Cellular, Tissue, and Gene Therapies Advisory Committee Meeting

Individuals using assistive technology may not be able to fully access the information contained in this file. For assistance, please send an e-mail to: ocod@fda.hhs.gov and include 508 Accommodation and the title of the document in the subject line of your e-mail.

Xenotransplantation: Immunosuppression and Prospects for Tolerance

Richard N. Pierson III, MD Professor of Surgery, Harvard Medical School Cardiac Surgeon, Massachusetts General Hospital, Boston, Massachusetts, USA rpierson@mgh.harvard.edu

No significant financial conflicts to declare (Moderna consultant: allo) NIH grant support for research in heart, liver Xenotransplantation Industry support (eGenesis, Revivicor, Tonix) for sponsored research in Xeno Chair, IXA Ethics Committee

MASSACHUSETTS GENERAL HOSPITAL

CENTER FOR TRANSPLANTATION SCIENCES

What is the opportunity?

Normal organs from healthy genetically engineered pigs

Defined quality: no brain death, transmitted disease

Sourced from SPF facilities

Minimize infectious risks

Pigs: short gestation, rapid growth, multiparous

Supply potentially unlimited, available when needed

Potential to condition donor and recipient

What is the risk?

Results uncertain

Preclinical models imperfect, translation largely untested

Endogenous retrovirus, 'unknown unknown' infections

Risk could extend to caregivers, and beyond

Equitable access

Will cost be a barrier?

Once successful, will supply meet demand?

Keys to recent progress

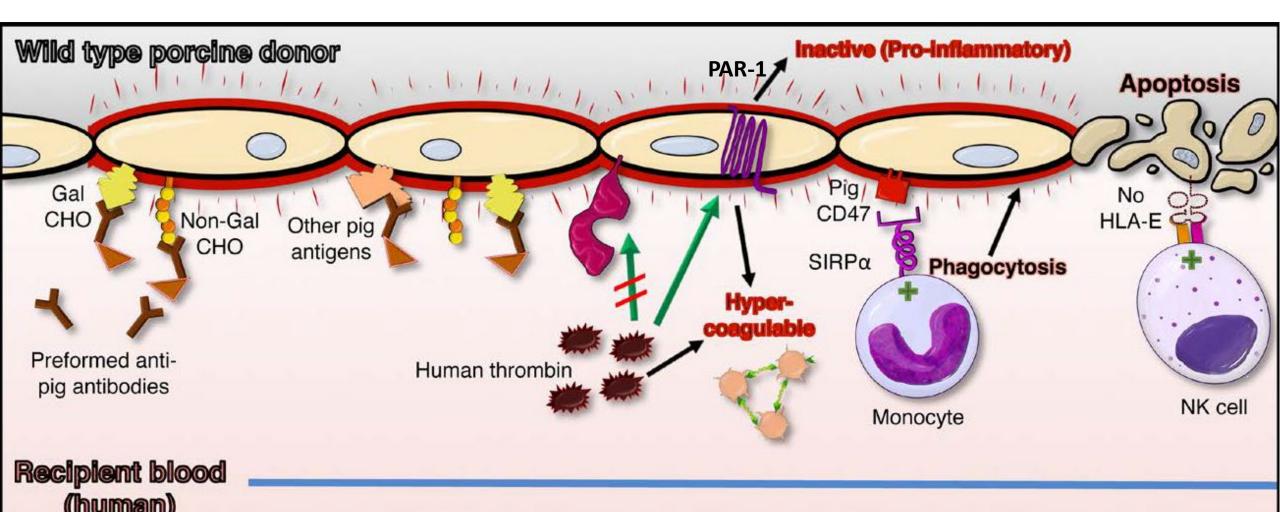
Pigs with mechanism-directed gene modifications

- Carbohydrate target removal (Gal: GTKO; Neu5Gc: CMAHKO; Sd: β 4GKO)
- Complement regulatory proteins (human CD46, CD55, CD59)
- Coagulation regulation (human TBM, EPCR, TFPI, CD39)
- 'Self-recognition' (HLA-E, human CD47)

Definition of an effective, safe immunosuppression regime

CD40/CD154 Costimulation blockade; uncertain whether 'conventional' IS helps

Organ preservation advances (especially for heart)


Ischemia minimization to prevent 'PCXD'

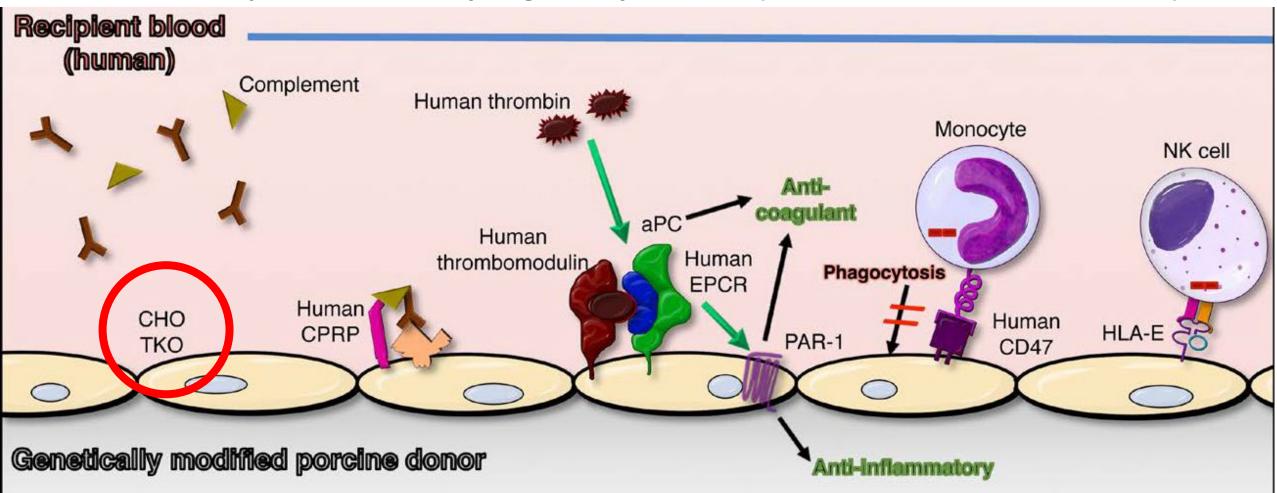
Rationale: Mechanism-directed Gene Modifications

Goals to Enable Xenotransplantation

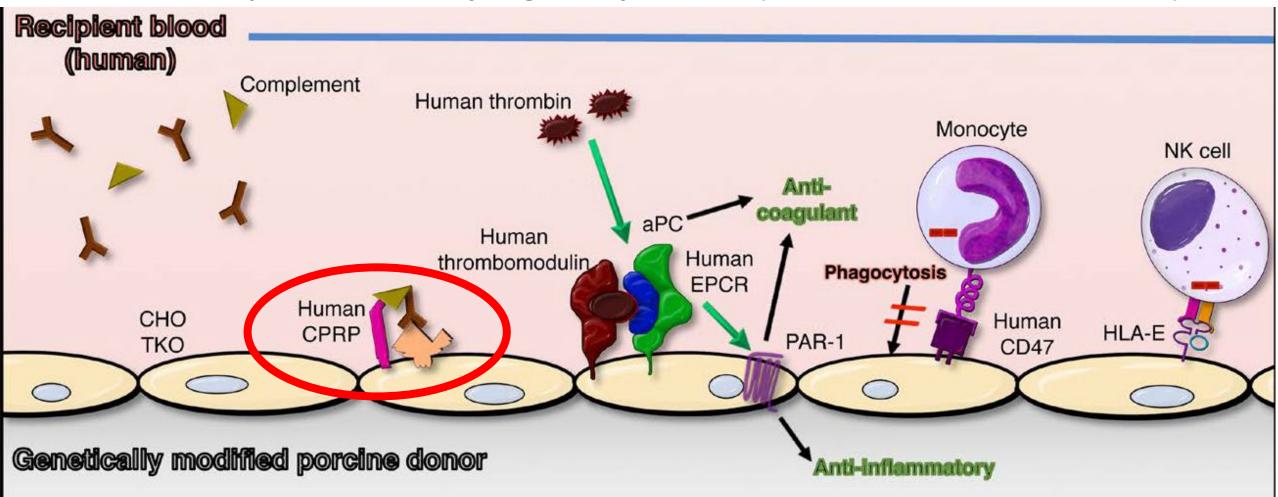
Control known mechanisms of GalTKO.hCPRP Heart Injury

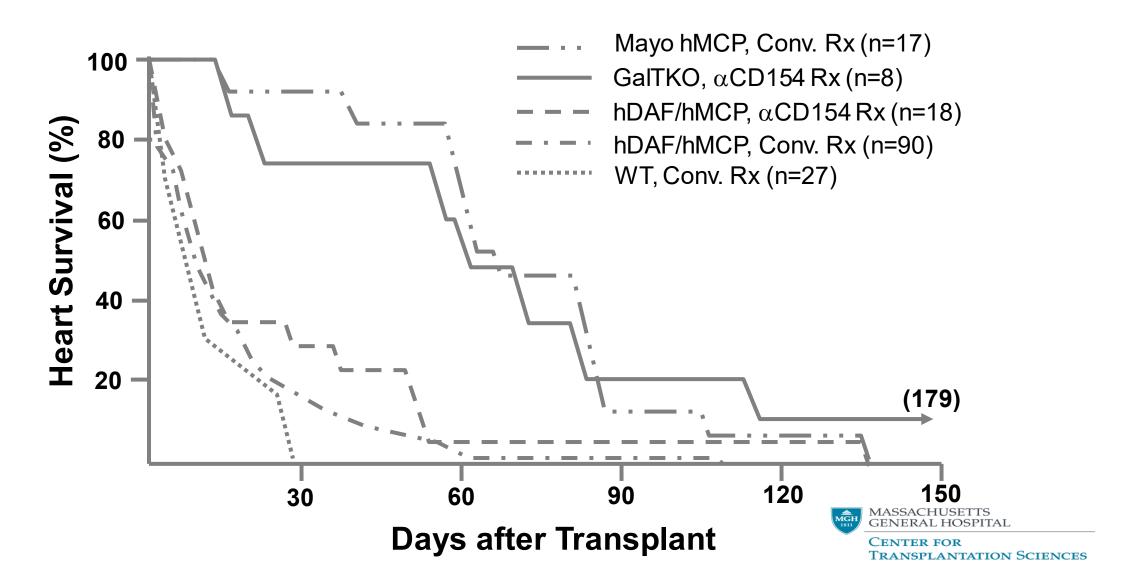
-Preformed or elicited non-gal antibody, complement

-Consumptive coagulopathy (recip), thrombotic microangiopathy (graft)

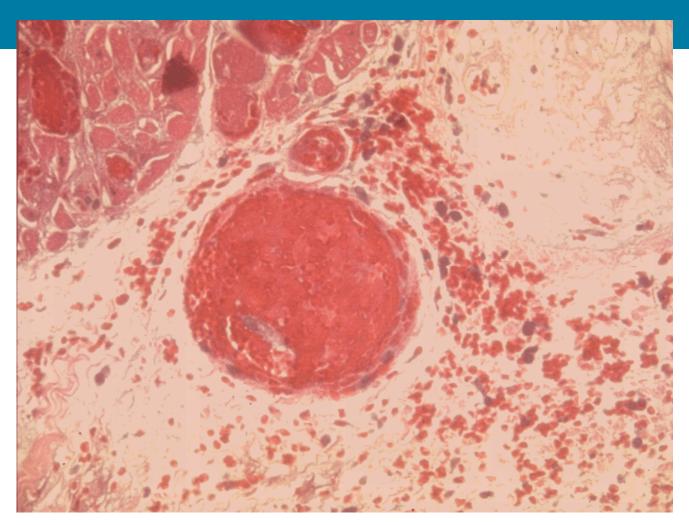

Address residual barriers

- 'Primary Cardiac Xenograft Dysfunction' (PCXD)



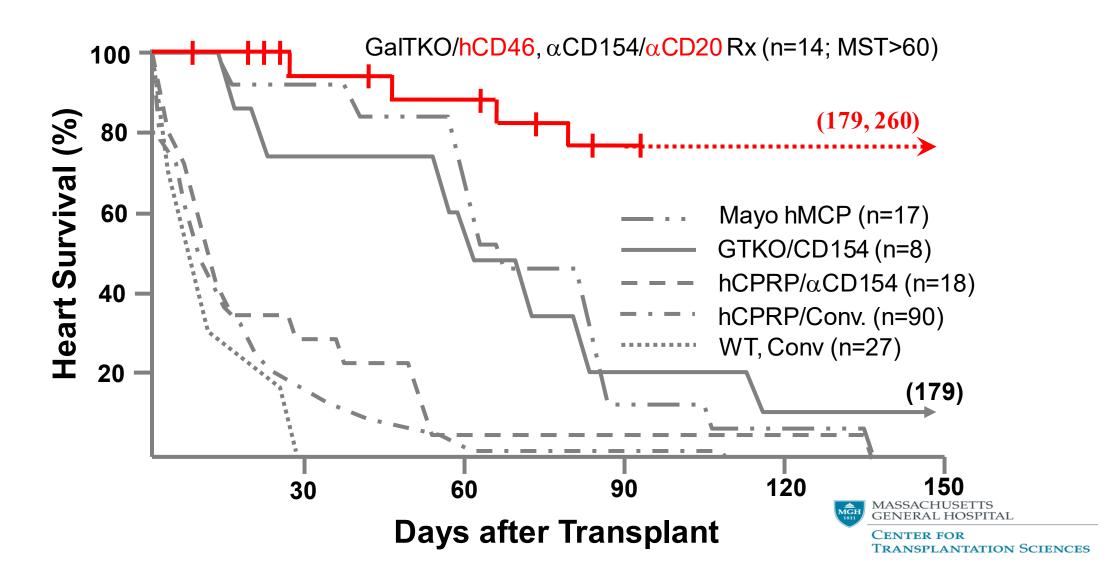

Carbohydrate target removal (CHO TKO: GTKO, CMAHKO, β4GKO) Added Complement Pathway Regulatory Proteins (hCPRPs: hCD46, hCD55, hCD59)

Carbohydrate target removal (CHO TKO: GTKO, CMAHKO, β4GKO) Added Complement Pathway Regulatory Proteins (hCPRPs: hCD46, hCD55, hCD59)

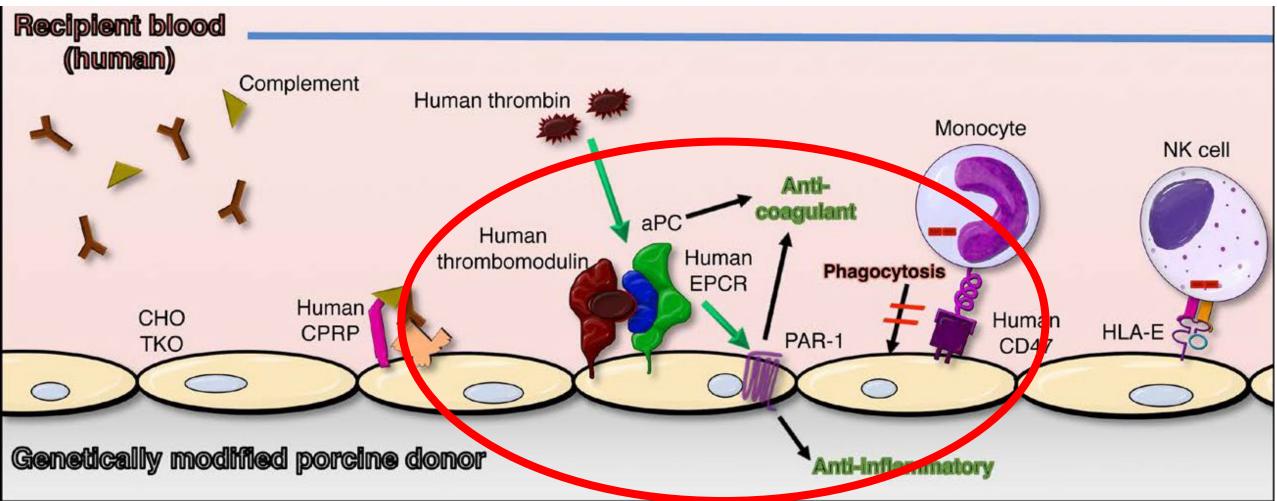


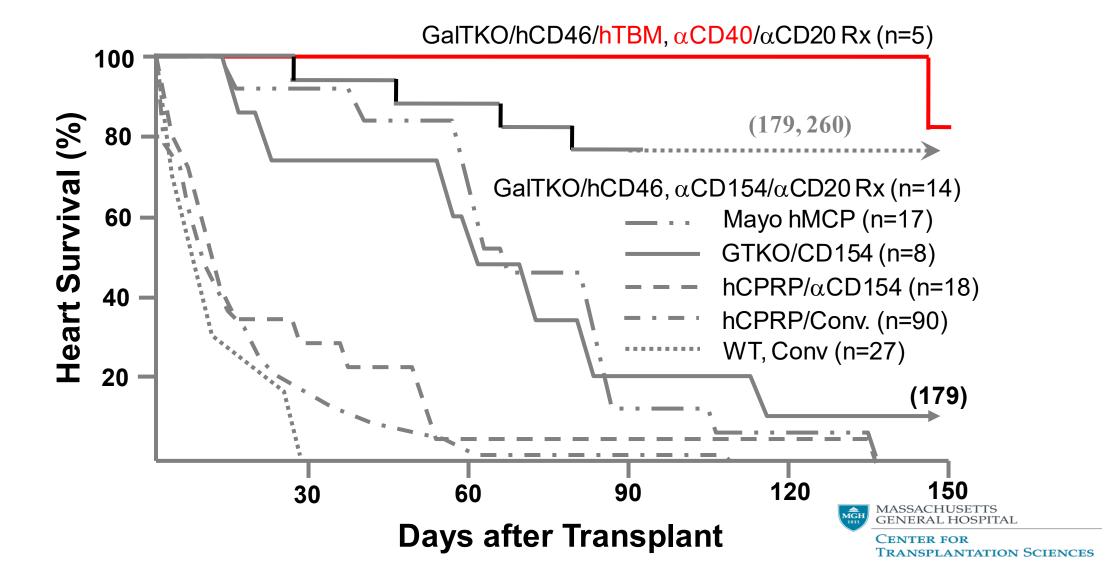
World Experience, 1988-2006 Pig hearts in treated baboons

Thrombotic Microangiopathy



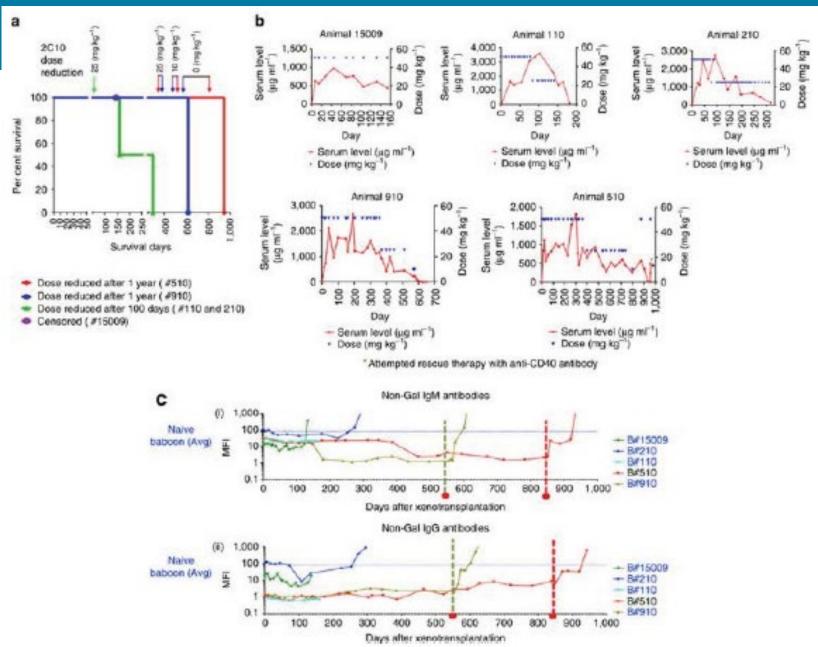
Caused by anti-pig antibody? Complement? Platelet or Coagulation pathway activation?


World Experience, 1988-2011 Pig hearts in treated baboons



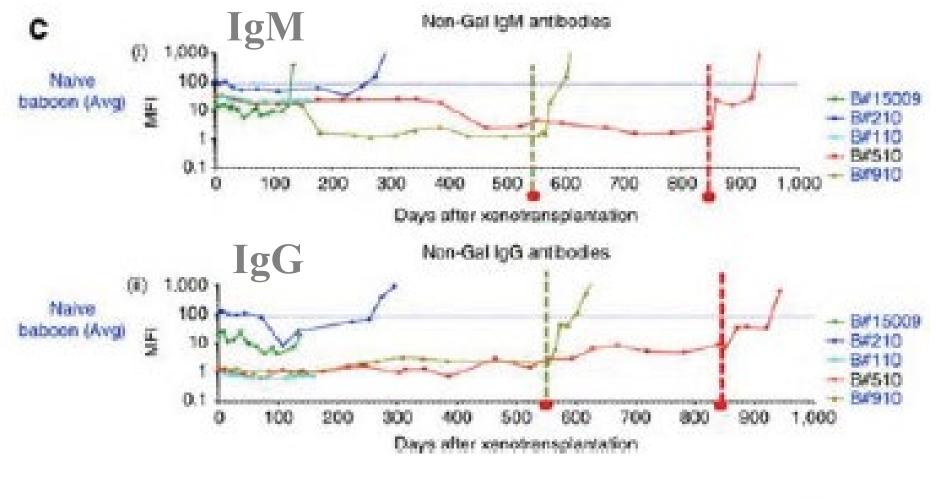
Coagulation regulation (TBM, EPCR, TFPI, CD39)

'Self-recognition' (HLA-E, CD47)



World Experience, 1988-2016 Pig hearts in treated baboons

Mohiuddin et al, Nature Communications 2016



CHUSETTS AL HOSPITAL

R FOR PLANTATION SCIENCES

Mohiuddin et al, Nature Communications 2016

MASSACHUSETTS GENERAL HOSPITAL CENTER FOR TRANSPLANTATION SCIENCES

Conclusions

Known mechanisms of GalTKO.hCPRP Heart Injury

-Preformed or elicited non-gal antibody, complement Addressed with TKO pigs, α CD20+ATG induction, α CD40/154-based IS

-Consumptive coagulopathy (recip), thrombotic microangiopathy (graft) Addressed with hTBM and hCPRP, effective IS (α CD40/154-based)

Additional barrier in orthotopic translation

-Perioperative Cardiac Xenograft Dysfunction (PCXD)

Orthotopic Heart Results

State of the art in 2017

```
-Vial et al, JHLT 1999
```

up to 37 days with hDAF heart in monkeys, conventional IS

-Mohiuddin/McGregor/Reichart, 2015, 2017 up to 53 days with GTKO, GTKO.hCPRP hearts in baboons *intensified conventional IS toxic, ineffective*

The barriers:

-PCXD: "Perioperative Cardiac Xenograft Dysfunction" >50% mortality within 1 day, survival >14 days rare

-Graft hypertrophy

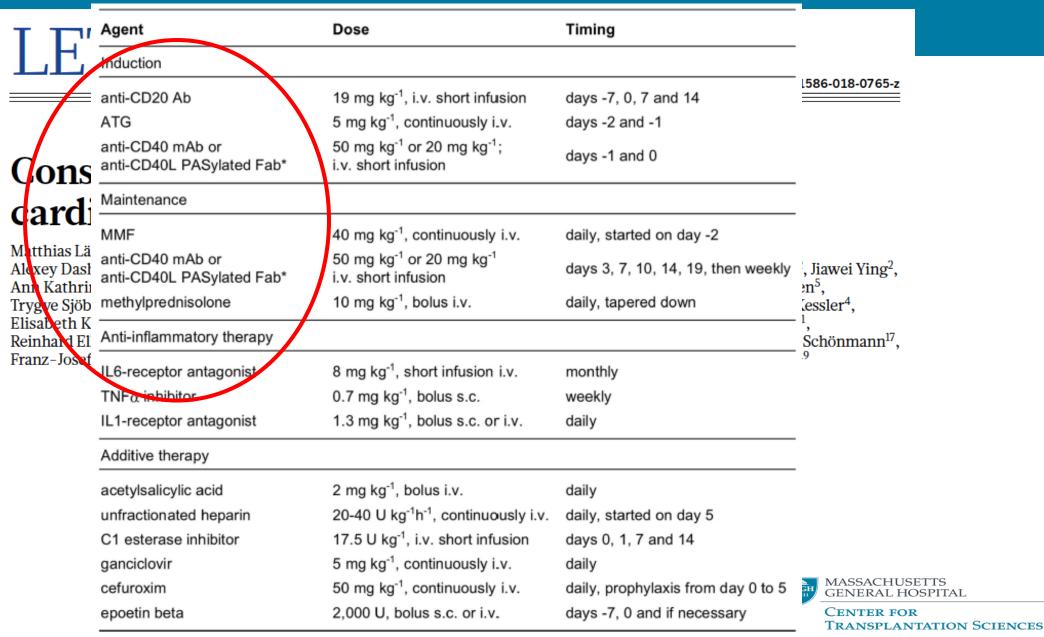
Nature, December 2018

LETTER

https://doi.org/10.1038/s41586-018-0765-z

Consistent success in life-supporting porcine cardiac xenotransplantation

Matthias Längin^{1,2,18}, Tanja Mayr^{1,2,18}, Bruno Reichart²*, Sebastian Michel³, Stefan Buchholz³, Sonja Guethoff^{2,3}, Alexey Dashkevich³, Andrea Baehr⁴, Stefanie Egerer⁴, Andreas Bauer¹, Maks Mihalj³, Alessandro Panelli², Lara Issl², Jiawei Ying², Ann Kathrin Fresch², Ines Buttgereit², Maren Mokelke², Julia Radan², Fabian Werner¹, Isabelle Lutzmann², Stig Steen⁵, Trygve Sjöberg⁵, Audrius Paskevicius⁵, Liao Qiuming⁵, Riccardo Sfriso⁶, Robert Rieben⁶, Maik Dahlhoff⁴, Barbara Kessler⁴, Elisabeth Kemter⁴, Katharina Klett^{7,8,9}, Rabea Hinkel^{7,8,9}, Christian Kupatt^{7,9}, Almuth Falkenau¹⁰, Simone Reu¹¹, Reinhard Ellgass³, Rudolf Herzog³, Uli Binder¹², Günter Wich¹³, Arne Skerra¹⁴, David Ayares¹⁵, Alexander Kind¹⁶, Uwe Schönmann¹⁷, Franz–Josef Kaup¹⁷, Christian Hagl³, Eckhard Wolf⁴, Nikolai Klymiuk⁴, Paolo Brenner^{2,3,19} & Jan–Michael Abicht^{1,2,19}



Nature, December 2018

T T7'	Agent	Dose	Timing						
LE	Induction								
	anti-CD20 Ab	19 mg kg ⁻¹ , i.v. short infusion	days -7, 0, 7 and 14	L586-018-0765-z					
	ATG	5 mg kg ⁻¹ , continuously i.v.	days -2 and -1						
Cons	anti-CD40 mAb or anti-CD40L PASylated Fab*	50 mg kg ⁻¹ or 20 mg kg ⁻¹ ; i.v. short infusion	days -1 and 0						
	Maintenance								
card	MMF	40 mg kg ⁻¹ , continuously i.v.	daily, started on day -2						
Matthias Lä Alexey Dasł Ann Kathrii	anti-CD40 mAb or anti-CD40L PASylated Fab*	50 mg kg ⁻¹ or 20 mg kg ⁻¹ i.v. short infusion	days 3, 7, 10, 14, 19, then weekly	, Jiawei Ying ² , en ⁵ ,					
Trygve Sjöb	methylprednisolone	10 mg kg ⁻¹ , bolus i.v.	daily, tapered down	lessler ⁴ ,					
Elisabeth K Reinhard El	Anti-inflammatory therapy	flammatory therapy							
Franz-Josef	IL6-receptor antagonist	8 mg kg ⁻¹ , short infusion i.v.	monthly	9					
	$TNF\alpha$ inhibitor	0.7 mg kg ⁻¹ , bolus s.c.	weekly						
	IL1-receptor antagonist	1.3 mg kg ⁻¹ , bolus s.c. or i.v.	daily						
	Additive therapy								
	acetylsalicylic acid	2 mg kg ⁻¹ , bolus i.v.	daily						
	unfractionated heparin	20-40 U kg ⁻¹ h ⁻¹ , continuously i.v.	daily, started on day 5						
	C1 esterase inhibitor	17.5 U kg ⁻¹ , i.v. short infusion	days 0, 1, 7 and 14						
	ganciclovir	5 mg kg ⁻¹ , continuously i.v.	daily						
	cefuroxim	50 mg kg ⁻¹ , continuously i.v.	daily, prophylaxis from day 0 to 5	MASSACHUSETTS GENERAL HOSPITAL					
	epoetin beta	2,000 U, bolus s.c. or i.v.	days -7, 0 and if necessary	CENTER FOR TRANSPLANTATION SCIENCES					

Nature, December 2018

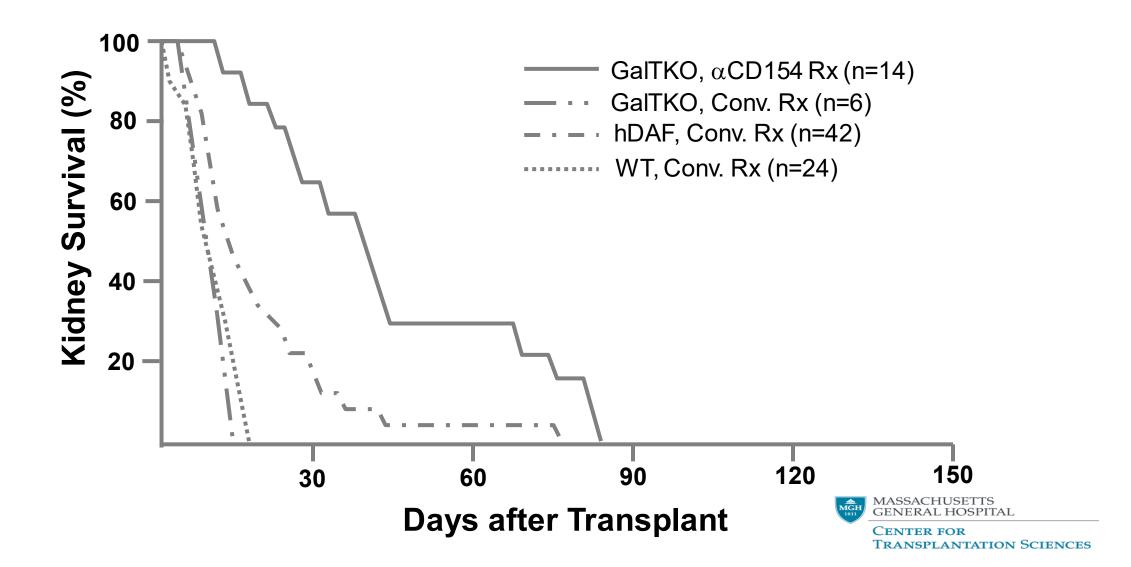
Orthotopic Heart Results

State of the art: 2022

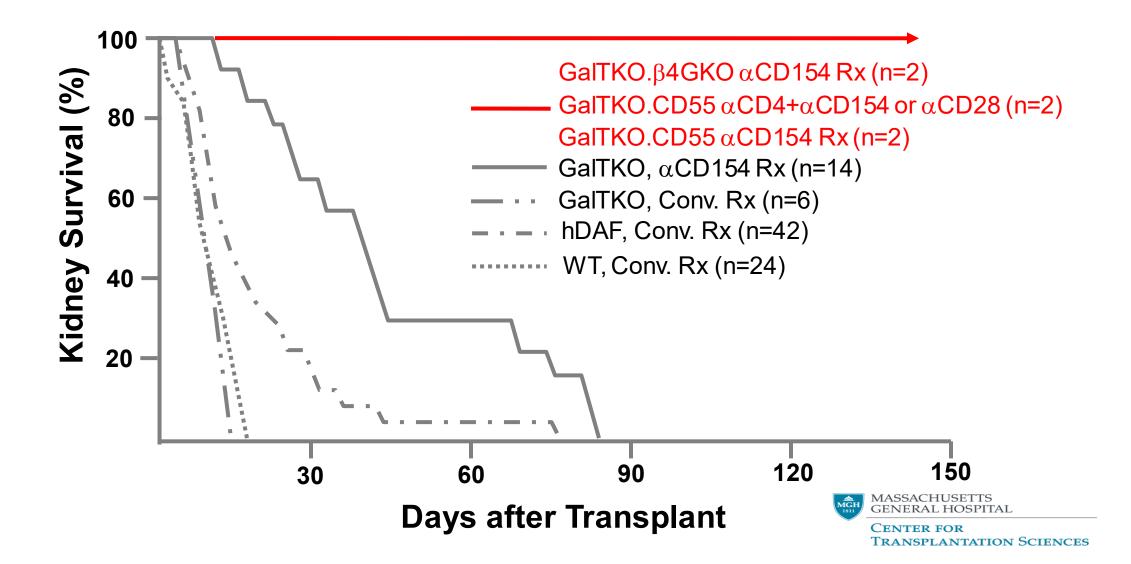
- -Vial et al, 1997:
- -Mohiuddin/McGregor/Reichart, 2017:
- -Langin, Reichart, Brenner et al, 2018-21:
- -Mohiuddin et al, 2022:

- ≤ 37 days
- ≤ 53 days
- > 180 days
- up to 270 days
- IS: ATG+ α CD20 induction, α CD40/154 + MMF, mTOR inhibitor

PCXD prevented with ischemia minimization

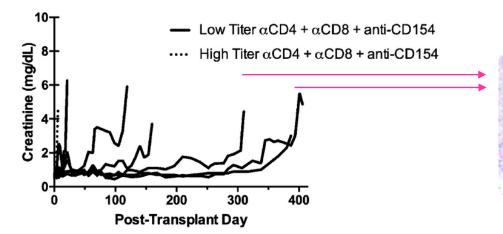

CC/TM, DXR not observed with GTKO.hCD46.hTBM heart

Graft hypertrophy not seen on mTOR inhibitor

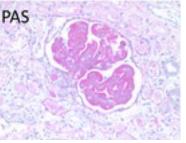


World Experience, 1998-2014 Pig kidneys in treated baboons

World Experience, 2014-2018 Pig kidneys in treated baboons


HARVARD MEDICAL SCHOOL

Emory Kidney Xeno Study


Kim SC et al. Am J Transplant Jan 2019 Rhesus recipients, screened for negative XM

Lessons: 1) Xeno response is particularly dependent on CD4 T cells
2) Sd antigen (encoded by β4Gal) is probably important
3) Rapid rejection with positive crossmatch

Pig	Rx	Graft survival (days)
αGTKO/CD55	α CD4+ α CD8+ α CD154	310, 160, 406, 18, 115, >400
	α CD4+ α CD154	499,414,>70
	α CD8+ α CD154	15, 6, 6

Chronic antibody mediated rejection

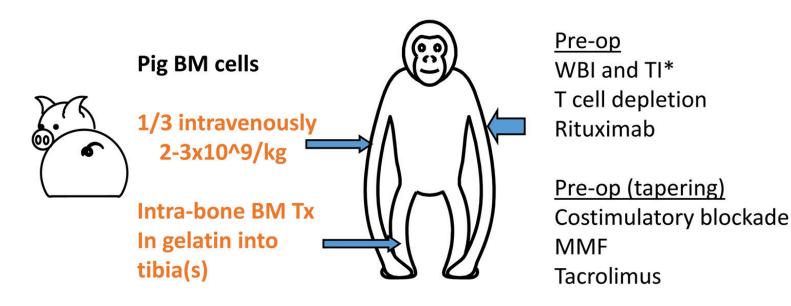
SACHUSETTS ERAL HOSPITAL

Sd antigen+ NTER FOR ANSPLANTATION SCIENCES

MGH Protocol for Renal xenotransplantation

		Kid Xer														
				Rapa	myc	in										
			S	ter	eroid start 50mg taper to 1mg/day by 2 weeks until Day 30.											
			Ν	ΛM												
			Ļ													
-2	2	-1	0	1	2	3	4	5	6	7	8	9	10	11	12 day	
Rabbit ATG (5mg/kg) 🕅	X	Х	Х													
Rituximab			Х												x (when	B cells com
Anti-CD154 20mg/kg			Х		Х			Х		Х					X weekly	
Gancyclovir 5mg/kg			Х	da	aily t	for 5	50 d	lays								
Enrofloxacin		Х	(until T cells come back													
Ketorolac (1mg/kg)			Х	before anti-CD154 mAb administration												
Epogen (200U/kg) X	<	Х	Х		daily once HCT is stable the administration will be adjusted as necess to keep HCT>30%											
Lovenox			Х	d	aily											

Yamada, Sachs, Sykes (MGH/Columbia) **Tolerance induction regimen Kidney or Thymokidney** Inbred GTKO.hCD55 miniswine, +/-hCD47 Mixed hematopoetic chimerism Conditioning: ATG, α CD20, TBI, Thymic Irradiation BMT around transplant (IV, intra-bone marrow) IS: αCD154, Tac tapered, MMF/Rapa



Yamada, Sachs, Sykes (MGH/Columbia)

Tolerance by Intra-bone BM Transplantation

Pig GalT-KO BM to Baboons (Intra-bone)

Lung: <14 days Thymokidney: <100 days

Immunosuppression and Tolerance for Xenotransplantation

Conclusions

Costimulation-based IS is effective In context of GKTO.hCPRP.hTBM heart, GTKO.β4GKO or GTKO.hCPRP kidney Prevents ACR, Consumptive Coagulopathy, Thrombotic Microangiopathy Requirement for induction remains unproven Efficacy of CNI, MMF, mTOR remains unproven **Tolerance may be achievable with GTKO.hCPRP.hCD47** In context of mixed hematopoetic chimerism MGI

ANT CENTER

Thank you for your attention!

Pierson Discussion Slides

Xenotransplantation : What is "Success"?

Outcomes

Benchmark outcomes relative to:

Preclinical results: As good as predicted?

Alternative therapies:

Infection control:

Satisfy ethical equipoise? Diagnostic, therapeutic strategies effective?

Learning curve must be anticipated

Process

Education: *Patient, professional peers, public*

Transparency: Acknowledge uncertainties

Deliberation: Non-emergent until efficacy established

Informed consent: adherence to protocol by subject, close contacts

Xenotransplantation: Heart

U Maryland Pig-to Human Heart Transplant 1/7/22

FDA exemption: 'compassionate use' approval for single case Reported in scientific literature 6/23/22

10-gene pig heart into critically-ill patient

Preop VA ECMO for 42 days

Intraop complications well-tolerated

Organ function 'excellent' by report

Off VA ECMO POD 3 or 4; acute renal failure on dialysis

Multiple infectious complications; Bed-bound for rehab

Graft failure associated with Porcine CMV in heart xenograft, anti-TKO Ab

Died ~3/7/22, after 10 days back on VA ECMO

Xenotransplantation: Kidney

NYU Kidney experience No FDA approval: 'Not a clinical trial' NEJM 5/2022

GTKO thymokidney in two brain-dead human patients

Organ function (life-supporting?) for ~2 days

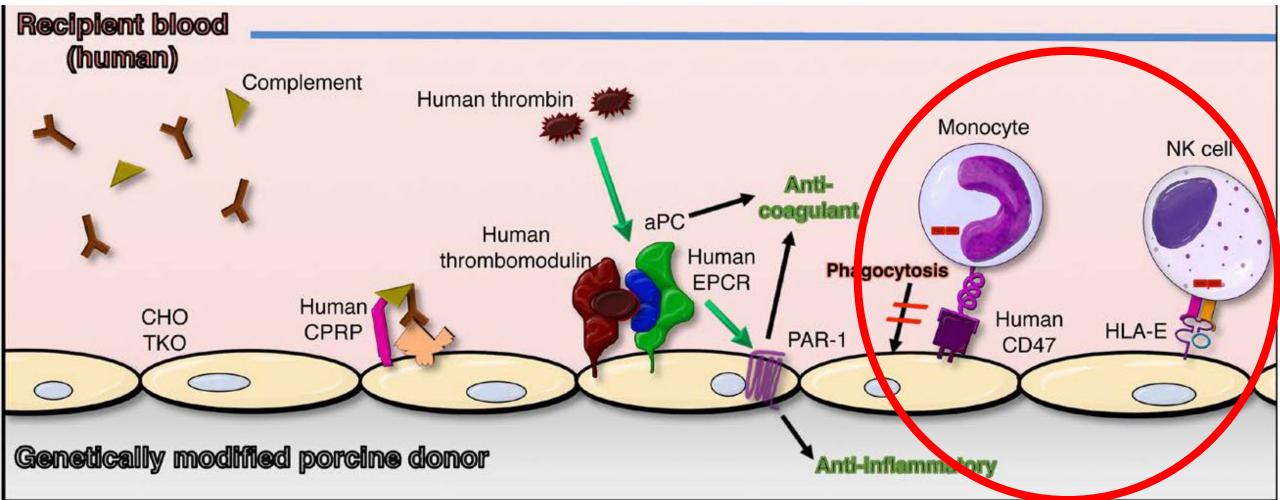
Thymokidney effect not measurable

UAB Kidney experience No FDA approval: 'Not a clinical trial'

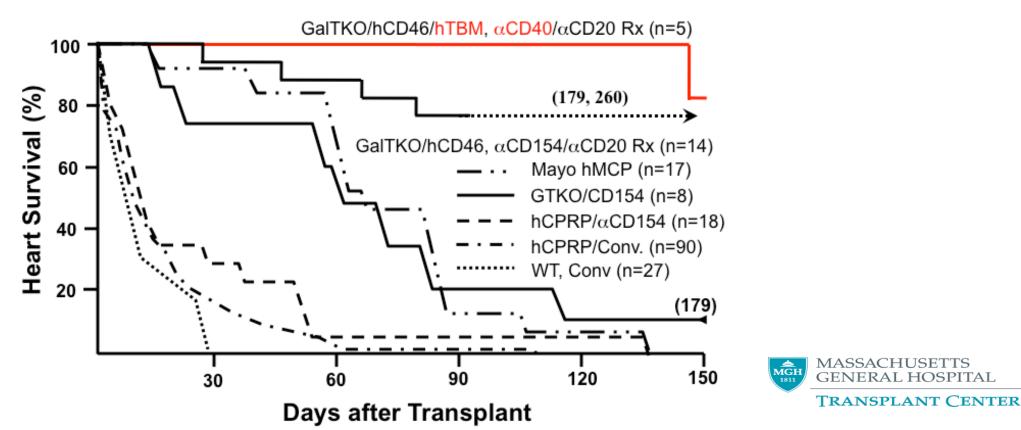
AJT 1/2022

10-gene pig in a brain-dead human patient with DIC

Native nephrectomy performed


Organ function not demonstrably life-supporting

Concerning histology on biopsies, low U/O after 4 hr


Coagulation regulation (TBM, EPCR, TFPI, CD39)

'Self-recognition' (HLA-E, CD47)

Preclinical Results: GalTKO, hCD46, hTBM

World Experience, 1988-2016 Pig hearts in treated baboons

RAL HOSPITAL

Preclinical efficacy endpoint met for GalTKO.hCD46.hTBM heart Consistent life-supporting organ function >3 mo; occasional to >6 mo

Failures predictable, and manageable, or model-related

Tolerable regimen

Langin et al, Nature, 12/2018

Reichart et al JHLT, 8/2020

4/5 beyond 90 days; no LVH during rapa Rx Consistent success in life-supporting porcine cardiac xenotransplantation

Table 1 | Serum levels of liver and heart enzymes, platelet counts and prothrombin ratio at the end of experiments that lasted longer than two weeks

Ischemia minimization; Tensirolimus

https://doi.org/10.1038/s41586-018-0765-z

	Group I	Group II			Group III					
Experiment	3	6	8	9	10	11	12	13	14	Reference
Bilirubin (mg dl-1)	1.2	0.9	2.7	4.5	0.3	0.2	0.2	0.2	0.2	≤1.2
AST (U I-1)	646	896	792	354	101	27	23	63	28	≤49
PR (%)	30	6	6	6	101	96	117	26	99	70-130
CHE (kU I-1)	1.6	1.6	1.4	1.1	2.1	9.4	14.4	7.3	7.2	4.6-11.5
Troponin T (ng ml ⁻¹)	0.233	0.660	1.460	1.470	0.218	0.037	0.018	0.556	0.140	≤0.014
CK total (U I ⁻¹)	654	636	1017	953	3053	143	66	461	96	≤189
LDH (U I-1)	3252	6853	2842	1627	436	311	511	962	497	≤249
Platelets (billion particles per litre)	99	101	65	29	216	202	128	271	303	150-300
Survival (days)	30	18	27	40	51	90	90	195	182	
Causes of death	Heart and liver	Heart and liver	Heart and liver	Heart and liver	SVC thrombosis, thoracic duct	Euthanasia	Euthanasia	Euthanasia	Euthanasia	
	failure	failure	failure	failure	occlusion					

Normal reference values are given in the right-most column. Animals from groups I and II exhibited pathological biochemical alterations that correspond to heart and liver failure; platelet counts were low and I DH was elevated. By contrast, most narameters remained close to or within, normal ranges in animals of group III. The baboon in experiment 10 had to be euthanized because of severe

AL