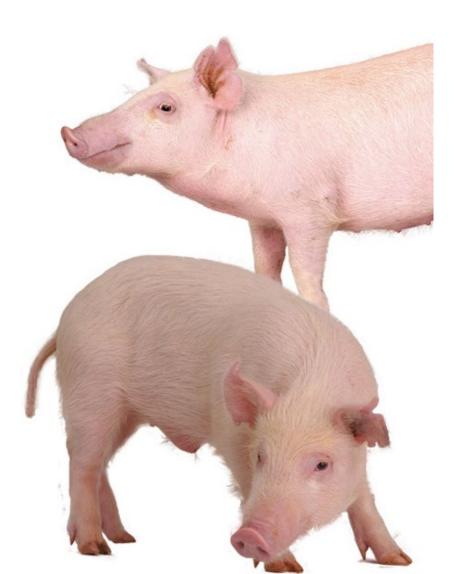

Cellular, Tissue, and Gene Therapies Advisory Committee Meeting

Individuals using assistive technology may not be able to fully access the information contained in this file. For assistance, please send an e-mail to: ocod@fda.hhs.gov and include 508 Accommodation and the title of the document in the subject line of your e-mail.

Pigs in toxicology:

Differences in metabolism and background findings may be breed dependent

K. Helke DV M, PhD, DACVP Medical University of South Carolina Charleston, SC helke@musc.edu

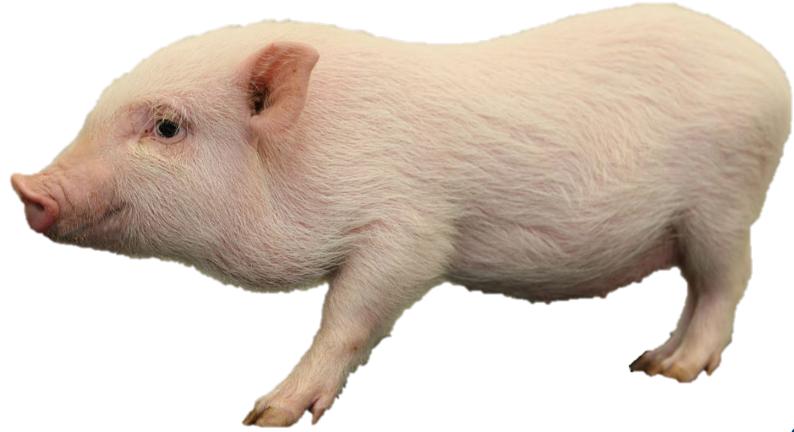


Breed differences in metabolism and background lesions

- Different breeds
- Drug metabolism
 - Enzymes
 - Locations / organ systems
- Conclusions: drug metabolism
- Background lesions
 - Organ systems
 - Breed differences



* Miniswine lineages: Hanford



ORIENTAL YEAST CO., LTD.

GÖTTINGEN MINIPIGS

Japan (2013)

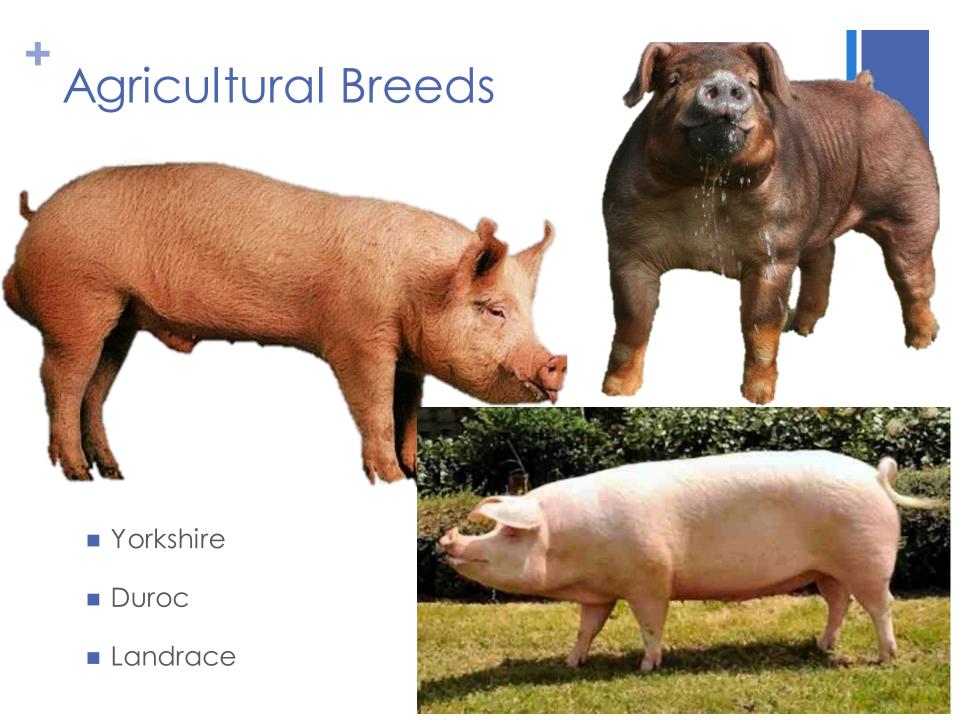
EU (1992)

BIORESOURCES

US (2003)

Czech Republic (Veterinary Medicine Research Institute)

Micromini (Japan)


Bama (China)

Zhang 19 cell reports https://papers.ssrn.com/sol3/pa pers.cfm?abstract_id=3363854

http://microminipig.org/

Drug entry pathways

÷

- Drug entry -> oral / IV / topical (skin)
- Cross GI tract, renal, or cutaneous epithelium -> passive diffusion or active transporters
- Can undergo transformation in intestinal epithelium, or after in bloodstream, in liver or kidney
 - Phase I reactions
 - Phase II reactions
 - Elimination

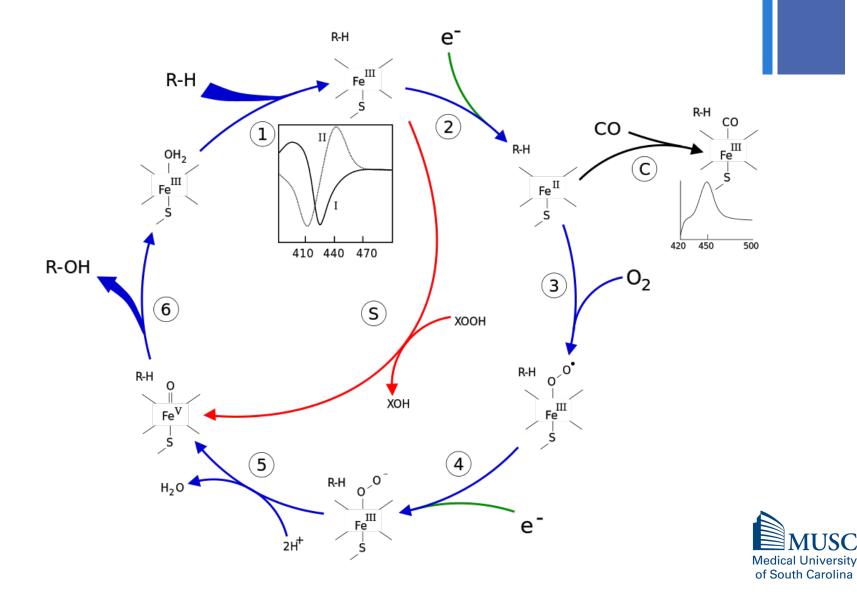
All similar (>72%) between pigs and humans

- ABC (ATP- binding cassette: efflux)
 - Pgp1/MDR1 can be inhibited / induced
 - BCRP

- SLC (Solute carrier: influx)
 - OAT
 - OCT genetic variations

International transporter consortium

Phase I drug metabolism pathways


+ Phase I reactions

- Expose functional group of parent compound which may results in increased or loss of drug activity
- Provides functional group for phase II reactions
 - Oxidative
 - Reductive
 - Hydrolytic
 - Dealkylation

- Enzymes Include:
 - CYPs
 - Most frequently involved in drug metabolism
 - Flavin monooxygenases
 - Monoamine oxidases
 - Molybdenum hydroxylases
 - others

+ Cytochrome P450 families

Cytochrome P450 (CYP)

- Family of enzymes that are functionally conserved in all mammals
- Most important Phase I biotransformation enzymes in humans are CYP
- In humans, primarily 3 CYP families are involved in majority of all drug biotransformation
 - CYP1
 - CYP2
 - CYP3
- Present in ER and mitochondria of liver, GI tract, kidney, skin, others

Total liver content of CYP enzymes

Species	Total CYP in liver (nmol/mg)
Human	~0.3
Minipig	0.8
Farm pig	0.22-0.46
Dog	0.4
NHP	~1.0

Modified from Dalgaard 15 j pharmacol t

Total liver content of CYP enzymes

Species	Total CYP in liver (nmol/mg)		
Human	~0.3	Liver CYP content	
Minipig (Göttingen)	0.8		
Farm pig (Landrace-Yorkshire / Duroc)	0.22-0.46	varies greatly between farm and mini-pigs.	
Dog	0.4		
NHP	~1.0		

Modified from Dalgaard 15 j pharmacol t

- Polymorphisms result in both interspecies and intraspecies variations
- Allelic variations
- Some individuals carry multiple copies of CYP genes
- Pseudogenes

Current knowledge: How are CYPs measured?

- Some references measure mRNA (PCR)
- Some measure protein levels (WB, ELISA, MS)
- Some measure activity levels (substrate assays, inhibition assays)
- Some measure both protein and activity

Need mRNA levels, protein levels and activity levels – evidence for post-transcriptional regulation

How is <u>activity</u> of CYP measured?

- Activity of CYPs are determined by substrate reactions-
 - Does metabolism of a specific substrate or set of substrates happen?

- Substrate reactions are typically specific for a single huCYP
- Not always true in pigs

Cytochrome families: Current knowledge

CYP families / subfamilies

 About 50 cytochromes in humans, of which approximately 6 families metabolize >90% of drugs.

CYP1

- CYP1A1, CYP1A2, CYP1B1
- CYP2
 - CYP2A6, CYP2A19, CYP2D6
- CYP3
 - CYP3A4, CYP3A32

Ηυ СΥΡ	рСҮР	Similarity (amino acid)	
1A1	1A1	82%	No sex diff, sex diff
1A2	1A2	81.2%	No sex diff

CYP1A

- Metabolize carcinogens (aromatic and heterocyclic amines), estrogens, mycotoxins, xanthenes, some antidepressants, analgesics
- Induction by same inducers across species
- In humans, metabolize about 20% of substances tested
- In minipigs and humans, CYP1A activity is sex-related
 - Minipig females have 2-4X higher activity level than males
 - Caucasian males have 2-4X higher activity level than females
- Levels are higher in piglets than adults

CYP1B1

- In humans is predominant isoform outside the liver
- Not characterized in minipig

Ни СҮР	рСҮР	Similarity (amino acid)	
2A6	2A19	87.2%	F>M, Breed diff
2A13	2A19	90.1%	
2B6	2B22	81.1%	F>M
2C9	2C33	64%	M>F, breed diff
	2C44	80%	
	2C49	78%	M>F
2C18	2C33	62%	
	2C42	78%	
	2C49	80%	
2D6	2D25	79%	
2E1	2E1	82.5%	F>M

- Metabolize: nicotine, nitrosamines, aflatoxin B1
- cDNA of 2A19 is 99% homologous between Göttingen and conventional breed pigs

- Female Göttingens have 70X higher activity than males, but when males are castrated, activity increases 10x
- Yucatan females have 5X higher activity than males
- No sex difference in activity has been reported in humans

Marked species, breed, and sex differences

- Metabolizes diazepam, lidocaine, cyclophosphamide, tamoxifen
- No sex differences in Yucatans
- Levels are increased in conventional pigs relative to humans
- Levels in piglets higher than adults

- Inconsistencies in porcine literature
- 7-pentoxyresorufin dealkylation detected by some groups but not others.
 - Differences in assay used
- May be due to sources of hepatocytes and microsomes
- Or the fact that CYP2B genes can be induced by phenobarbital and others

- Humans- metabolize 22% of drugs including losartan, propofol, estrogens, testosterone, methadone
- Pigs different CYP2C enzymes show some cross reactivity toward many of the test substrates, not just those specific for human CYP2C

 Difficult to extrapolate between pigs and humans for CYP2C

- Metabolizes antidepressants, antipsychotics and βblockers
- High inter-individual variances in humans (polymorphisms)
- Not fully examined in the pig, and many of human CYP2D substrates are metabolized by porcine CYP2B

- Metabolizes alcohols, ketones, anesthetics, nitrosamines
 - Can lead to production of highly reactive toxic or carcinogenic metabolites
- Inducible by alcohol, high fat diet
- Physiologically induced by stress with 8-fold increase in protein and no change in mRNA level
- Female minipigs (Göttingen, Yucatan) have higher activity than males
- No sex differences in conventional pigs or humans
- Many differences in activity between pig and humans

Ηυ СΥΡ	рСҮР	Similarity (amino acid)	
	3A22		
	3A29	76%	F>M
3A4	3A46	77%	Breed diff
3A5		75%	

Most important CYP- metabolizes 27% of compounds and represents 30% of total CYP

Involved in steroid hydroxylation, converts sex hormones, polycyclic aromatic hydrocarbons, pesticides

- Expressed
 - Liver
 - Intestine
 - Kidney
 - others

- Tissue expression patterns (location, not levels) are similar between pigs and humans
- Transcriptional regulation is different between humans and pigs
- Yucatans have higher activity compared to Göttingen and conventional pigs
- Diet can differentially affect activity between sexes
 - Chicory root decreases activity in males and increases activity in females

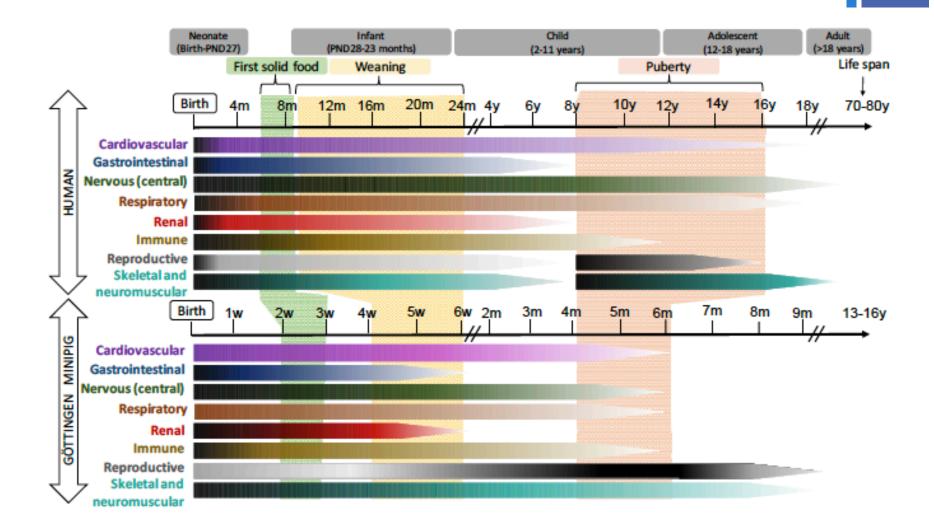
- No major differences in substrates, inducers, inhibitors, and tissue distribution between humans and pigs in:
 - CYP1A1
 - CYP1A2
 - CYP3A

- Minipigs (Göttingens) have higher content of CYP overall relative to 3 breeds of conventional pig and 2 races of humans
- CYP content differs between breeds
- CYP activity differs between breeds

- Significant sex differences in pCYP
- Sex differences not observed in all breeds.
 - Meishan vs. Landrace
 - Correlation between CYP levels and testosterone.
 - Dependent upon CYP, may be positive or negative correlation.

- Significant discrepancies in interpretation of CYP levels and substrate specificities are present due to noncomparable data
- Inducibility / magnitude of induction differ across tissues / cell types, even when exposed to same chemical inducer
- CYP protein levels may be affected by androgen levels which are inherited in autosomal dominant manner

- Some measure activity as mg/ microsomal protein
- Others measure Activity / mg liver


These discrepancies account for some of the differences between the sexes.

- Other variables:
 - Genetics
 - Age young animals may not express or may express at higher than adult levels
 - Sex
 - Sex differences with age
 - Diet
 - Epigenetic factors
 - Circadian variation
 - Transcriptional regulation

Developmental comparison

- 17/48 drugs tested in pigs had >10% inhibition of specific CYPs

Phase II pathways conjugation

Phase II reactions

- Result in formation of covalent linkage between functional group and:
 - Glucuronic acid (UGT enzymes)
 - Liver, kidney, intestine, lung, skin
 - Sulfate (SULT)
 - (Liver, kidney, intestine), skin
 - Glutathione
 - Liver, kidney
 - Amino acids
 - Acetate
 - Liver, lung, spleen, stomach, blood cells

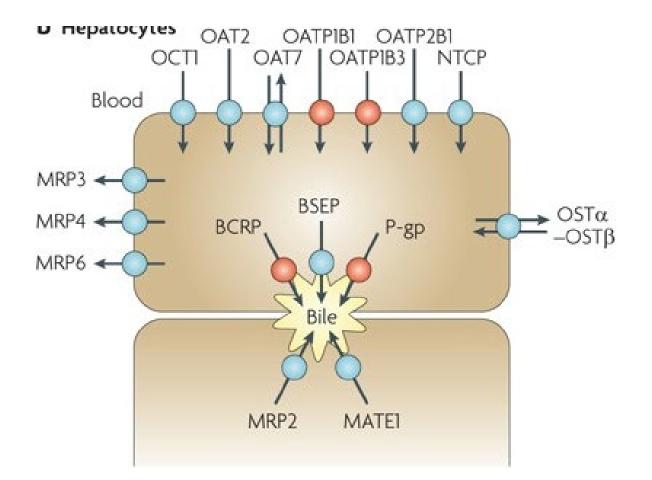
Increases polarity of compound to aid in excretion

- Glucuronidation and sulfation are most important in drug biotransformation
- Not as much research done on Phase II to date
- However, it is known that sulfate conjugation in swine is slower
- Pig is more efficient than human at glucuronidation
- Sulfation is major conjugation pathway for phenols and contributes to biotransformation of alcohols, amines, and thiols

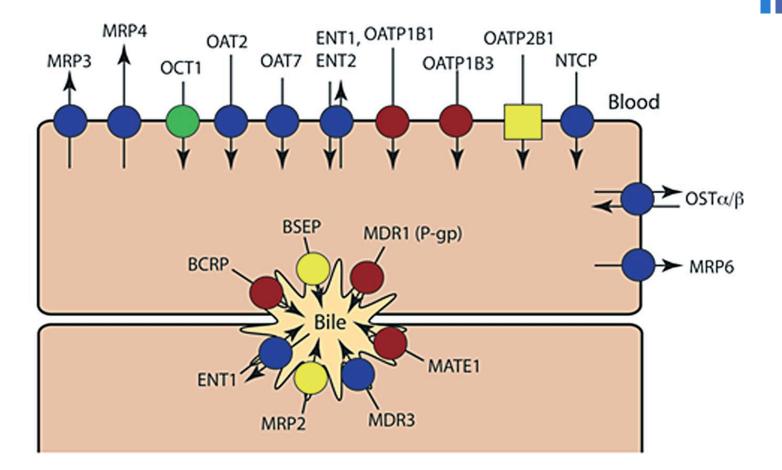
- Pigs compensate by using other phase II pathways in order to metabolize enzymes
- Pigs have high acetylating capability
- Not much is known about UGT (Uridine 5'-diphosphoglucuronosyltransferase) or isoforms in the pig (important in conjugating with glucuronide)

Organ systems

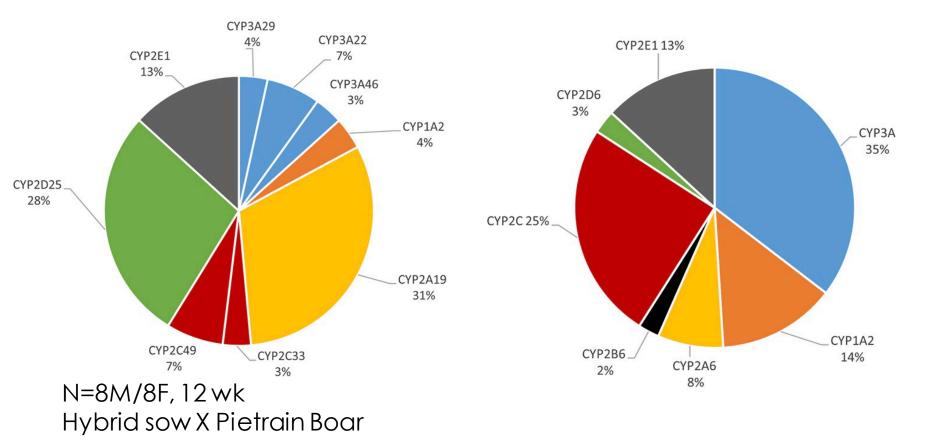

÷


GI

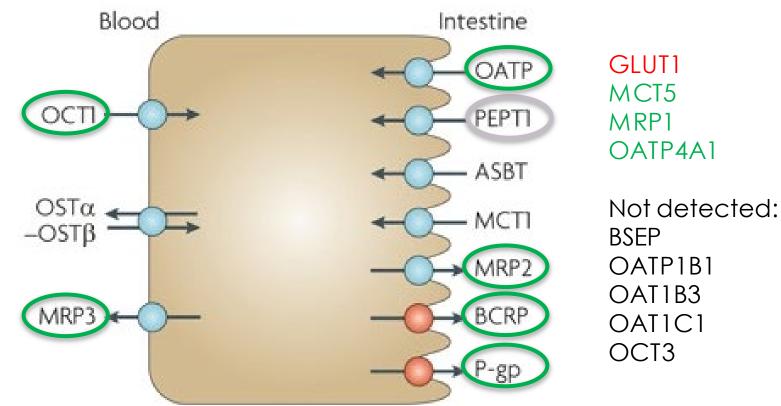
Kidney



Int transporter consortium 10 nat rev drug disc 9:215



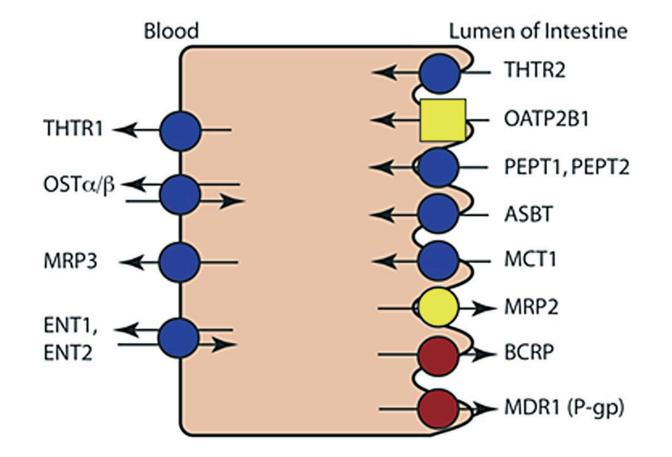
- Primary or pre-systemic extraction / metabolism
- Blood flow: $GI \rightarrow liver \rightarrow systemic$
- Phase I and phase II enzymes present in liver
- Similar levels of GST (glutathione transferase) and UGT (UDP-glucuronosyl transferase) found in humans and pigs (liver)



+ Liver CYP: Pig - Human

Schelstraete 19 sci reports 9:9233

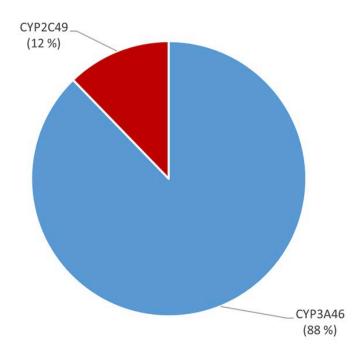
+ Intestinal epithelia

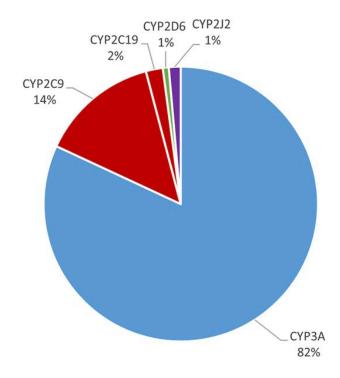


Int transporter consortium 10 nat rev drug disc 9:215 Vaessen 17 drug metab disp

- Passive cellular diffusion is primary mechanism of intestinal drug absorption
- Profound interspecies differences
 - Salivary amylase
 - pH of stomach, small and large intestines
 - Rate of gastric emptying / GI transit time
 - Age (young pigs more readily absorb large molecules colostrum)

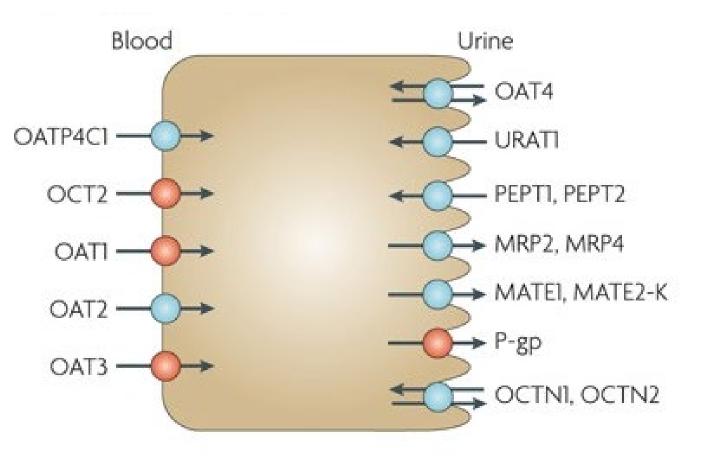
- The GI tract is the most important extrahepatic site of drug biotransformation
- Molecules pass through enterocytes after oral administration
- CYP3A most important
- Overall, pigs have similar gut physiology to humans





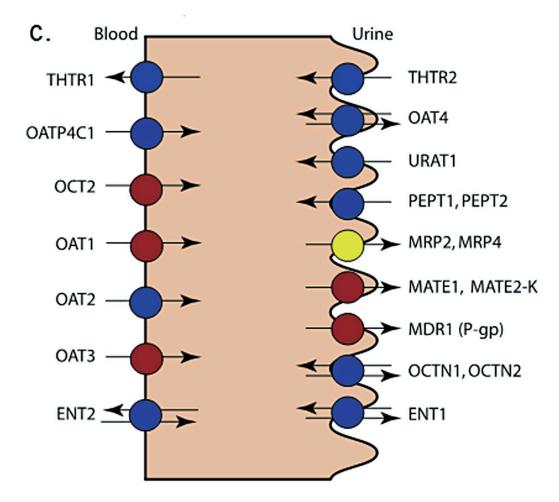
- Efflux transporters (permeability glycoprotein, P-gp)
- Bile salts solubilize lipophilic drugs
- CYP
- CYP2C42 higher expression in jejunum than liver

+ Jejunal CYP: Pig - Human



N=8M/8F, 12 wk Hybrid sow X Pietrain Boar

Schelstraete 19 sci reports 9:9233


Kidney, proximal tubule cells

Int transporter consortium 10 nat rev drug disc 9:215

• Kidney, proximal tubule cells

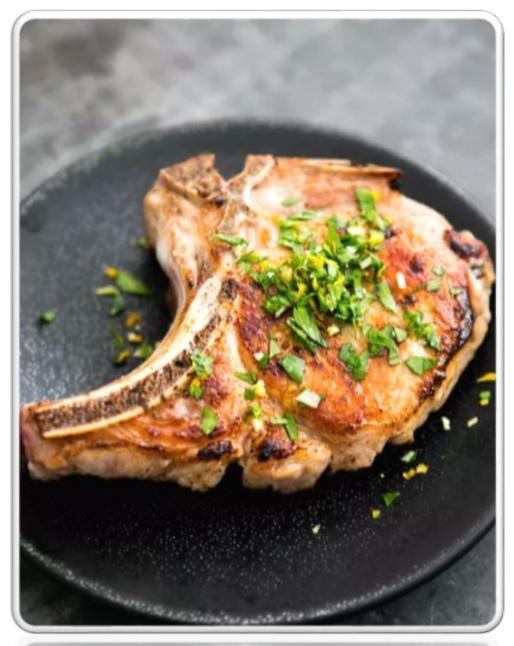
Zamek-Glisczcynski 18 Clin Pharm Therapeut 104:890

- Most important organ for elimination of drugs and their metabolites
- Of top 200 therapeutics, about 1/3 undergo renal eliminaiton
- Kidney expression of CYP is 1/10 of liver expression (all species)
- Metabolically active, and in some cases surpasses the liver
- Regional differences within kidney of enzyme levels
 - Metabolization primarily in proximal tubules

- Substrates and inhibitors of renal transporters are well documented
- Porcine renal phase I and II homology remains unknown

- In the rabbit, S2 and S3 segments of proximal tubule have increased levels of CYP
- In the rat, sex differences observed in the liver are not noted in the kidney

- CYPs may be induced in kidney, but by agents different from liver.
 - Barbiturates (liver, not kidney)
 - Polycyclic hydrocarbons (both liver and kidney)
- Difficult to extrapolate without specific pig studies as there are large differences noted between rats and mice
- In Chinese minipigs, results of AKI due to gentamicin inconsistent among groups and individuals
 - Cisplatin reliably induced AKI in same study


- In humans, CYP3A5 is expressed in kidney.
- Levels vary by race.
 - African > Asian > Caucasian
- Cyclosporin and Tacrolimus nephrotoxicity is dependent on CYP3A5 genotype
- Similar processes / pathways exist, but concentration of metabolism / rate may differ between species

- Banna minipigs, GFR is ½ of human GFR
- Elimination of cefazolin (excreted unchanged) is 3x faster in Banna pigs
- Drug doses may need to be reassessed if porcine kidneys are transplanted to humans.

Drug metabolism in the Pig: Conclusions

And the second of the second second

Current knowledge:

Benefit:

- Many studies have looked at porcine cytochromes to decrease "boar taint" in pork
- Studies showed differences among breeds in regard to boar taint

Drawbacks:

- These studies may only study CYPs associated with boar taint /3-methyl indole (skatole) metabolism (CYP1A1, 2A19, 2C33v4, 2C49, 2E1, 2D6, 2C49, 3A)
- Many of the studies were on farm pigs, not minipigs
- Many studies focused only on males, not females

- Different species can produce same metabolites as humans in unpredictable ways (Different enzymes)
- Same drug metabolite may be produced by several enzymes within the same species

Problems with current knowledge

- "Because buffer strength, type, and pH can all significantly affect Vmax and Km, standardized assay conditions are recommended."
- Yet-- Specific recommendations are not stated

- Different pig breeds
 - have different levels (amounts) of CYPs
 - have different activity levels of CYPs
 - CYP mRNA levels change with age
 - Different degree of change between sexes

- Studies of the cytochromes and xenobiotic metabolizing enzymes are important
- Literature currently uses different isolation and testing techniques
- Interbreed differences are magnified by lack of standardization of testing methods and husbandry (feed, feeding schedule, age, sex, etc.)
- CYPs are inducible
- Also affected by changes in the microbiome
- Many studies only look at a small number of individuals
- Interindividual variation
- Epigenetics play a role in CYP diversity

+ Holes in knowledge

- No consistency to selection of breed, age, sex of animals studied
- No consistency as to methods used to test expression, protein amount, or activity of CYPs

- Leads to misinterpretation of results even though there is high sequence homology between pigs and humans
- Other variables in pigs include
 - Dietary fat (both transcriptionally and post-transcriptionally affect levels)
 - Diet (including micronutrients and minerals- Selenium has been shown to affect both activity and expression levels)
 - Microbiome (sex differences in cytochromes were eliminated in germ-free mice)

More funding needs to be made available to complete systematic studies such as these in a reproducible manner

Age, sex, and breed all need to be considered in pharmacological and toxicological testing

Background lesions and breed differences

- Contacted several CROs
 - Responses from NA(6), and UK(1)
- Reported as common background if >1%
- Excluded animals from before 2000
 - Genetic drift
- Animals separated into age groups
 - <2mo, 2-6 mo, >6mo

- Thrombocytopenic purpura
- Porcine stress syndrome

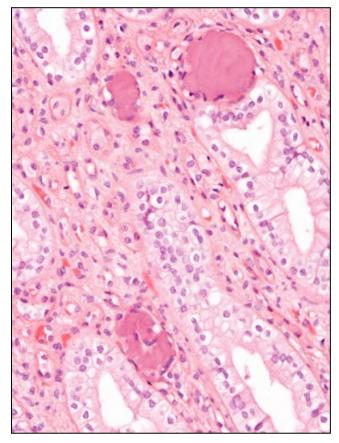
- N=1 for each entity
- Only reported at UK site (EU Göttingens)

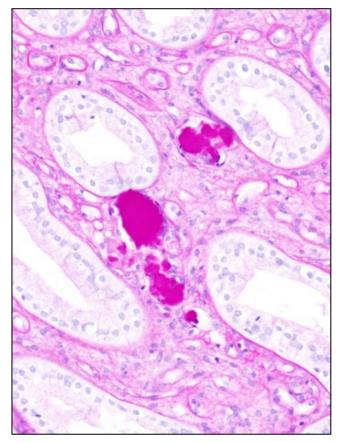
systems

÷

Göttingen:

- Inflammatory cell infiltrate
- Mesothelial hyperplasia and hypertrophy (more common in >6mo)
- North America:
 - Hemorrhage
 - Myofiber degeneration
- Hanford: (only in 2-6mo)
 - Inflammation, subacute to chronic (14%)
 - Inflammation, endocardial (7%)
- Yucatan:
 - Inflammatory cell infiltrate
 - Epicardium: inflammation, cartilaginous metaplasia



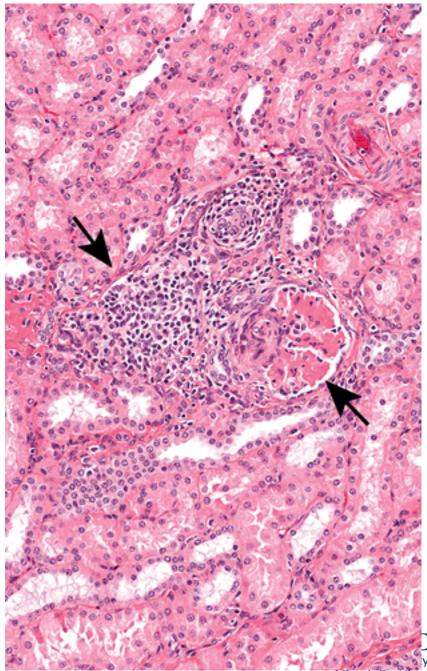

Göttingen

- Inflammatory cell infiltrates (19-39%)
- Inflammation
- Mineralization
- Tubular degeneration / regeneration
- Tubular dilatation
- Tubular basophilia

Urinary System – papillary mineralization

Hanford

Inflammatory cell infiltrates (20%)


Yucatan

- Inflammatory cell infiltrates (36%)
- Hemorrhage
- Fibrosis
- Vacuolation of renal tubular epithelium (3% < 2mo)

+ Overview- urinary

- Among all organs, kidney had highest prevalence of inflammatory cell infiltrate (19-50%)
- All breeds, females overrepresented for inflammatory cell infiltrate,
- Females overrepresented:
 - Tubular dilatation, and fibrosis-Gottingen
 - Tubular degeneration and regeneration - Yucatan

McInnis 16 tox path DOI: 10.1177/0192623315622423 of South Carol

Göttingen

- Degeneration, degeneration / regeneration
- Inflammatory cell infiltrate
- No changes noted in Hanford or Yucatan

+ Integument

- Göttingen
 - Hyperkeratosis
 - Hyperplasia
 - Exudate
 - Serocellular crust / scab
 - Abscesses or pustules
 - Inflammation
 - Inflammatory cell infiltrates
- Hanford
 - Inflammatory cell infiltrates
- Yucatan
 - Hyperplasia
 - Exudate
 - Inflammation

Male Reproductive- Testis

Göttingen

- Testicular hypoplasia, degeneration, atrophy, tubular (25%)
 - minimal to severe
 - Most common finding in male reproductive tract
 - Does not decrease with age
- Hanford (59 animals)
 - >6mo = sexual maturity in 100%
- Yucatan (37 animals)
 - <2mo:immature, hematopoiesis (47%)</p>

• Overview male reproductive:

Göttingen

- Hypoplasia, degeneration, atrophy of testicle common (25%) all age groups
- Vacuolation of tubular cells of testes
- Aspermia / oligospermia- common in epididymis, may be related to testicular lesions
- Prostate mineralization
- Inflammatory cell infiltrate / inflammation both common in seminal vesicle

Hanford

- All male repro organs examined in animals >6 mo are mature
- Yucatan
 - Most changes in animals <2 mo and associated with immaturity
 - Hematopoiesis reported in young animals (<2mo)

Göttingen

- Inflammatory cell infiltrates
- Perivascular inflammation
- Mineralization of meninges (NA only)

Hanford

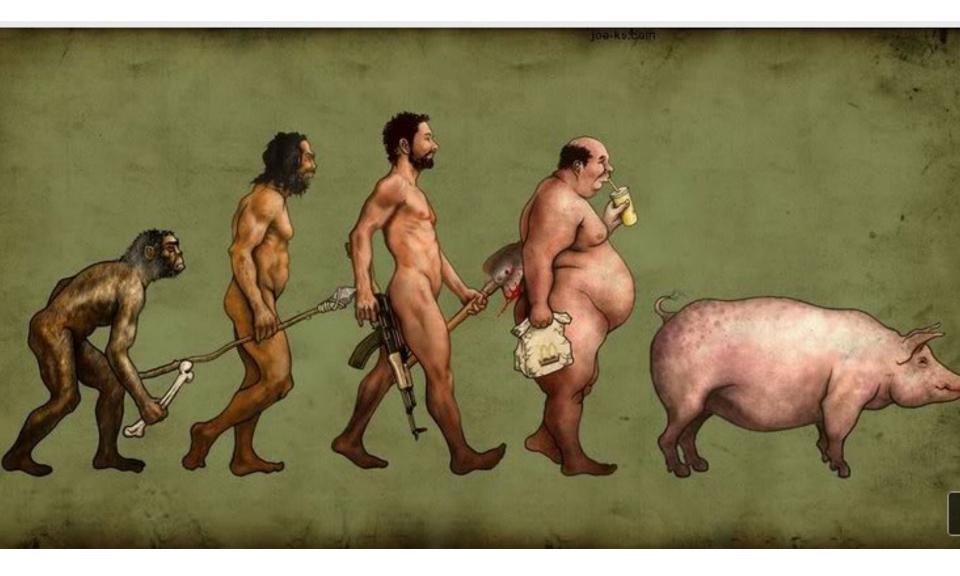
Inflammatory cell infiltrate

Yucatan

Inflammatory cell infiltrate

- Thyroid hemorrhage
 - Göttingen, Hanford, Yucatan
- Pituitary mineralization
 - Göttingen, Yucatan
 - Increase with age
- Adrenal gland
 - Inflammatory cell infiltrate
 - Göttingen, Hanford, Yucatan

- Göttingen more likely to mineralize tissues than Hanford or Yucatan.
 - Mineralization / concretions more common in NA than EU (male repro, CNS, ov ary)
 - EU more common than NA (urinary, lung)
 - Genetics or husbandry?
- Iron supplementation
- Urinary lesions more common in females



- Need to continue to look at breed differences
- No studies in farm / agricultural pigs
- No aging studies If an organ from a young animal is placed into a middle-aged human, will the organ age at a rate higher than the recipient?

Sex differences

