc.

Vaccines and Related Biological Products Advisory Committee June 28, 2022

mRNA-1273.214 Moderna COVID-19 Investigational Bivalent Vaccine *(Original + Omicron)*

Stephen Hoge, MD

President Moderna, Inc.

Rationale for Variant-Containing Booster Vaccines

- SARS-CoV-2 variants continue to challenge public health in US and globally
- Circulating variants are antigenically distinct from the strain in current vaccines
- Current vaccine boosters increase antibody response against variants, including Omicron
 - Neutralizing antibody titers lower against variants, particularly Omicron
 - Real-world data suggest decrease in effectiveness against infection from Omicron, although effectiveness against severe disease is maintained^{1,2}
- Goals of variant-containing booster vaccines^{3,4}
 - Retain neutralization for ancestral SARS-CoV-2
 - Stronger immune response against current variants
 - Broader cross-neutralization against future variants
 - Extend durability of protection

1. Tseng et al. *Nature Med* 2022;28:1063-1071. 2. UK Health Security Agency. COVID-19 vaccine surveillance report, Week 13, 31 March 2022. 3. FDA Briefing Document for June 26, 2022 VRBPAC Meeting. 4. WHO Interim Statement on the Composition of Current COVID-19 Vaccines (June 17, 2022).

Moderna COVID-19 Investigational Vaccine Candidates

- Extensive evaluation of 3 monovalent and 3 bivalent variant vaccines in past year
 - >4,300 participants across all vaccines
 - Studied 50 and 100 µg dose levels
- Focus today will be on bivalent candidates at 50 µg dose level

Summary of Results from Prior Studies on Monovalent and Bivalent Variant-Containing Vaccines

- Monovalent Beta vaccine 50 µg elicited numerically lower neutralizing GMTs than bivalent vaccine¹⁻³
 - At both 1 and 6 months
 - Against ancestral SARS-CoV-2, Beta, and Delta
- Bivalent Beta-containing vaccine (mRNA-1273.211 50 µg) elicited significantly higher neutralizing antibody response than prototype (mRNA-1273 50 µg)¹
 - At both 1 and 6 months
 - Against ancestral SARS-CoV-2, Beta, Delta, and Omicron
 - Bivalent titers more durable (Beta GMR increased at 6 months vs. 1 month)
- 50 and 100 µg dose levels evaluated for mRNA-1273 and mRNA-1273.211
 - 50 µg dose of both vaccines met all immunobridging criteria
 - 50 µg of mRNA-1273 is the currently authorized booster dose

- 2. Choi et al. Nature Med 2021;27:2025-2031.
- 3. Moderna unpublished data.

^{1.} Chalkias et al. Research Square 2022, doi: 10.21203/rs.3.rs-1555201/v1.

Clinical Studies with Moderna COVID-19 Investigational Bivalent Vaccine Candidates

Bivalent Vaccine	Study (Part)	Dose	Ν	Median Follow-up
mRNA-1273.211	205 (A)	3 rd	300	245 days
mRNA-1273.214	205 (G)	4 th	437	43 days
		Total	737	
Comparator				_
mRNA-1273	201 (B)	3 rd	171	176 days
mRNA-1273	205 (F)	4 th	377	57 days

- Participants in Parts F/G previously received mRNA-1273 primary series (100 μg) and 3rd dose (50 μg)
- Parts F and G enrolled Feb 18 Mar 23, 2022

Chalkias et al. *Research Squa*re 2022, doi: 10.21203/rs.3.rs-1555201/v1. Chalkias et al. *medRxiv* 2022, doi: 10.1101/2022.06.24.22276703.

Study 205 Objectives Aligned with Regulatory Guidance

- Pre-specified objectives for modified vaccine vs prototype¹
 - 1. Superiority of GMTs against variant of concern (VOC)
 - 2. Non-inferiority of seroresponse rate (SRR) against VOC
 - 3. Non-inferiority of GMTs and SRR against ancestral SARS-CoV-2

Hypothesis Testing Strategy for mRNA-1273.214 at Day 29

1. FDA. Emergency Use Authorization for Vaccines to Prevent COVID-19: Guidance for Industry, 2022.

Demographics and Baseline Characteristics

Study 205, Safety Set

	4 th Dose		
Characteristic	mRNA-1273 (N = 377)	mRNA-1273.214 (N = 437)	
Age (years) – mean (range)	57.5 (20, 96)	57.3 (20, 88)	
≥ 65 years	39.8%	39.8%	
Female	50.7%	59.0%	
Non-White Race	14.6%	12.8%	
Hispanic / Latino Ethnicity	9.8%	10.5%	
Interval between 2 nd and 3 rd Dose (months) – median (range)	8.0 (5.6, 14.4)	8.0 (4.7, 15.0)	
Interval between 3 rd and 4 th Dose (months) – median (range)	4.4 (3.0, 10.2)	4.5 (2.9, 13.4)	
Prior SARS-CoV-2 Infection	26.8%	22.0%	

Local Reactogenicity After 4th Dose of mRNA-1273.214 Similar to 2nd Dose of Primary Series and 3rd Dose of mRNA-1273 Study 205, Safety Set

Solicited local adverse reactions within 7 Days after injection.

Sources: 2nd dose mRNA-1273 (Baden et al, NEJM 2021); 3rd dose mRNA-1273 (Choi et al, Nat Med 2022); 4th dose mRNA-1273.214 (Chalkias et al. medRxiv 2022).

Systemic Reactogenicity After 4th Dose of mRNA-1273.214 Similar to 2nd Dose of Primary Series and 3rd Dose of mRNA-1273 Study 205, Safety Set

MD-10

Solicited systemic adverse reactions within 7 Days after injection. a) Grade 4 systemic reactions only with 2nd dose of mRNA-1273 (<0.1%). Sources: 2nd dose mRNA-1273 (Baden et al, *NEJM*, 2021); 3rd dose mRNA-1273 (Choi et al, *Nat Med*, 2022); 4th dose mRNA-1273.214 (Chalkias et al. *medRxiv*, 2022).

Omicron Neutralizing Titers After 4th Dose Significantly Higher with mRNA-1273.214 than mRNA-1273

Study 205, Per-Protocol Immunogenicity Set

MD-11

Omicron Neutralizing Titers After 4th Dose with mRNA-1273.214 Superior to mRNA-1273

Ath Doco

Study 205, Per-Protocol Immunogenicity Set with No Prior Infection

	4 D036		
	mRNA-1273	mRNA-1273.214	
Parameter	(N = 260)	(N = 334)	
GMT Pre-booster	332	298	
95% CI	(282, 391)	(259, 343)	
GMT at Day 29 ¹	1421	2480	
95% CI	(1283, 1574)	(2264, 2716)	
GMT Ratio ¹ (.214 vs Prototype)	1	.75	
97.5% CI	(1.49, 2.04)		
Seroresponse rate at Day 29	99.2%	100%	
95% CI	(97.2, 99.9)	(98.9, 100)	
Difference in seroresponse rates ²	,	1.5	
97.5% CI	(-1.1, 4.0)		

SuccessSuperiority of GMTs: Lower 97.5% CI of GMT Ratio ≥ 1.0Criteria MetNon-inferiority of Seroresponse Rates: Lower 97.5% CI of difference > -10%

- 1. Based on pre-specified ANCOVA model adjusting for age group (< 65, \geq 65 years) and pre-booster titer.
- 2. Common risk difference and 97.5% CI were calculated using stratified Miettinen-Nurminen method adjusting for age group.
- Chalkias et al. *medRxiv* 2022, doi: 10.1101/2022.06.24.22276703.

Ancestral SARS-CoV-2 (D614G) Neutralizing Titers After 4th Dose Significantly Higher with mRNA-1273.214 than mRNA-1273

Study 205, Per-Protocol Immunogenicity Set with No Prior Infection

	4" Dose		
	mRNA-1273	mRNA-1273.214	
Parameter	(N = 260)	(N = 334)	
GMT Pre-booster	1521	1267	
95% CI	(1353, 1710)	(1120, 1432)	
GMT at Day 29 ¹	5287	6422	
95% CI	(4887, 5719)	(5990, 6886)	
GMT Ratio ¹ (.214 vs Prototype)	1.22		
97.5% CI	(1.08, 1.37)		
Seroresponse rate at Day 29	100%	100%	
95% CI	(98.6, 100)	(98.9, 100)	
Difference in seroresponse rates ²		0	
97.5% CI		U	

Ath Dage

SuccessNon-inferiority of GMTs: Lower 97.5% CI of GMT Ratio ≥ 0.67Criteria MetNon-inferiority of Seroresponse Rates: Lower 97.5% CI of difference > -10%

1. Based on pre-specified ANCOVA model adjusting for age group (< 65, ≥ 65 years) and pre-booster titer.

2. Common risk difference and 97.5% CI can not be estimated between two seroresponse rates of 100%.

Chalkias et al. *medRxiv* 2022, doi: 10.1101/2022.06.24.22276703.

4th Dose of mRNA-1273.214 Delivered Higher Neutralizing Titers than mRNA-1273 Across Age Groups, Including Age >65

Study 205, Per-Protocol Immunogenicity Set with No Prior Infection

MD-14

Binding Antibody Titers Against Prior VOC Are Significantly Higher with mRNA-1273.214 than mRNA-1273

Study 205, Per-Protocol Immunogenicity Set

mRNA-1273 N = 350-351; mRNA-1273.214 N = 398-402.

Investigational Bivalent mRNA-1273.214 Vaccine Met All Regulatory Criteria for a Variant-Containing Vaccine

All pre-specified primary and key secondary objectives met:

Superiority of GMTs and non-inferiority of SRRs for Omicron (*Primary*)

✓ Non-inferiority of GMTs for Ancestral SARS-CoV-2 (*Primary*)

Non-inferiority of SRRs for Ancestral SARS-CoV-2 (Key Secondary)

Safety and tolerability profile consistent with mRNA-1273 booster

Role of mRNA-1273.214 in Addressing Emerging Variants

Predominant SARS-CoV-2 Strains in the US Have Changed During Different Periods of the COVID-19 Pandemic

MD-18

https://covid.cdc.gov/covid-data-tracker/

4th Dose of Bivalent mRNA-1273.214 Increases Omicron (BA.1) Neutralizing Titers

1. Chalkias et al. *Research Square* 2022, doi: 10.21203/rs.3.rs-1555201/v1.

2. Chalkias et al. *medRxiv* 2022, doi: 10.1101/2022.06.24.22276703.

Omicron Subvariants Continue to Emerge

https://covid.cdc.gov/covid-data-tracker/

4th Dose of mRNA-1273.214 Increased BA.4/BA.5 Neutralizing Titers Regardless of Prior SARS-CoV-2 Infection

Study 205, Per-Protocol Immunogenicity Set

	4 th Dose			
	All Participants	No Prior Infection	Prior Infection	
	(N = 428)	(N = 334)	(N = 94)	
Pre-Booster GMT	173	116	720	
(95% CI)	(147, 202)	(99, 136)	(532, 974)	
Observed GMTs at Day 29	941	727	2337	
(95% CI)	(826, 1071)	(633, 836)	(1826, 2993)	
Geometric Mean Fold Rise at Day 29 (95% CI)	5.44 (5.01, 5.92)	6.30 (5.74, 6.91)	3.25 (2.78, 3.80)	

BA.4/BA.5 assay conducted at Duke/VRC (research grade, validation underway). Chalkias et al. *medRxiv* 2022, doi: 10.1101/2022.06.24.22276703.

4th Dose of mRNA-1273.214 Increased BA.4/BA.5 Neutralizing Titers Regardless of Prior SARS-CoV-2 Infection or Age

Study 205, Per-Protocol Immunogenicity Set

BA.4/BA.5 assay conducted at Duke/VRC (research grade, validation underway). Chalkias et al. *medRxiv* 2022, doi: 10.1101/2022.06.24.22276703.

4th Dose of mRNA-1273.214 Increased BA.4/BA.5 Neutralizing Titers to Levels Observed Against Delta and Omicron After 3rd Dose of mRNA-1273

1. Chalkias et al. *Research Square* 2022, doi: 10.21203/rs.3.rs-1555201/v1. 2. Chalkias et al. *medRxiv* 2022, doi: 10.1101/2022.06.24.22276703.

3rd Dose of mRNA-1273 Increased Real-World Effectiveness Against Delta and Omicron

Kaiser Permanente Study

1. 3-dose regimen excludes immunocompromised. Follow-up time for 2-doses >270 days, 3-doses >60 days. Tseng et al. *Nature Med* 2022;28:1063-1071.

MD-24

Upcoming Data and Plans for mRNA-1273.214

Additional Data Collection Ongoing for mRNA-1273.214

- Immunogenicity for BA.4/BA.5 after 4th dose of mRNA-1273 to provide comparator for mRNA-1273.214
- Durability of immune response with mRNA-1273.214 at 3 and 6 months after the 4th dose
- mRNA-1273.214 in infants and children, 6 months 5 years of age
 - Primary series study ongoing
 - Booster study ongoing
- Continued safety follow-up of mRNA-1273.214 booster recipients

mRNA-1273.214 Has the Potential to Provide Improved Protection Against COVID-19

- Met pre-specified primary and key secondary objectives
 - Superior neutralizing titers against Omicron
 - Significantly higher neutralizing titers against ancestral strain
 - Favorable safety and tolerability profile
- Significantly higher binding antibodies against Alpha, Beta, Gamma, and Delta
- Robust neutralizing titers against BA.4/BA.5, including adults \geq 65
- More durable antibody responses demonstrated with bivalent platform

Regulatory submissions completed within next 2 weeks Pending authorization, vaccine available in late July / early August

THANK YOU to Our Study Collaborators, Investigators, and Participants

- All investigators
- Study site personnel
- Most importantly, the individuals who participated in these trials

mRNA-1273.214 Moderna COVID-19 Investigational Bivalent Vaccine (Original + Omicron)

Moderna, Inc.

Vaccines and Related Biological Products Advisory Committee June 28, 2022