Generally Recognized as Safe (GRAS) Notice

for

Dried L-Valine Fermentation Product as a Source of Valine in Livestock and Poultry Feed

Prepared for: U.S. Food and Drug Administration Center for Veterinary Medicine Division of Animal Feeds

> Prepared by: CheilJedang Corporation

Table of Contents

.

.

PART 1 GRAS Notice	5
1.1 Name and Address of Organization	5
1.2 Name of the Notified Substance	5
1.3 Intended Conditions of Use	5
1.4 Statutory Basis for GRAS Determination	6
1.5 Federal Food, Drug, and Cosmetic Act Premarket Approval Exemption	6
1.6 Availability of Information for FDA Review	6
1.7 Freedom of Information Act 5 U.S.C 552 Disclosure Exemption	6
1.8 Certification of Complete, Representative Submission	7
PART 2 GRAS Notice: Identity, Method of Manufacture, Specifications, and Phy Technical Effect	sical or 8
2.1 Scientific Data and Information that Identifies the Notified Substance	8
2.1.1 Name and Other Identities	8
2.1.2 Composition	8
2.1.3 Fermentation Organism	10
2.2 Manufacturing Process	10
2.2.1 Ingredient Stability (Shelf-life)	11
2.2.2 Stability Upon Addition to Animal Feed	12
2.3 Specifications	12
2.4 Intended Use (Utility) of Dried L-Valine Fermentation Product	13
Part 3 GRAS Notice: Target Animal and Human Exposures	18
3.1 Target Animal Exposure	
3.2 Human Food Exposure	
Part 4 GRAS Notice: Self-Limiting Levels of Use	20
Part 5 GRAS Notice: Experience Based on Common Use in Food Before 1958	21
Part 6 GRAS Notice: Narrative	22
6.1 Safety of Corynebacterium glutamicum – Production Organism	22
6.2 Safety Considerations due to the Nature of Modification to Corynebacterium glutamicun	122
6.3 Safety Considerations for L-Valine	24
6.4 Safety Considers of Dried L-Valine Fermentation Product	24

.

~

6.5 Safety Assessment of Non-Valine Components and Impurities	25
6.5.1 Assessment of Non-Valine Composition	25
6.5.2 Assessment of L-Valine Derivatives	
6.5.3 Assessment of Biogenic Amines	26
6.6 Safety Assessment for Target Animals	
6.7 Safety Assessment for Human Consumption	28
6.8 Safety Conclusion	29
Part 7 GRAS Notice: List of Supporting Data and Information	
7.1 Confidential Information	
7.2 Supporting Data Information	
7.3 References	

.

List of Tables

Table 2.1. Chemical composition of Dried L-Valine Fermentation Product9
Table 2.2. Shelf-life of Dried L-Valine Fermentation Product 11
Table 2.3. Stability of Dried L-Valine Fermentation Product in mash feed for broilers and swine 12
Table 2.4. Specification of Dried L-Valine Fermentation Product 12
Table 2.5. Heavy metals in Dried L-Valine Fermentation Product
Table 2.6. Bioavailability results of Dried L-Valine Fermentation Product compared to positive and negative control diets as demonstrated by growth (Wensley et al., 2019)
Table 6.1. Contribution of non-L-valine components when Dried L-Valine Fermentation Product incorporated into a complete feed at 0.5%
Table 6.2. L-Valine derivatives in final product
Table 6.3. Biogenic amines in Dried L-Valine Fermentation Product

List of Figures

Figure 2.1. The branched chain amino acids catabolic pathway (Brosnan et al., 2006)......14

List of Appendices

Appendix 1	Analytical Report; Qualitative and quantitative composition of VAL Pro and Method
	validation (CONFIDENTIAL)
Appendix 2	Pre-Fermentation Information (CONFIDENTIAL)
Appendix 3	Manufacturing Process (CONFIDENTIAL)
Appendix 4	Stability (Shelf-life)
Appendix 5	Stability of Dried L-Valine Fermentation Product in Mash Feed
Appendix 6	Certificate of Analysis; Heavy metals
Appendix 7	Acute Oral Dose Toxicity Study of L-Valine (VAL Pro) in SD Rats (CONFIDENTIAL)
Appendix 8	Bacterial Reverse Mutation Test of L-Valine (VAL Pro) (CONFIDENTIAL)
Appendix 9	Certificate of Analysis; L-Valine derivatives
Appendix 10	Biogenic Amine Assessment (CONFIDENTIAL)
Appendix 11	Literature Review Corynebacterium glutamicum

PART 1 GRAS Notice

CJ CheilJedang Corporation (hereinafter referred to as 'CJ') is submitting a GRAS notice for the substance Dried L-Valine Fermentation Product as a source of L-valine in livestock and poultry diets.

1.1 Name and Address of Organization

CJ CheilJedang Corporation

Yang Hee Kim, PhD 42beongil 55, Gwanggyo-ro, Yeongtong-gu Suwon-si, Gyeonggi-do 16495, KOREA Tel : +82-31-8099-1515 E-mail: yanghee.kim@cj.net

CJ BIO America, Inc.

Keith Haydon, PhD CJ BIO America, Inc. 2001 Butterfield Road, Suite 720 Downers Grove, IL 60515 Tel : (630) 241-0112 E-mail: keith.haydon@cj.net

1.2 Name of the Notified Substance

The common or usual name of the subject substance of this notification is 'Dried L-Valine Fermentation Product' which is a source of the essential nutrient L-valine. The level of L-valine in this substance is a minimum of 72%. Dried L-Valine Fermentation Product also contains approximately 10% amino acid from biomass (dried *Corynebacterium glutamicum* cell). The trade name of the product is 'VAL Pro'.

1.3 Intended Conditions of Use

Dried L-Valine Fermentation Product is to be used as an ingredient in livestock and poultry feeds according to current good manufacturing and feeding practice as defined in 21CFR§582.1(b) ('Substances that are generally recognized as safe'). L-Valine is an essential amino acid that is typically considered to be the fifth limiting amino acid after L-tryptophan for pigs and as the fourth or fifth limiting amino acid after L-tryptophan for pigs and as the diet at levels

GRAS Notice Dried L-Valine Fermentation Product

commensurate with the nutritional requirement. Therefore, the required level will be decided on a caseby-case basis by animal nutritionists, based on good feeding practice for the target species.

1.4 Statutory Basis for GRAS Determination

This GRAS conclusion is based on the scientific procedures as provided in 21CFR§570.30(a) and (b).

1.5 Federal Food, Drug, and Cosmetic Act Premarket Approval Exemption

The submitter has determined that the use of Dried L-Valine Fermentation Product as produced by fermentation with *Corynebacterium glutamicum*, for use as a nutrient (L-valine) in livestock and poultry feed is Generally Recognized as Safe (GRAS) based on scientific procedure and is thus exempt from the premarket approval requirement of the Federal Food, Drug and Cosmetic Act (21 U.S.C § 301 et seq.).

1.6 Availability of Information for FDA Review

CJ agrees to make the data and information pertaining to this submission available to FDA.

- CJ agrees to both of the following procedures for making the data and information available to FDA:
 - (A) Upon FDA's request, CJ will allow FDA to review and copy the data and information during customary business hours at the address specified for where these data and information will be available to FDA; and
 - (B) Upon FDA's request, CJ will provide FDA with a complete copy of the data and information either in an electronic format that is accessible for FDA evaluation or on paper.

1.7 Freedom of Information Act 5 U.S.C 552 Disclosure Exemption

CJ has placed proprietary and confidential information in three appendices: Appendix 1, 'Analytical Report; Qualitative and quantitative composition of Dried L-Valine Fermentation Product and Method validation (CONFIDENTIAL)'; Appendix 2, 'Pre-Fermentation Information (CONFIDENTIAL)'; Appendix 3, 'Manufacturing Process (CONFIDENTIAL)'; Appendix 7, 'Acute Oral Dose Toxicity Study of L-Valine (VAL Pro) in SD Rats (CONFIDENTIAL)'; Appendix 8, Bacterial Reverse Mutation

GRAS Notice Dried L-Valine Fermentation Product

Test of L-Valine (VAL Pro) (CONFIDENTIAL); and Appendix 10, Biogenic Amine Assessment (CONFIDENTIAL).

1.8 Certification of Complete, Representative Submission

To the best of our knowledge and belief, this GRAS notice is a complete, representative and balanced submission that includes unfavorable information, as well as favorable information, known to CJ and pertinent to the evaluation of the safety and GRAS status of the use of Dried L-Valine Fermentation Product produced by fermentation with genetically engineered *Corynebacterium glutamicum* as a source of L-valine for livestock and poultry feed.

Keith D. Haydon, Ph.D.

Director of Technical Services and Marketing

PART 2 GRAS Notice: Identity, Method of Manufacture, Specifications, and Physical or Technical Effect

2.1 Scientific Data and Information that Identifies the Notified Substance

2.1.1 Name and Other Identities

Chemical name according to IUPAC nomenclature	2-amino-3-methylbutanoic acid
Synonyms	L-valine; (S)-a-Aminoisovaleric acid; L-2-Amino-3- methylbutanoic acid
CAS No.	72-18-4
EC-No.	208-220-0
Appearance	Pale or dark brown granule
Molecular mass	117.15 g/mol
Molecular formula	$C_5H_{11}NO_2$
Structural formula	HO CH_3 HO CH_3 NH ₂

This GRAS notice covers Dried L-Valine Fermentation Product produced by fermentation with *Corynebacterium glutamicum*, with a minimum purity of 72% of L-valine. L-Valine is the active substance in the Dried L-Valine Fermentation Product. Due to its dedicated chemical properties, L-valine can only be found as free amino acid, which must not be transformed into a salt to be stable during production, storage and application.

2.1.2 Composition

The majority of Dried L-Valine Fermentation Product is L-valine (≥ 72 %). The product also contains other free amino acids (< 1 %), bound amino acids from the biomass (< 10 %), sugars (< 0.5 %), organic acids (< 0.05 %), inorganic compounds (< 10 %) and moisture (< 1 %). As shown in Table 2.1, the analysis of the five batches of Dried L-Valine Fermentation Product demonstrates that the finished product is reproducibly manufactured. The compositional analysis of Dried L-Valine Fermentation Product in Table 2.1 is without carrier. Refer to Appendix 1 for additional information regarding the analytical assessment of the product composition. .

.

Test	Unit	Analysis method	Batch 01	Batch 02	Batch 03	Batch 04	Batch 05	Average
L-Valine	%	HPLC					(b) (4)	72.38
Hydrolyzed amino acids (in insoluble Biomass part) (Total)								9.12
Aspartic acid								1.04
Threonine								0.50
Serine								0.39
Glutamic acid		AOAC 994.12						1.45
Glycine								0.48
Alanine								0.98
Valine								0.60
Methionine	%	AOAC 985.28						0.25
Isoleucine								0.39
Leucine								0.83
Tyrosine								0.24
Phenylalanine		AOAC 004 12						0.46
Lysine		AOAC 994.12						0.38
Histidine								0.22
Arginine								0.52
Proline								0.31
Tryptophan		AOAC 988.15						0.09
Free amino acids (Total, other than valine)		AOAC 999.13						0.81
Phosphoserine								0.02
Threonine								0.02
Serine								0.01
Glutamic acid								0.05
Glycine	%							0.07
Alanine								0.12
Isoleucine								0.10
Leucine								0.08
Tyrosine								0.06
Phenylalanine								0.20
Lysine								0.01
Histidine								0.07
Moisture	%	AOAC 934.01						0.82

Table 2.1. Chemical composition of Dried L-Valine Fermentation Product

Test	Unit	Analysis method	Batch 01	Batch 02	Batch 03	Batch 04	Batch 05	Average
Ammonium, nitrates and betaine							(b) (4	2.68
Ammonium (as NH3)		A STM D 4227 07						2.48
Nitrates (as NO ₃)	%	ASTIVI D 4527-97						0.01
Betaine		Korean Feed Standard: Codex, 18 of chapter 21						0.19
Sugars (Total)		AOAC 995.13						0.39
Trehalose	%							0.38
Glucose								0.01
Organic acids (Succinic acid)	%	Korean Feed Standard: Codex, 1 of chapter 14						0.02
Inorganic anions/cations (Total)		ASTM D4327-03						7.82
Sodium								0.05
Potassium								0.46
Calcium	%							0.02
Magnesium								0.07
Fluoride								0.08
Chloride								0.08
Phosphate								0.30
Sulfate								6.76
Ash	%	AOAC 942.05						1.50

* Batch 01: GVAL200910, Batch 02: GVAL200911, Batch 03: GVAL200912, Batch 04: GVAL200916, Batch 05: GVAL200917 * Note that this table does not include complex carbohydrate or fats

2.1.3 Fermentation Organism

The fermentation microorganism is a genetically modified strain of *Corynebacterium glutamicum* KCCM 80240 (*C. glutamicum* KCCM 80240). The genetic modification method and characterization of the production strain can be found in Appendix 2. The safety of the production microorganism can be found in Section 6 of this dossier, Appendix 2 and Appendix 11.

2.2 Manufacturing Process

Dried L-Valine Fermentation Product is produced

(b) (4)

(b) (4)

Detailed information of manufacturing process is provided in Appendix 3.

Raw materials used for producing Dried L-Valine Fermentation Product are feed grade specifications which are suitable for use in the manufacture of livestock and poultry feeds (Appendix 3). Dried L-Valine Fermentation Product is manufactured in accordance with good manufacturing practices as set forth in 21CFR§507 and meets the requirements of the US Food Safety Modernization Act (FSMA). As part of the facility's FSMA compliance, a Hazard Analysis Risk-Based Preventive Control plan has been implemented and conducted to evaluate the facility, raw materials, processes and product for potential physical, chemical and biological hazards. In order to mitigate potential risks, a hazard analysis was conducted that includes a risk assessment of the raw materials and processing steps with the implementation of appropriate preventive controls to ensure the safety of the product. These control measures are in place to effectively eliminate or reduce hazards to acceptable levels. The facility also uses prerequisite programs such as an approved supplier program to ensure the safety of the raw materials and that the raw materials are appropriate for their intended use and for the manufacture of a feed ingredient. Material suppliers are initially and periodically qualified and verification activities are performed commensurate to the risk of the material. The applicant also declares that no antimicrobial compounds (including antibiotics) were used in the production process.

2.2.1 Ingredient Stability (Shelf-life)

The stability of Dried L-Valine Fermentation Product was observed by measuring the content of L-valine and moisture under the general storage conditions (25°C, 60% RH). The content of L-valine and moisture were analyzed in real-time for 6 months. Long-term stability study on all sample tested is still on going.

As shown in Table 2.2, none of the tested samples showed a significant decrease in the level of the L-valine at the tested time points. The specified content of L-valine (minimum 72%) was maintained in all samples over the tested periods. Also, the content of moisture was maintained within the specification (maximum 5%). The full stability report is provided in Appendix 4.

Potah	Baramatar	Storage time (month)					
Daten	rarameter	0	1	3	4	6	
NGVAL101221	L-Valine (%)					(b) (4)	
NGVAL191221	Moisture (%)						
NOV41 101000	L-Valine (%)	-					
NGVAL191222	Moisture (%)						
NGVAL191223	L-Valine (%)						
	Moisture (%)	•					

Table 2.2. Shelf-life of Dried L-Valine Fermentation Product

L-valine and moisture content were stable over the 6 months of testing and it demonstrated the product stability throughout the testing period at ambient temperatures.

2.2.2 Stability Upon Addition to Animal Feed

A 3-month stability test in broiler and swine mash feed was conducted to demonstrate the stability of Dried L-Valine Fermentation Product when mixed in a complete feed. The content of L-valine was analyzed in real-time for 3 months.

As shown in Table 2.3, none of the tested samples showed a significant decrease in the level of the L-valine at the tested time points. The specified content of L-valine (minimum 72%) was maintained in all samples over the tested periods. The full study report can be found in Appendix 5.

Table 2.3. 8	Stability of	f Dried L-V	aline Ferme	ntation Prod	duct in mash	feed for	broilers and	swine
1	sembling of			ALCHERONA & LO		1000 101	or other b wind	0

			Storage time (month)				
Batch	Parameter	0	1	2	3		
			Nominal v	alue 0.28%			
Mash feed with VAL pro	L-Valine (%)				(b) (4)		
GVAL200910	L-vanne (70)						
Mash feed with VAL pro	I Valing (%)						
GVAL200911	L-Valine (70)						
Mash feed with VAL pro	L Valina (94)						
GVAL200912	L-Valme (96)						

This study demonstrated that Dried L-Valine Fermentation Product is a stable source of L-valine when added to complete mixed feed over a 3 month period.

2.3 Specifications

The specification of Dried L-Valine Fermentation Product is established based on the assay of 5-batch product. The analytical data supporting the specifications is reported in Table 2.1 and Appendix 1. The product specifications are provided in Table 2.4.

Parameter	Specification	Analysis method
L-Valine (%)	≥ 72	HPLC (Appendix 1-Attachment 1)
Moisture (%) ≤ 5		AOAC 934.01 (105°C, 3 hr)
Ash (%)	≤3.5	AOAC 942.05

Table 2.4. Specification of Dried L-Valine Fermentation Product

The hazardous substances, heavy metals, in Dried L-Valine Fermentation Product was analyzed. Certificate of analysis is provided in Appendix 6.

As shown in Table 2.5, detected level of cadmium and mercury in the Dried L-Valine Fermentation Product is below the detection. And the low concentration of other heavy metals, arsenic and lead, were detected. Hence there is no concern about the safety due to heavy metals in the animal and human, based on the NRC established tolerances (NRC, 2005).

Borromator		Batch No		Analysis mothed
rarameter	GVAL200910	GVAL200911	GVAL200912	Analysis method
Lead (mg/kg)			(ъ) (4	
Arsenic (mg/kg)				A O A C 2015 01
Cadmium (mg/kg)				AUAC 2015.01
Mercury (µg/kg)				

Table 2.5. Heavy metals in Dried L-Valine Fermentation Product

2.4 Intended Use (Utility) of Dried L-Valine Fermentation Product

Dried L-Valine Fermentation Product is to be used as L-valine supplemental nutrient in livestock and poultry feeds in accordance with good manufacturing or feeding practice as defined in 21CFR§582.1(b) Substances that are generally recognized as safe. L-Valine is an essential amino acid in all animal species (EFSA, 2014). The level of supplementation varies between species and depends on the nutritional content of the diet (specifically the amino acids content). Therefore, the use of supplementation will be determined on a case-by-case basis by animal nutritionists, based on good feeding practice.

L-Valine is usually the fifth limiting amino acid after L-tryptophan for pigs and the fourth one after Lthreonine for poultry. Like L-lysine, L-threonine and L-tryptophan, L-valine is an indispensable amino acid for body protein deposition, growth, and maintaining animal health. Thus a dietary deficiency in Lvaline affects the utilization of previous dietary limiting amino acids and consequently animal growth and health status.

Page 14

Figure 2.1. The branched chain amino acids catabolic pathway (Brosnan et al., 2006)

L-Valine is belonging to the branched-chain amino acid (BCAA) group, together with L-isoleucine and L-leucine. Due to their common metabolic pathway, some nutritional interactions/antagonisms exist between them. That is why it is very important to meet their individual dietary requirements to ensure that they are neither under- nor over supplied in animal feeds.

Dried L-Valine Fermentation Product can be added directly to the feeding stuffs/complementary feeding stuffs or via premixes. No inclusion levels are proposed as the requirements in quantitative terms depend on the species, the physiological state of the animal, the performance level and the environmental conditions, as well as the amino acid composition of the non-supplemented diet. The formulator of the feed will determine the required level of amino acid supplementation.

Dried L-Valine Fermentation Product is the subject of this application. The active substance is L-valine. Any component of Dried L-Valine Fermentation Product does not differ significantly from the constituents of the ordinary diet of target livestock and poultry species.

The biomass portion of Dried L-Valine Fermentation Product is dried, inactivated *C. glutamicum*, which is the same biomass used in the Dried L-Lysine Fermentation Product (AAFCO, 2018). According to the AAFCO Official Publication (AAFCO, 2018), Dried L-Lysine Fermentation product (AAFCO, 2018)

may be effectively used as an alternative to L-lysine monohydrochloride (L-lysine without biomass product) as a supplemental L-lysine source in swine and poultry diets. The biomass had been demonstrated to not interfere with the L-lysine availability. This has been confirmed comparing the bioavailability of L-lysine and Lysine Sulfate (Lysine Fermentation Product) in young swine (Htoo et al., 2016).

Recently, series of experiment with a spray-dried L-valine fermentation product with biomass from *C. glutamicum* are reported (Oliveira et al., 2019). The contents of L-valine in this study were 64.4%. The authors reported that the relative bioavailability by growth assay (ADG, ADFI and FCR) and blood urea nitrogen of the Dried L-Valine Fermentation Product with biomass from *C. glutamicum* was 100% as compared to commercial L-valine (98%) in weanling pigs. Therefore, there is no expectation of decreased bioavailability of L-valine by the biomass in the Dried L-Valine Fermentation Product. Additionally, a recent publication examined the bioavailability of three amino acids: L-threonine (>75%), L-valine (>70%) and L-tryptophan (>60%) fed to either broiler chicks or weanling pigs with their respective dried fermentative biomasses produced by CJ (Wensley et al., 2019). It was concluded that the respective amino acids, L-threonine, L-valine, and L-tryptophan, when formulated on an equal amino acid basis were bioequivalent to commercially available forms of the amino acids by comparison with growth parameters (ADG and FCR). Dried L-Valine Fermentation Product, the substance of this dossier, was one of the amino acids used in this study. This data clearly demonstrates that there is no expectation that the biomass will negatively impact the bioavailability of valine from the Dried L-Valine Fermentation Product.

Part of the Wensley et al. (2019) publication included a 28-day broiler utility trial conducted by Texas A&M University to specifically compare CJ's Dried L-Valine Fermentation Product to commercially available L-valine. The trial utilized 2,100 Cobb 500 male chicks averaging 39.4 grams. Chicks were blocked on weight and assigned to one of 60 pens (33 chicks/pen). Pens were randomly assigned to one of four dietary treatments. Dietary treatments were: a Positive Control (synthetic AA); a Negative Control (same as Positive Control without synthetic L-valine); a Negative Control with Dried L-Valine Fermentation Product added at 100% of Positive Control L-valine level; and a Negative Control with Dried L-Valine Fermentation Product added at 150% of Positive Control L-valine level. Pen weights and feed disappearance were recorded at day 14 (Starter Phase) and day 28 (Grower Phase). All feed was removed at day 14 and replaced with Grower Phase diets.

Criteria	Positive control (PC)	Negative control (NC)	NC with Dried L- Valine Fermentation Product 100%	NC with Dried L- Valine Fermentation Product 150%	SEM	<i>p</i> -value
Body weight						
Day 0 (g)	39.4	39.4	39.5	39.3	0.03	0.764
Day 28 (kg)	1.665 ^a	1.551 ^b	1.684ª	1.662ª	0.0088	< 0.001
Feed intake, g/bin	rd/day					

Table 2.6. Bioavailability results of Dried L-Valine Fermentation Product compared to positive and negative control diets as demonstrated by growth (Wensley et al., 2019)

Criteria	Positive control (PC)	Negative control (NC)	NC with Dried L- Valine Fermentation Product 100%	NC with Dried L- Valine Fermentation Product 150%	SEM	<i>p</i> -value
Day 0 – 28	81.4 ⁿ	78.0 ^b	82.4ª	81.1ª	0.39	<0.001
Average daily gain	n					
Day 0-28	58.1ª	54.0 ^b	58.7°	58.0ª	0.34	< 0.001
Gain to feed ratio						
Day 0-28	0.729ª	0.711 ^b	<u>0.730</u> ª	0.728ª	0.0031	< 0.001

^{a-b} Values with different superscripts differ, p < 0.05.

Broiler performance was negatively impacted with the reduction of L-valine level in the diet as body weight and feed intake were reduced and feed conversion ratio was increased in the NC fed broilers as compared to the PC fed broilers. Increasing the digestible L-valine level with Dried L-Valine Fermentation Product in the NC diet to equal levels of the PC diet, increased body weight and feed intake and reduced feed conversion ratio compared to the NC diet to levels similar to the PC fed broilers. Feed conversion ratio during the starter phase in the broilers fed the Dried L-Valine Fermentation Product at the equivalent level of the PC diet actually had an observed improved lower feed conversion ratio compared to the PC which may be associated with the additional nutrients contributed with the biomass. Increasing the amount of Dried L-Valine Fermentation Product to 150% the level of L-valine in the PC diet did not have any negative impacts on broiler performance. This study demonstrates the L-valine bioavailability from Dried L-Valine Fermentation Product in livestock and poultry feeds.

This broiler study was conducted to demonstrate that the limited biomass in the GRAS substance would not impact the L-valine bioavailability. The model chosen (growing poultry) has been demonstrated to be an effective model to discern the limitation of nutrient availability.

Kong and Adeola (2014) stated that bioavailability studies (which cover digestion, absorption, and utilization) are considered the absolute standard for estimating bioavailability of amino acid compared to other methods. As mentioned above, CJ completed and published a 28-day study using a broilers model (Wensley et Al., 2019). The study demonstrates that there was no impact of the biomass (28%) on L-valine bioavailability of the GRAS substance. This model suggests that the C. glutamicum biomass did not impact the bioavailability of L-valine in the Dried L-Valine Fermentation Product as it provided similar (P>.05) biological response (growth and feed utilization) as the 98.5% L-valine in the control Swine bioavailability of L-valine of a Dried L-Valine Fermentation Product containing diet. approximately 35% C. glutamicum biomass was confirmed by in a recent report of Oliveira et al. (2019). Also, Parsons (1996) review of digestible amino acids in poultry and swine reported positive correlation between cecetomized roosters and ileal-cannulated pigs. However, as Kong and Adeola (2014) noted digestibility is only one factor when assessing bioavailability. Biological responses provided are the best indicator of any biomass interference with L-valine bioavailability in the GRAS substance. As pointed out, other C. glutamicum amino acids sources (specifically L-lysine) has been assessed for bioavailability (AAFCO definition 36.15). There is no concern for this L-lysine source as a suitable additive for use in livestock, poultry and aquaculture. When feeding ruminants amino acids, the bacteria rich rumen

typically consumes the amino acids and building microbial proteins that are digested and absorbed later down the gastrointestinal tract.

The data presented positively demonstrates that Dried L-Valine Fermentation Product is a bioavailable source of L-valine for the intended use in livestock and poultry feeds.

Part 3 GRAS Notice: Target Animal and Human Exposures

3.1 Target Animal Exposure

L-Valine is an essential amino acid in all animal species (EFSA, 2014), including livestock and poultry (National Research Council, 1994 and 2012). The level of supplementation varies between species and is dependent on the nutritional content of the diet (specifically the amino acids content). Therefore, the use of supplementation will be determined on a case-by-case basis by animal nutritionists, based on good feeding practice.

Based on the overall level of supplementation in the most fortified diets, (for example broilers, egg layers and swine), the maximum level of use for L-valine would, in normal feeding practices, be approximately from 0.01 % to 0.30 % of the layers feed and from 0.01 to 0.40 % of the broilers feed (National Research Council, 1994). L-Valine supplementation levels in swine feeds range from 0.01 % to 0.15 % depending on production phase and feed ingredients used in the diet (National Research Council, 2012). Other species would be similar.

Therefore, the usage level of Dried L-Valine Fermentation Product in the formulated feed will be based on the L-valine naturally occurring content in the feed, a maximum usage would be considered 0.5 % of the feed.

The majority of the non-L-valine components(Table 6.1) of Dried L-Valine Fermentation Product are either essential nutrients or typical components of livestock and poultry feeds (amino acids, minerals and organic acids) and are consistent with normal components of feed, as such would not be a source of residues beyond that found in traditional livestock and poultry feeds.

3.2 Human Food Exposure

L-Valine is a required nutrient for human, since it used for muscle growth, tissue repair and energy source. It is an essential amino acid, hence it must be ingested, as a component of proteins usually obtained from soy, cheese, fish, meats and vegetables.

Dried L-Valine Fermentation Product is intended for use in livestock and poultry feeds only as a nutritional source of the essential amino acid, L-valine. Therefore, dietary intake of L-valine by animal is significantly below the amount which could cause physiological imbalances and adverse effects. The other components of the substance are nutrients and are available for uptake, metabolism and growth. Therefore, the composition of the milk, meat, and eggs from animals fed Dried L-Valine Fermentation Product, should be no different than from animals fed a nutritionally complete diet.

Also, in general, amino acids cannot be stored by the organism. Free amino acids, whether ingested in commercial synthetic form or released after the digestion of proteins by proteolytic enzymes, are absorbed through the intestinal mucosa to enter the blood stream. After absorption, alpha amino acids are directly used in protein synthesis or rapidly metabolized into intermediates in the citric cycle as evidenced by the presence of only trace amounts of alpha amino acids in the plasma.

Thus it can be concluded that there will be no additional exposure to L-valine above the natural basal content for the consumer raised by digested meat produced from animals fed with compounded feed supplemented by Dried L-Valine Fermentation Product.

.

Part 4 GRAS Notice: Self-Limiting Levels of Use

There is no self-limiting use information specific to this substance.

.

.

Part 5 GRAS Notice: Experience Based on Common Use in Food Before 1958

The GRAS determination is not based on common use in animal feed prior to 1958.

Part 6 GRAS Notice: Narrative

6.1 Safety of Corynebacterium glutamicum - Production Organism

Corynebacterium glutamicum (C. glutamicum) is a gram positive bacteria belonging to the family of Corynebacteriaceae. This strain is scientifically recognized as safe and provides no negative impact on human and the environment. Additionally, this strain has a long history of safe use in industrial production (Eggeling and Bott, 2005). In addition, C. glutamicum is a GRAS microorganism and has a 'Qualified Presumption as Safe' (QPS) status (EFSA, 2011). A description and summary of the QPS review of C. glutamicum is provided in Appendix 11.

C. glutamicum is an authorized source for a number of feed ingredients. It is listed as a feed ingredient in the AAFCO OP (2018). Also, it is a source organism for Condensed Extracted Glutamic Acid Fermentation Product and Dried L-lysine Fermentation Product as well as Liquid L-lysine Fermentation Product (AAFCO, 2018. 36.1; AAFCO, 2018. 36.16; AAFCO, 2018. 36.17). In 2014, the US Food and Drug Administration, Division of Animal Feeds (OS&C/FDA) had reviewed the safety assessment of this source organism for the use in animal feed. Based on that recent review, CJ extensively reviewed the recent literature since 2003 (Appendix 11). Overall, no studies were retrieved either in the electronic literature search (ELS) or follow-up selective searches that contained information indicating potential safety issues or hazards associated with C. glutamicum. This is consistent with the previous safety assessment completed by the US FDA, Division of Animal Feeds.

6.2 Safety Considerations due to the Nature of Modification to Corynebacterium glutamicum

The production microorganism used to produce Dried L-Valine Fermentation Product is a genetically modified strain of *C. glutamicum*. The details of the genetically modified strain of *C. glutamicum* are provided in Appendix 2. The assessment of the genetic engineering process demonstrates that there is no hazard imparted due to the engineering process. This data is summarized in the sections below.

Dried L-Valine Fermentation Product is intended for use as a nutrient for animal consumption. Generally, a GRAS notice addresses the potential human dietary consumption of a component of animal feed due to consumption of animal products and tissues in which the component may be present. In this case, however, there is no need to determine the estimated daily intake (EDI) of the Dried L-Valine Fermentation Product for human consumption. The Dried L-Valine Fermentation Product and any of the described biomass (see above) will be metabolized when the animal consumes and digests its feed (like all feed). Dried L-Valine Fermentation Product derived from the genetically modified *C. glutamicum* will be indistinguishable from other sources, as will be the potential non L-valine components, which are all normal components of animal feed.

GRAS Notice Dried L-Valine Fermentation Product

1) Information on any toxic, allergenic or other harmful effects on human or animal health

The genetic modifications made, resulting in strain *C. glutamicum* KCCM 80240, exclusively correspond to the overexpression or elimination of several enzymes in its metabolism. It has been used for the manufacturing of feed additives for many years and is generally accepted as safe. The open reading frames (ORFs) of production strain were analyzed to assess the absence of shifting open reading frames which does not associated with intended genetic changes and potential of spill-over effects. Any safety concerns were not observed based on this analysis (Appendix 2).

The pathogenicity-related genes were identified using the whole genome sequence of *C. glutamicum* KCCM 80240. All protein sequences were subjected to BLAST analysis against the Virulence Factor Database. The analysis results showed no pathogenicity-related genes in the production strain *C. glutamicum* KCCM 80240 (Appendix 2, Attachment 4).

2) Potential for DNA transfer or any capacity for enhanced gene transfer

To prevent any potential transfer of genetic material to other organisms, the strategy of construction for *C. glutamicum* KCCM 80240 strain was based on procedures described below.

- Any genetic material including plasmid to be autonomously replicable was not used.
- All the genetic modifications were done on the chromosome.

3) Resistance of antibiotics of the production strain

The antibiotic minimum inhibitory concentration (MIC) for the Dried L-Valine Fermentation Product production strain was observed. The broth dilution method was used to determine the susceptibility of the production strain *C. glutamicum* KCCM 80240. In regards to antibiotic resistance, *C. glutamicum* wild-type strains has not been reported to have any antibiotic resistance. This was confirmed by the minimum inhibitory concentration (MIC) test and study report is provided in Appendix 2, Attachment 1. *C. glutamicum* KCCM 80240 showed same susceptibility to antibiotics with the wild-type *C. glutamicum* KCCM 14067. These results support that antibiotic resistance genes do not exist on the chromosome of the *C. glutamicum* KCCM 80240.

4) Absence of viable cell in final product

The absence of viable cells of the production strain in the Dried L-Valine Fermentation Product was examined in accordance with the European Food Safety Authority guidance (EFSA, 2018). According to this study, no viable cells were observed in the final product and manufacturing processes after cell inactivation of the fermentation broth (Appendix 2, Attachment 2).

6.3 Safety Considerations for L-Valine

Dried L-Valine Fermentation Product is a source of nutritional L-valine that can be safely used in the production of proteins like all other sources of L-valine.

L-valine is codified as a Generally Recognized as Safe amino acid for the use in animal feed (21CFR§582.5925). L-valine is an essential amino acid, as discussed in Section 2 and is formulated in diets based on potential natural deficiencies.

The European Food Safety Authority's (EFSA) Panel on Additives and Products or Substances used in Animal Feed (FEEDAP) has reviewed the safety and efficacy of L-valine when used in animal diets (EFSA, 2014). According to this report, L-valine additives in animal feed are incorporated into the proteins of tissues and/or products of target animal species, and L-valine that exceeds the valine requirement of the animal is excreted as urea/uric acid and carbon dioxide. Consequently, no free L-valine occurs or accumulates in target animal tissues. L-valine is an essential amino acid for humans. There is no residue issue in free L-valine. Therefore, Dried L-Valine Fermentation Product presents no exposure risk to humans consuming tissues or products from the target animal species.

6.4 Safety Considers of Dried L-Valine Fermentation Product

As seen in Table 2.1 and Appendix 1, the majority of the substances in the product are typical components of livestock and poultry feeds.

To support the safety of Dried L-Valine Fermentation Product, the potential acute toxicity of Dried L-Valine Fermentation Product in rats was conducted in accordance with 'Acute Oral Toxicity-Fixed Dose Method (OECD, 2001)'. In this study, four fasted females were given a single oral dose of Dried L-Valine Fermentation Product as a solution in distilled water at a dose level of 2,000 mg/kg body weight following a sighting test at a dose level of 300 mg/kg and 2,000 mg/kg. No clinical signs and body weight gain related to toxicity were observed during the study. Therefore, acute oral median lethal dose (LD50) of Dried L-Valine Fermentation Product in the female Sprague-Dawley rat was estimated to be greater than 2,000 mg/kg body weight (Globally Harmonized Classification System Unclassified). Full study report is provided as Appendix 7.

Additionally, the potential mutagenicity of Dried L-Valine Fermentation Product was evaluated in accordance with 'Bacterial Reverse Mutation Assay (OECD, 1997)'. This study was conducted using *Salmonella tryphimurium* strains TA98, TA100, Ta1535 and TA1537 and *Escherichia coli* strain WP2 *uvr*A in the absence and presence of external metabolic activation. Dried L-Valine Fermentation Product showed no evidence of mutagenicity in this test. Full study report is provided as Appendix 8.

6.5.1 Assessment of Non-Valine Composition

The GRAS substance is 72 % L-Valine with specifications permitting up to 5 % moisture and 3.5 % ash. Section 3 of this dossier suggests the maximum level of use in the diet as 0.5 % of feed. Table 6.1 provides the compositional analysis and, by calculation, considers the contribution of this level of use to a complete diet.

Substance	Average level in Dried L-Valine Fermentation Product (%)	Contribution of the Dried L-Valine Fermentation Product incorporated in feed at 0.5% (ppm)
Ammonium (as NH ₃)	2.48	124
Nitrates (as NO ₃)	0.01	0.5
Betaine	0.19	9.5
Sodium	0.05	2.5
Potassium	0.46	23
Calcium	0.02	1
Magnesium	0.07	3.5
Fluoride	0.08	4
Chloride	0.08	4
Phosphate	0.3	15
Sulfate	6.76	338
Succinic Acid	0.02	1
Glucose	0.38	19
Trehalose	0.01	0.5
Phosphoserine	0.02	1
Threonine	0.02	1
Serine	0.01	0.5
Glutamic acid	0.05	2.5
Glycine	0.07	3.5
Alanine	0.12	6
Isoleucine	0.1	5
Leucine	0.08	4
Tyrosine	0.06	3
Phenylalanine	0.2	10
Lysine	0.01	0.5
Histidine	0.07	3.5

Table 6.1. Contribution of non-L-valine components when Dried L-Valine Fermentation Product incorporated into a complete feed at 0.5%

The levels of non-L-valine components are consistent with nutritional components of conventional feedstuffs, and the non-nutritional components are well below any potentials safety concern and consistent with other fermentation product components.

6.5.2 Assessment of L-Valine Derivatives

L-valine derivatives (i.e., L- α -aminobutyric acid, α -hydroxyvaline, α -thiazolealanine, and L-norvaline) which have been used for strain development were analyzed (Table 6.2). These derivatives were not found above the limit of detection except L- α -aminobutyric acid (Appendix 9). Since *C. glutamicum* has 2-ketobutyrate generation reaction which can be used as a precursor of L- α -aminobutyric acid in other amino acid synthetic pathway (Krömer et al., 2006), detected α -aminobutyric acid could be explained that it synthesized during the fermentation, not from the screening media.

Non-proteinogenic amino acids (NPAA) as well as D-isomer amino acids have been used as stabilizing agents in newer peptide therapies (Ding et al., 2020). Most NPAA are metabolized and can partially substitute for their base amino acid, as Chawla and Rudman (1974) demonstrated in nitrogen balance studies with growing rats.

The levels of non-proteinogenic derivatives of L-valine in the Dried L-Valine Fermentation Product are low. L- α -aminobutyric acid is a non-essential amino acid that is primarily derived from the catabolism of L-methionine, L-threonine, and L-serine and can be easily metabolized by livestock and poultry. L- α aminobutyric acid levels in Dried L-Valine Fermentation Product averaged 19.07 mg/kg. Using Dried L-Valine Fermentation Products maximum inclusion level of 0.5% in a complete feed, results in only 0.0935 mg/kg concentration of L- α -aminobutyric acid; below any level of concern.

Banamatan		t valuaia wathad		
rarameter	GVAL200910	GVAL200911	GVAL200912	Analysis method
L-α-Aminobutyric acid (mg/kg)			(b) (4)	
α-hydroxyvaline (mg/kg)				LC MS/MS
α-Thiazolealanine (mg/kg)				LC-1015/1015
L-Norvaline (mg/kg)				

Table 6.2. L-Valine derivatives in final product

6.5.3 Assessment of Biogenic Amines

Biogenic amines are biogenic substances with one or more amine groups. They are basic nitrogenous compounds formed mainly by decarboxylation of amino acids or by amination and transamination of aldehydes and ketones. CJ analyzed for six typical biogenic amines; tyramine, phenethylamine, putrescine, cadaverine, histamine and tryptamine in three batches of Dried L-Valine Fermentation Product.

The potential biogenic amines were also analyzed in the fermentation broths comparing against the wildtype strain (*C. glutamicum* ATCC 14067), parental strain (*C. glutamicum* CA08-0012) and production strain (*C. glutamicum* KCCM 80240). This data can be found in Appendix 2. Pre-fermentation. These data indicate that the genetic alterations did not impact the levels of biogenic amines.

Analysis of the Dried L-Valine Fermentation Product demonstrated a similar amount of each biogenic amine was detected in the three independent batches of Dried L-Valine Fermentation Product (Table 6.3). The analytical data is provided in Appendix 10. The levels of the tested biogenic amines ranged from 0.05-17.46 mg/kg in the final product.

Demomentari		Analysis method		
Farameter	GVAL200910 GVAL200911 GVAL200912			
Cadaverine (mg/kg)			(b) (4)	
Histamine (mg/kg)				
Phenylethylamine (mg/kg)				LC-MS/MS
Putrescine (mg/kg)				DC-1410/1410
Tryptamine (mg/kg)				
Tyramine (mg/kg)				

Table 6.3. Biogenic amines in Dried L-Valine Fermentation Product

Biogenic amines maybe present in fermented foods (whether or not fermented intentionally (spoilage)) and ingredients derived from fermentation. Studies have considered the potential concerns of biogenic amines in animal safety. Bermudez and Firman (1998) fed poultry diets supplemented with 292 ppm biogenic amines (four different biogenic amines) and found no significant response on performance, gross lesions, or histological evidence when measured after feeding for 2, 4, and 6 weeks. In a review article Feddern et al. (2019), examined US sources of animal by-product meals for a total of five biogenic amines. They reported average total of the five biogenic amines ranging from 245 ppm (meat and bone meal) - 822 ppm (poultry meal). Given the upper exposure limit outlined Section 3 of the notice (0.5% of the complete feed), the level of specific biogenic amines would range only from 0.25 ppb to 87.3 ppb. Using the highest level (worst case) of the analyzed 6 biogenic amines (from Table 6.3) the calculated addition to the complete feed is 0.244 ppm. This level is 1,200X lower than the levels which Bermudez and Firman (1998) found had no impact on poultry growth and health. Using the total of five different biogenic amines reported by Feddern et al. (2019) in US sourced poultry byproduct meals; a complete feed containing 2.5% of poultry by-product meal would have an average 20 ppm total biogenic amines in the complete feed. Hence, the amount of biogenic amines (0.244 ppm) provided by L-Valine Fermentation Product to poultry and livestock diets is numerically and biologically insignificant and would not cause a safety concern. The exposure of livestock and poultry to these insignificant levels of biogenic amines (especially in comparison to the typical dietary ingredients) and will not impact target animal safety or human food safety.

6.6 Safety Assessment for Target Animals

The notice covers the safety of the Dried L-Valine Fermentation Product from a number of perspectives. Section 6.1 covers the known safety of the host species *C. glutamicum* based on the review of literature and previous safety determinations by FDA and other authoritative bodies. The genetic modification process was exhaustively assessed to demonstrate that no unexpected changes would impact the safety of the GRAS substance (Section 6.2 and Appendix 2). L-Valine history of use and regulatory status was provided in Section 6.3 of the notice. The dossier includes both the report of the acute toxicology test and the Bacterial Reverse Mutation Assay, which further supported the safety determination (Section 6.4). Table 2.5 provides the heavy metal levels of the fermentation product which are very low, well below concern level (NRC, 2005) based on the fact that the starting materials are feed grade and have specific tight specifications. The notice includes a compositional analysis as well as the analysis on the L-valine derivatives and possible contamination through biogenic amines (Section 6.5); that demonstrates that the levels of impurities will not impact the safety of the GRAS substance. The notice provides the basis of CJ's determination that there is reasonable certainty that the Dried L-Valine Fermentation Product as a source of L-valine for livestock and poultry is not harmful and that the conclusion meets the generally recognized as safe standard.

6.7 Safety Assessment for Human Consumption

Dried L-Valine Fermentation Product is intended for use as a nutrient for animal consumption. Ordinarily, a GRAS notice will address the potential human dietary consumption of a component of animal feed due to consumption of animal products and tissues in which the component may be present. In this case, however, there is no need to determine the estimated daily intake (EDI) of the Dried L-Valine Fermentation Product for human consumption. L-valine (Dried L-Valine Fermentation Product) and any of the described non-L-valine components shown in Table 6.1 above will be metabolized when the animal consumes and digests animal feed containing Dried L-Valine Fermentation Product. Dried L-Valine Fermentation Product derived from the genetically modified *C. glutamicum* will be indistinguishable from other L-valine sources, as will be the potential non L-valine components, which are all normal components of animal feed. Non-valine components of Dried L-Valine Fermentation Product are all typical feed components, mostly nutrients and will not be a concern for residues.

This same determination was made by the FDA in their support of the AAFCO definition 36.16 Dried L-Lysine Fermentation Product 36.17 Liquid L-Lysine Fermentation product and 36.1 Condensed Extracted Glutamic Acid Fermentation Product.

In this regard, the European Food Safety Authority's (EFSA) Panel on Additives and Products or Substances used in Animal Feed (FEEDAP) has reviewed the safety and efficacy of L-valine produced by *C. glutamicum* for use in the diets of all animal species (EFSA, 2014). According to this report, L-valine additives in animal feed will be incorporated into proteins of tissues and/or products of target

animal species. Also, doses exceeding the L-valine requirement of the animal will be excreted as urea/uric acid and carbon dioxide. Consequently, no free L-valine occurs or accumulates in target animal tissues and the only form of L-valine that humans will be exposed to from its use in animal feed is in the form of protein that will be digested, absorbed, and metabolized consistent with human nutrient needs. The absence of residual L-valine in the tissues of animals consuming L-valine in its diet will, therefore, not result in a subsequent human exposure or safety issue. As indicated by the analytical values displayed in Table 2.1, Table 6.1, and Appendix 1, residual components of Dried L-Valine Fermentation Product are at levels too low to present any risk of humans consuming the tissues of food animals fed the nutrient. All residual constituents are common metabolites or minerals and will be either excreted or metabolized. Therefore, they present no exposure risk to humans consuming tissues or products from the target animal. A review of the publicly available literature does not reveal information demonstrating that any of these residual constituents appears to present a risk of accumulation or harm to humans at the levels that would be consumed from animal tissue (Meyers et al., 2006). It should also be noted that L-valine is an essential amino acid for human nutrition is approved for direct addition to human food (21CFR§172.320).

In the Bacterial Reverse Mutation Assay of Section 6.4 in this dossier, Dried L-Valine Fermentation Product was not mutagenic in this bacterial assay system (Appendix 8). The results indicate that the test article, Dried L-Valine Fermentation Product, was not mutagenic in this bacterial assay system.

Since Dried L-Valine Fermentation Product produced by fermentation with *C. glutamicum* KCCM 80240, potential impurities occurring during the fermentation were analyzed additionally. These impurities: valine derivative (Section 6.5.2) and biogenic amines (Section 6.5.3) are all well below safety concerns and are consistent with other feedstuffs offered to livestock and poultry.

As such there is no hazard specific to these potential derivatives nor any other compounds as assessed by CJ in the full description of the GRAS substance. CJ has reasonable certainty that the substance is not harmful under the conditions of its intended use for humans consuming the products from animals provided Dried L-Valine Fermentation product.

6.8 Safety Conclusion

Based on the documentation provided in this GRAS Notification and as discussed above, CJ concludes that Dried L-Valine Fermentation Product produced by fermentation with *C. glutamicum* is generally recognized as safe via scientific procedures as a nutrient for animal consumption. CJ has reasonable certainty that the substance is not harmful under the conditions of its intended use. The notifier has reviewed the available data and information and is not aware of any data and information that is, or may appear to be, inconsistent with our conclusion of GRAS status.

Part 7 GRAS Notice: List of Supporting Data and Information

7.1 Confidential Information

The only information that is considered confidential in this GRAS Notice is the information specific to the production of the genetically modified organism, the manufacturing process, and the documentation of the assays specific for the composition of the marketed product. None of the information to support the safety narrative, Section 6 of this notice, is considered to be confidential. All this information is provided in a summary basis in the body of the submission, as required by 21 CFR§570 Subpart E. Therefore, the summary of the manufacturing process, with the full disclosure of the safety assessment, are consistent with the general recognition standards.

7.2 Supporting Data Information

All submitted data and reports were tested with samples produced on a pilot scale in CJ R&D center. The production process is the same for both the pilot scale and the commercial scale, ensuring that the identity of the final product is the same regardless of the scale.

7.3 References

- AAFCO (2018). Condensed, Extracted Glutamic Acid Fermentation Product. AAFCO Official Publication, 6(36.1).
- AAFCO (2018). Dried L-Lysine Fermentation Product. AAFCO Official Publication, 6(36.16).
- AAFCO (2018). Liquid L-Lysine Fermentation Product. AAFCO Official Publication, 6(36.17).
- Bermudez, A. J. and Firman, J. D. (1998). Effects of biogenic amines in broiler chickens. Avian diseases, 199-203.Brosnan, J. T. and Brosnan, M. E. (2006). Branched-chain amino acids: enzyme and substrate regulation. The Journal of nutrition, 136(1), 207S-211S.
- Chawla, R. K. and Rudman, D. (1974). Utilization of α -keto and α -hydroxy analogues of value by the growing rat. The Journal of Clinical Investigation, 54(2), 271-277.
- Ding, Y., Ting, J. P., Liu, J., Al-Azzam, S., Pandya, P., and Afshar, S. (2020). Impact of non-proteinogenic amino acids in the discovery and development of peptide therapeutics. Amino Acids, 1-20.
- EFSA on Biological Hazards (BIOHAZ) (2011). Scientific Opinion on the maintenance of the list of QPS biological agents intentionally added to food and feed (2011 update). EFSA Journal, 9(12), 2497.
- EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP) (2014). Scientific Opinion on the safety and efficacy of L-valine (ValAMINO[®]) produced by Corynebacterium glutamicum (DSM 25202) for all animal species, based on a dossier submitted by Evonik Industries AG. EFSA Journal, 12(7), 3795.
- EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP) (2018). Guidance on the characterisation of microorganisms used as feed additives or as production organisms. EFSA Journal, 16(3), e05206.
- Eggeling, L. and Bott, M. (Eds.) (2005). Handbook of Corynebacterium glutamicum. CRC press.
- Feddern, V., Mazzuco, H., Fonseca, F. N., and Lima, G. J. M. M. (2019). A review on biogenic amines in food and feed: toxicological aspects, impact on health and control measures. Animal Production Science, 59(4), 608-618.
- Htoo, J. K., Oliveira, J. P., Albino, L. F. T., Hannas, M. I., Barbosa, N. A. A., and Rostagno, H. S. (2016). Bioavailability of L-lysine HCl and L-lysine sulfate as lysine sources for growing pigs. Journal of Animal Science, 94(suppl_3), 253-256.
- Kong, C., and Adeola, O. (2014). Evaluation of amino acid and energy utilization in feedstuff for swine and poultry diets. Asian-Australasian Journal of Animal Sciences, 27(7), 917.

- Krömer, J. O., Heinzle, E., Schröder, H., and Wittmann, C. (2006). Accumulation of homolanthionine and activation of a novel pathway for isoleucine biosynthesis in Corynebacterium glutamicum McbR deletion strains. Journal of bacteriology, 188(2), 609-618.
- Meyers, L. D., Hellwig, J. P., and Otten, J. J. (Eds.) (2006). Dietary reference intakes: the essential guide to nutrient requirements. National Academies Press.
- National Research Council (1994). Nutrient Requirements of Poultry Ninth Revised Edition National Academy Press. Washington DC.
- National Research Council. (2005). Mineral tolerance of animals Second Revised Edition National Academy Press. Washington DC.
- National Research Council (2012). Nutrient requirements of swine. National Academies Press.
- OECD (1997). OECD Guideline for Testing of Chemicals, TG 471.
- OECD (2001). OECD Guideline for Testing of Chemicals, TG 420.
- Oliveira, M. S., Htoo, J. K., González-Vega, J. C., and Stein, H. H. (2019). Bioavailability of valine in spray-dried L-valine biomass is not different from that in crystalline L-valine when fed to weanling pigs. Journal of animal science, 97(10), 4227-4234.
- Parsons, C. M. (1996). Digestible amino acids for poultry and swine. Animal Feed Science and Technology, 59(1-3), 147-153.
- Wensley, M. R., Woodworth, J. C., DeRouchey, J. M., Dritz, S. S., Tokach, M. D., Goodband, R. D., Walters, H. G., Leopold, B. A., Coufal, C. D., Haydon, K. D., and Lee, J. T. (2020). Effects of amino acid biomass or feed-grade amino acids on growth performance of growing swine and poultry. Translational Animal Science, 4(1), 49-58.

Center for Regulatory Services, Inc.

5200 Wolf Run Shoals Road * Woodbridge, VA 22912-5755 Telephone 703 590 7337 * Fax 703 580 8637 smedley@cfr-services.com

April 30, 2021

Dr. David Edwards Director Division of Animal Feeds (HFV- 220), Center for Veterinary Medicine, Food and Drug Administration, 7519 Standish Pl., Rockville, MD 20855

Subject: Amendment of Filing of Animal GRAS Notification L-Valine Fermentation Product

Notifier: CheilJedang Corporation (CJ) 330, Dongho-Ro, Jung-Gu, SEOUL,04560, KOREA

Dear Dr. Edwards:

In response to the email as provided by your staff member, Ms. Wasima Wahid, as dated April 20, 2021 which delineated a number of concerns identified in the acceptance filing procedure, we offer the following. We are grateful that we had the opportunity to respond to the raised issues.

We have numbered identified issues and responses.

Q1. The notifier does not clearly explain ^① why there are 16 more predicted open reading frames (ORF) in C. glutamicum KCCM 80240 when compared to the parental strain and does ² not address whether these are, or are not, related to the genetic engineering process. We note that firms often perform bioinformatics or "in silico" analyses to determine whether the changes in the nucleotide sequence could have created ORFs that could lead to production of polypeptides. ³The safety of any putative polypeptide sequence that is 30 amino acids long or greater should be assessed. The most common way this is done is ^(a)by conducting a FASTA amino acid sequence alignment against available databases that contain sequences for toxins and other biologically active proteins. ⁽⁵⁾Potential relationships should be assessed by comparison of the amino acid sequences, the percentage of identity, and alignment length. If there is an alignment between a putative polypeptide and a protein of concern present in a database, then additional information and data may be required. This type of assessment should be done for each ORF locations identified during the ORF analysis. A GRAS notice should describe the number of potential ORFs associated with the changes in the microorganism (often a significant number of base pairs upstream and downstream of each insertion/deletion are included in this analysis), the number of putative polypeptides, the alignment of these polypeptides with proteins of concern in the databases, data supporting the acceptability of the databases for this purpose, and the notifier's conclusions about the results of the FASTA comparisons, and any additional information that is required ⁽⁶⁾to demonstrate that any identified putative polypeptides do not raise a safety concerns.

A1.In addition to the raised issues, we have noted the following error on the whole genome sequence. Due to ORF number and some minor changes, submitted WGS analysis report is revised and provided as "Revised Appendix 2_Attachment 4_Whole genome sequence analysis". The number of ORFs was changed by re-identification (Table 1). <u>The difference in number of ORFs between parents and</u> <u>production strain were changed from 16 to 10</u>. The reason why CJ corrected the number of ORFs is explained in Q2.

Table 1. Genome features of three C	ς.	glutamicum	i strains
-------------------------------------	----	------------	-----------

	C. glutamicum strains					
Feature	Wild-type strain	Parental strain	Production strain			
	ATCC 14067	CA08-0012	KCCM 80240			
Genome size (bp)			(b) (4			
G+C content (%)						
ORFs						
tRNA						
rRNA						
			(b)			

Table 2. 10 more predicted ORFs of *C. glutamicum* KCCM 80240 (Revised Appendix 2_Attachment4_Whole genome sequence analysis, Page 58-59)

	Gene ID	Function	Related to Genetic Engineering	
1			(1) (4)
2				
3				
4				
5				
6				
7				
8				
9				
10				

In addition to 10 more predicted ORFs, the potential of existence of antimicrobial resistance and pathogenic genes in all ORFs of *C. glutamicum* KCCM 80240 were identified using BLAST analysis. ⁽³⁾ The amino acid sequences of all predicted ORFs, not limited to 30 amino acids long or greater, in ⁽⁴⁾*C. glutamicum* KCCM 80240 were searched against the two antimicrobial resistance genes databases, Resfinder (https://cge.cbs.dtu.dk/services/ResFinder/) and ARG-ANNOT databases (http://backup.mediterranee-infection.com/article.php?laref=282&titre=arg-annot), and Virulence Factor database (http://www.mgc.ac.cn/VFs/main.htm).

The ResFinder is based on a database of more than 2,000 resistance genes covering 12 types of antimicrobial resistance agents (aminoglycoside, betalactamase, fluoroquinolone, fosfomycin, fusidic acid, glycopeptide, macrolide lincosamide streptograminB, phenicol, rifampicin, sulphoamide, tetracycline, and trimethophorim). All amino acid sequences of *C. glutamicum* KCCM 80240 were

examined by BLASTP against to the genes from ResFinder database and the threshold for reporting a match was set to be at least 70% identity and 60% length of query sequence. It shows that matched gene with antimicrobial resistance gene was NOT detected. The absence of antimicrobial resistance gene in *C. glutamicum* KCCM 80240 is confirmed (Revised Appendix 2_Attachment 4_Whole genome sequence analysis, Page 23-25).

Additional analysis of antimicrobial resistance genes was conducted using another database, ARG-ANNOT (version May 2018) which contained 1,808 entries. As a result, the top 5 hits had low identity(\leq 50%), and there is NO hit with \geq 70% identity and \geq 60% length of query sequence. From the searching results, no antibiotic-resistance genes were detected in genome *C. glutamicum* KCCM 80240 (Revised Appendix 2_Attachment 4_Whole genome sequence analysis, Page 25).

The pathogen associated genes in the genome of *C. glutamicum* KCCM 80240 was analysed using VFDB (version July 2020). VFDB contains cumulative information of virulence factors for important bacteria pathogens including bacterial toxins, cell surface proteins that mediate bacterial attachment, cell surface carbohydrates and proteins that protect a bacterium, and hydrolytic enzymes that may contribute to the pathogenicity of the bacterium. To date, 32 genera of pathogens with medical importance are formally included in VFDB, and 42 additional genera are also partially included in the database.

(b) (4)

		Threshold S	etting		
	Reference Database	Identity (%)	Length of query sequence (%)	Results	
Antimicrobial resistance genes	Resfinder (https://cge.cbs.dtu.dk/services/ResFinder/)	≥ 70	≥60	No hits	
	ARG-ANNOT (http://backup.mediterranee- infection.com/article.php?laref=282&titre=a rg-annot)	≥ 70	≥60	No hits	
Pathogenic genes	VFDB (http://www.mgc.ac.cn/VFs/main.htm) * bacterial toxins, cell surface proteins, cell surface carbohydrates and proteins, hydrolytic enzymes (that may contribute to the pathogenicity of the bacterium)	≥ 80	≥60	1 hits (Isocitrate lyase ; a common and an essential anaplerotic enzyme for various organism)	

Table 3. Analysis of potential antimicrobial resistance and pathogen associated genes

⁽⁶⁾As results of analysis, there is no occurrence to express antimicrobial resistance or pathogen associated proteins and therefore the safety concern by genetic modification will not be raised. The details of analysis result were reported in Table 10 to 12 of WGS analysis report (Revised Appendix 2_Attachment 4_Whole genome sequence analysis, Page 23-26).

Q2. The notifier states that the Glimmer program predicted two ORFs (upstream portion and downstream portion) when the genetic modification resulted in the deletion of the central portion of a gene. It does not appear that Glimmer considers that this type of deletion may produce a truncated protein or a chimeric protein. The notifier should address this issue. In addition, a GRAS notice needs to address whether any potential polypeptides expressed because of these ORF would, or would not, raise safety concerns.

A2 First, the description of ORF analysis and annotation method to predict the ORFs in *C. glutamicum* KCCM 80240 was insufficient, so detailed analytical method was added to WGS report (Revised Appendix 2_Attachment 4_Whole genome sequence analysis, Page 6). To improve the accuracy and efficiency of genome annotation, the ORF analysis and annotation of the genome were performed by running the automatic annotation pipeline Prokka which uses Glimmer algorithm for the ORF prediction and then, the automatic annotation results was corrected by manual curation.

(b) (4)

(b) (4)

(b) (4)

As pointed out by FDA expert, (in the report first provided) some regions were predicted to two ORFs (upstream portion and downstream portion) when the genetic modification resulted in the deletion of the central portion of a gene. Some part of the genes were described as ORF which were marked with P2 although it cannot be expressed as a protein because this part was matched with a part of the gene by manual curation using TBLASTN.

In order to prevent confusion, ORFs were re-identified by exempting the sequences which cannot be translated to the proteins or peptides in the revised report. The ORFs in upstream portion would be expressed in a form of truncated, but not as an unexpected protein caused by frame shift. No safety concern would be expected from the truncated protein since this would be translated less than 10% (42 amino acids) peptides compared to the intact protein (436 amino acids), resulting in loss of function as intended (Revised Appendix 2_Attachment 4_Whole genome sequence analysis, Page 15 and 21-22).

Q3. In addition, the GRAS notice provides a pairwise comparison of the nucleotide sequences that were obtained from the whole genome sequencing of *C. glutamicum* ATCC 14067, *C. glutamicum* CA08-0012, and *C. glutamicum* KCCM 80240 (Revised Appendix 2_Attachment 4. Whole genome sequence analysis). This document highlights differences in the genome size and number of ORF. The notifier also states that during the development of mutagenized *C. glutamicum* CA08-0012 that there was rearrangement within the chromosome due to the insertion or deletion of transposons or integrases. The notifier does not clearly describe whether insertion/deletion of these mobile elements would lead to the production of chimeric proteins that might raise safety concerns and this should be specifically addressed.

A3. We conducted TBLASTN analysis of ORFs based on the amino acid sequence and found no chimeric protein production. All ORFs in the genome sequence were analyzed in order of automatic annotation pipeline and manual curation. As described in Table S2 and S4 (Revised Appendix 2_Attachment 4_Whole genome sequence analysis, Page 46-50 and 58-59), **unknown ORFs were NOT detected** compare to the both genome sequences of wild type (*C. glutamicum* ATCC 14067) and parental strain (*C. glutamicum* CA08-0012). Therefore, it can be concluded that there are no safety concerns by expression of unexpected chimeric protein.

Should you have any questions on the provided material, please contact the undersigned.

Sincerely,

Cc: Min Kang, CJ America

ATTACHMENTS (each attachment should be referenced in this letter)

- Revised Appendix 2_ Pre-Fermentation Information
- Revised Appendix 2_Attachment 4_Whole genome sequence analysis
- Seemann, T. (2016). Bioinformatics (Additional reference of Revised Appendix 2)

1. Identity of the Notified Substance

The notifier needs to provide data to demonstrate whether Dried L-Valine Fermentation Product (\geq 72% L-valine) contains only the L-isomer form of valine.

The chirality of value in Dried L-Value Fermentation Product is confirmed by experimental analysis using chiral-HPLC. Two representative batches of Dried L-Value Fermentation Product produced at 2019 and 2020 were tested. As shown in Figure 1, Dried L-Value Fermentation Product contains only the L-form of value. The absence of D-value is confirmed. Details of analysis is provided as 'Appendix A_Analytical Report; Chiral purity test of Dried L-Value Fermentation Product'

2. Composition of the notified substance

2.1 How the tested pilot batches can represent the expected composition of the commercial products

The process parameters for pilot scale production are the same as commercial scale (Figure 2). Also, the raw material used for fermentation and its composition is exactly the same as our planned commercial production. Therefore, the provided analytical results can representatively support the specifications (anticipated L-valine content, microbial contaminants, heavy metal contents, levels of biogenic amines and L-valine derivatives) and stability of the commercial products of the notified substance.

CJ CheilJedang has extensive experience to using different production strains for the purpose of amino acid production and all were tested in a pilot scale prior to commercialization. No differences in production yields were observed between pilot and commercial scale production, especially in fermentation process.

Figure 2. Manufacturing process

2.2 Confirmation of production strain

(b) (4)

(b) (4)

2.3 Compositional analysis – Sample preparation, CoAs

Except for moisture analysis, test samples were analyzed after

(b) (4) Analytical

(b) (4)

(b) (4)

report is revised for clarification and provided as 'Revised Appendix 1_Analytical Report; Qualitative and quantitative composition of Dried L-Valine Fermentation Product and Method validation'.

Certificate of analyses regarding the compositional analysis results are attached to the end of 'Revised Appendix 1_Analytical Report; Qualitative and quantitative composition of Dried L-Valine Fermentation Product and Method validation'.

2.4 Usage of carrier

The provided analysis contained the carrier. Please refer to the CoA of the carrier used for the pilot scale samples provided as Attachment 1 of this amendment. As noted in the Table 2.1 in the previous submission (Section 2.1.2, p.9-10), we did not include complex carbohydrate and fats. The balance of the product composition is complex carbohydrates and fats mostly contributed by the carrier.

3. Heavy Metals

The Hg content for three tested batches are reported as $<0.124 \ \mu g/kg$, $<0.117 \ \mu g/kg$, and $<0.096 \ \mu g/kg$, respectively. The notifier needs to clarify the limit of quantification (LOQ) for Hg.

The Hg content of all samples tested were below limit of quantification, however, the levels were expressed with different dilution factors. As shown in the quantitation report provided as Appendix 6_Certificate of analysis_Heavy metals, the factors of prep dilution of each batch were different (GVAL200910-62.6364, GVAL200911-58.8295, GVAL200912-48.2866). That means the concentrations of each batch of sample for Hg analysis was not exactly same. The LOQ is automatically calculated by considering the sample dilution, therefore it makes the difference in LOQ value. The LOQ calculated from the calibration curve was 1.99 ng/kg (weight of mercury/weight of diluent).

4. Stability

A. Stability of the Dried L-Valine Fermentation Product (≥72% L-valine) (Response: Section 4.1)

The notifier needs to clarify the production scale of the three batches (NGVAL191221, 191222, and 191223) of the final product tested in the stability study. If these three batches were pilot or lab scale, the notifier needs to justify the tested batches were representative of the commercial production and the stability data collected using these batches can be used to establish the stability of the commercial product of the notified substance.

At this time, we have following questions regarding the provided 6-month stability data:

- Based on the CoAs provided in the Appendix 4, the three batches used in the stability study were manufactured on December 21, 22, and 23 of 2019, respectively. The schedule of the study provided in the Appendix 4 indicated that the duration of the reported stability study was from June 26, 2020 (initiation of the experiment) to December 11, 2020 (submission of the report). The initiation of the testing was already 6 months after the manufacturing dates. The L-valine and moisture contents of the tested batches right after the production are not provided to assess the potential change from the production to the initiation of the study.
- The analyses reported on the CoAs provided in Appendix 4 were conducted on December 11, 2020, which was supposed to be the 6-month time point. However, the analytical results reported on these CoAs are used by the notifier as the L-valine and moisture contents at the initial time point. The notifier needs to clarify this discrepancy.
- The CoAs for each batch at each time point should be provided to facilitate our evaluation.

If the notifier has collected more long-term stability data since the submission of this GRAS Notice, the notifier can provide these additional data to support the stability of the final product at recommended storage conditions.

B. Stability of Dried L-Valine Fermentation Product (≥72% L-valine) in Feed (Response: Section 4.2)

The three pilot batches (GVAL200910, 200911, and 200912) of final product were the same pilot batches 01-03 used for the compositional analysis. The notifier needs to justify the tested batches were representative of the commercial production and the stability data collected using these batches can be used to establish the stability of the commercial product of the notified substance in the complete feed for the target animal species.

4.1. Stability of the Dried L-Valine Fermentation Product (≥72% L-valine)

The three batches of the final product tested in the stability study were produced in a pilot scale.

1) CoA

As pointed out by FDA, the previously submitted CoAs were mis-attached to the study report (Appendix 4_Stability (Shelf-life)). The table of stability report is revised and the CoAs for each batch at each time point are attached. Revised report is provided as 'Revised Appendix 4_Stability (Shelf-life)'.

The pilot scale samples were manufactured in December 2019. The contents of L-valine and moisture were analyzed in February 2020. Stability study were schedule to be conducted after production, however due to COVID, test samples were stored in an ambient condition (approximately 20°C) in our storage for 6 months prior to the stability study being initiated. We apologize for missing the analysis at initial time point "0", however, based on 1-month stability data, there is no potential change from production to the initiation of the study. That is, this unintended 6-month storage prior to the stability test did not impact on the stability of the product.

Additional data for stability study is provided in the 'Revised Appendix 4_Stability (Shelf-life)'. The content of L-valine and moisture were analyzed in real-time. As requested by FDA, we have included additional data through 12-month of stability. As shown in below table, none of the test samples showed a significant change in the level of L-valine. The content of moisture tends to increase but it was within the specification. The level of L-valine is analyzed as dry matter basis.

						Storag	ge time (r	nonth)		
Lot No.	Parameter	Spec.	2020 Feb	0	1 A:20.07.31 B:20.08.25	3 A:20.09.25 B:20.10.22	4 A:20.10.30 B:20.11.24	6 A:20.12.23 B:20.12.24	9 A:21.03.26 B:21.04.30	12 A:21.06.25 B·21.08.26
NGVAL 101221	L-Valine (%)	≥ 72.0	72.26							(b) (4)
NOVAL191221	Moisture (%)	≤ 5.0	1.90							
NGVAL 101222	L-Valine (%)	≥ 72.0	72.19							
NOVAL191222	Moisture (%)	≤ 5.0	1.89							
NGVAL 101222	L-Valine (%)	≥ 72.0	72.28	1						
NOVAL191225	Moisture (%)	≤ 5.0	1.72							

Table 1. Stability c	t Dried L	-Valine	Fermentation	Product
----------------------	-----------	---------	--------------	---------

* A: Sampling date, B: Test date (The time gap between the sampling and actual analysis date was occurred due to the analysis lab schedule.)

4.2 Stability of Dried L-Valine Fermentation Product (≥72% L-valine) in Feed

The three batches of the final product tested in the feed stability study were produced in a pilot scale. As described previously (Section 2.1 of this Amendment), the tested batches are representative of the commercial production and the stability data collected using these three batches samples demonstrate the expected stability of the commercial product of the notified substance in the complete feed for the target animal species.

5. Analytical Methods

A. Method used to detect production strain viable cells at different manufacturing steps and in the final product (Response: Section 5.1)

The Figure 1 in the Appendix 2_Attachment 2 is not properly labeled. All plates in Figure 1 needs to be labeled according to the figure legend. Page 4 of 5, GRAS Notice M-000108-Z-0004, Dried L-Valine, Livestock and poultry, September 30, 2021 teleconference

The procedure of the Control test states "2) Cell suspension was diluted up to 10^{-7} and then 500 µL of aliquots was added to 20 mL of sterile 0.9% saline (approximately 50 CFU mL⁻¹)." The notifier needs to clarify whether the cell concentration of 50 CFU/mL refers to the diluted cell suspension before or after mixing with 20 mL saline. Calculations need to be provided to support the stated cell concentration.

The procedure of the Spike test calls for the addition of 1 mL of cell suspension to 1 g of final product sample. The notifier needs to clarify whether the 1 mL cell suspension used for spiking is the diluted suspension before or after mixing with 20 mL saline.

B. Method used for biogenic amines analysis (Response: Section 5.2)

The notifier needs to clarify the approach to quantify each targeted biogenic amine. If the quantification is by using external standards, the notifier needs to provide the calibration curves for each biogenic amine. The reported LOD, LOQ and method specificity for all targeted biogenic amines should be verified, corresponding chromatograms should be included.

The ratio of each tested biogenic amine between the final product and production strain fermentation broth is calculated in the table below:

	the production strain	fermentation broth	
Biogenic amine	Final product ^a (mg/kg)	Fermentation broth ⁵ (mg/L)	Concentrating ratio
Cadaverine			(b)
Histamine			
Histamine Phenylethylamine	-		
Histamine Phenylethylamine Putrescine			
Histamine Phenylethylamine Putrescine Tryptamine	-		

Average value from three batches (GVAL200910, 200911 and 200912) reported in Appendix 10.
 Average value from three batches (KCCM80240_200907, 200908 and 200909) reported in Appendix 10.

Based on the ratio calculated in the table above, it appears that from fermentation broth to the final product, different biogenic amines were concentrated by different factors, e.g., tyramine is only concentrated by a factor of ^{(b) (4)} while the concentrating factor is ^{(b) (4)} folds for phenylethylamine. The notifier needs to clarify this discrepancy.

C. Method used to analyze L-valine derivatives (Response: Section 5.3)

The notifier needs to provide the method procedure, including sample preparation and instrument parameters, and quantification approach. If the quantification is by using external standards, the notifier needs to provide the calibration curves for all tested L-valine derivatives. The reported LOD, LOQ and

method specificity for all targeted L-valine derivatives should be verified, corresponding chromatograms should be included.

5.1 Method used to detect production strain viable cells at different manufacturing steps and in the final product

The Figure 1 in the 'Appendix 2_Attachment 2' is revised with proper label. Also, some corrections regarding the methods of Control and Spike test reflected. The study report of viable cell analysis is revised and provided as 'Revised Appendix 2 Attachment 2 Viable cell'.

Figure 5. Revised Figure 1 in the 'Appendix 2 Attachment 2'

There were clerical errors in reporting the final concentration of cell suspension for control test and used volume of cell suspension for spike test (Section Material and Method. p.6).

(b) (4)

(b) (4)

^{(b) (4)} In the part of

sample preparation for spike test is also revised. Cell suspension for spiking test is the diluted suspension prepared by same method for control test. Entire volume of cell suspension was mixed with 1 g of test sample. Therefore, the method was revised as follows:

Amendment AGRN 48 L-Valine

5.2. Method used for biogenic amines analysis

1) Chromatogram

2) Calibration curve

The concentration of biogenic amines were calculated based on the equation from the calibration curve.

(b) (4)

3) LOD/LOQ calculation

Limit of detection and limit of quantitation were determined by analyzing 7 samples of concentration near the expected limit of detection. The standard deviation of 7 samples simply multiply by the correct student's t-value. t-value for six degrees of freedom and 99% confidence level is to be 3.14. Therefore, the LOD is calculated as follows (EPA, 2016):

LOD= $3.14 \times \text{sd}$ (standard deviation)

The limit of quantitation can also be calculated (EC, 2016):

 $LOQ = 10 \times sd$ (standard deviation)

	Biogenic ami	nes (ng/mL)				
	Tryptamine	Phenylethyl- amine	Putrescine	Cadaverine	Histamine	Tyramine
1						(b)
2						
3						
4						
5						
6						
7						
Standard deviation	0.0056	0.0063	0.0124	0.0132	0.0158	0.0131
LOD	0.0177	0.0199	0.0391	0.0415	0.0497	0.0413
LOQ	0.0565	0.0634	0.1244	0.1320	0.1584	0.1315
LOD (mg/kg)*	0.00089	0.00099	0.00195	0.00207	0.00249	0.00206
LOQ (mg/kg) *	0.00282	0.00317	0.00622	0.00660	0.00792	0.00657

0.1 g sample in 5 mL 0.1N hydrochloric acid

4) Correlation between fermentation broth and final product

Biogenic amine can be synthesized by decarboxylation of amino acids or by amination and transamination of aldehydes and ketones during the metabolic processes in the microorganism.

(b) (4)

^{(b) (4)} Consequently, the ratio of biogenic amine between the final product, Dried L-Valine rementation Product, and production strain fermentation broth varied.

As described in the dossier (Section 6.5.3), the level of biogenic amines in Dried L-Valine Fermentation Product is not high enough to affect growth and health of target animal when 0.5% of Dried L-Valine Fermentation Product is incorporated into the complete feed.

5.3 Method used to analyze L-valine derivatives

L-valine derivatives (L- α -aminobutyric acid, α -hydroxyvaline, 2-thiazolealanine, and L-norvaline) have been used for strain development. The residual amount of L-valine derivatives in the final product, Dried L-Valine Fermentation Product, were analyzed by using below method. Except for L- α aminobutyric acid, other derivatives were found below the limit of detection level. The detected L- α aminobutyric acid is expected to be derived from the fermentation, not from the screening media.

1) Analytical method

0.1 g of Dried L-Valine Fermentation Product (as-is sample) was dissolved in 5 ml distilled water.

Chromatography separation of the samples were performed on a Vanquish (Thermo Scientific, USA) system using the Eclipse XDB-C8 (4.6 mm \times 150 mm, 5 um) (Agilent, USA). The column oven was operated at 45°C. Mobile phase A consisted of 10 mM ammonium formate and 0.1% formic acid in water and mobile phase B consisted of 0.1% formic acid in acetonitrile. An optimized gradient elution

with mobile phase A and mobile B (0-0.1 min, 1% B; 0.1-3 min, 50% B; 3-3.5 min, 90% B; 3.5-3.8 min, 90% B; 3.8-4.0 min, 1% B) at a flow rate of 0.5 mL min⁻¹ was used.

MS analysis was carried out on a TSQ Altis triplequad mass spectra (Thermo Scientific, USA) equipped with heated electrospray ionization (H-ESI) ion source. The parameters of optimized mass spectrometry were summarized in Table 3. Selected reaction monitoring (SRM) transitions were monitored.

Table 3. Source parameters for the TSQ Altis mass spectrometer

Ion Source Parameter	Value	
Positive Ion (V)	3500	
Sheath Gas (Arb)	50	
Aux Gas (Arb)	10	
Sweep Gas (Arb)	1	
Ion Transfer Tube Temp (°C)	325	
Vaporizer Temp (°C)	350	

Table 4. SKIN properties for analysis of L-value derivativ	Table 4.	SRM	properties	for analysis	of L-valine	derivatives
---	----------	-----	------------	--------------	-------------	-------------

Compound	Precursor (m/z)	Product (m/z)	Collision Energy (V)	Min Dwell Time (ms)	RF Lens (V)	
L-2-Aminobutyric acid						(b) (4)
L-2-Aminobutyric acid						
L-2-Aminobutyric acid						
L-Norvaline						
L-Norvaline						
L-Norvaline						
2-Thiazolealanine						
2-Thiazolealanine						
2-Thiazolealanine						
α-Hydroxyvaline						
α-Hydroxyvaline						
α-Hydroxyvaline						

2) Chromatogram

3) Calibration curve

The concentration of L-valine derivatives were calculated based on the equation from calibration curve.

(b) (4)

(b) (4)

3) LOD/LOQ calculation

Limit of detection and limit of quantitation were determined by analyzing 7 samples of concentration near the expected limit of detection. The standard deviation of 7 samples simply multiply by the correct student's t-value. t-value for six degrees of freedom and 99% confidence level is to be 3.14. Therefore, the LOD is calculated as follows (EPA, 2016):

LOD= $3.14 \times \text{sd}$ (standard deviation)

The limit of quantitation can also be calculated (EC, 2016):

 $LOQ = 10 \times sd$ (standard deviation)

Table 5. LOD and LOQ of L-valine derivatives

	L-valine derivativ	L-valine derivatives (ng/mL)						
	L-2-aminobutyric acid	L-norvaline	2-thiazolealanine	α-hydroxyvaline				
1				(b) (4)				
2								
3								
4	_							
5								
6								
7								
Standard deviation	0.1596	0.6144	0.0676	0.0224				
LOD	0.5012	1.9291	0.2124	0.0703				
LOQ	1.5961	6.1437	0.6764	0.2240				
LOD (mg/kg)*	0.025	0.096	0.011	0.004				
LOQ (mg/kg)*	0.080	0.307	0.034	0.011				

* 0.1 g sample in 5 mL water

6. Molecular Biology (MB)

• In the Revised Appendix 2_Pre-fermentation Information, there was a discrepancy between the deleted sequence in "original ilvA ORF" as underlined in Table B.5.2 on page 40 in "M-000108-T-0001_sub_001.pdf" and the sequence of primer 2 listed on page 23. After a comparison we found 3' sequence was missing a complementary base for "G" corresponding to the position base for "G" corresponding to the position base for "Interview of the primer 2 sequence. If not, please provide the information about the alignment of the primer 2 sequence and the original (undeleted) *ilvA* sequence, as well as a clear explanation on how the deletion in the *ilvA* gene in Table B.5.2 can be achieved using the current primer 2. (Response: Section 6.1)

(b) (4)

^{(b) (4)} Please clarify in the amendment whether this is a typographical error. If not, the notifier should provide additional information about identity of the strain. (**Response:** Section 6.2)

• In page 36, the primer 80 used to amplify the upstream region of the *avtA* gene may contain a wrong base as shown below in red. (**Response: Section 6.3**)

Primer 80-

The Primer 81 which partially overlaps the primer 80 actually confirms the correct sequence. Please clarify this issue in the amendment.

6.1 Discrepancy of sequence

There is a typographical error in the Primer 2 sequence in which 'C' residue is missed at the 5' terminus (Figure 11). The sequence of Primer 2 is corrected as follows:

6.2 Origin of ilvE promoter

There is a typographical error in the strain name C. glutamicum VCA08-0012.

(b) (4) (b) (4)

(b) (4)

(b) (4)

6.3 Sequence of Primer 80

The sequence of used Primer 80 and Primer 81 are same as described in the 'Revised Appendix 2_Prefermentation Information'. When developing production strain, Primer 80 and Primer 81 were designed based on the genomic DNA sequence of the as a PCR template (Figure 12 (a)).

Although we used the Primer 80 and Primer 81, there was a discrepancy in primer sequence and genetic modification region as FDA pointed out. By WGS analysis, a point mutation was identified in the *avt*A region of _______ As reported in WGS analysis report (Revised Appendix 2_Attachment 4_Whole genome sequence analysis, submitted in April 2021), 'T' residue was changed

(b) (4)

(b) (4)

Amendment AGRN 48 L-Valine

(b) (4)

[Attachment 1]

CJ CHEILJEDANG CORPORATION CERTIFICATE OF ANALYSIS

	ictured Date		2018.02.19	Delivery Date	
Q	uantity	1	20kg		5-
Analysi	is Data				
No	ITEM		SPECIFICATION	RESULT	REMARK
1	Appearance	æ	White powder	(b) (4)	*
2	Moisture (%)	Max. 14.0		KFDA METHOD
3	pH		4.0~7.0		Starch: Water=1:2(w/w%)
4	Cardeprotein	%)	Max. 0.40		N×6.25
5	Ash (%)		Max. 0.15		KFDA METHOD
6	Whiteness(%)		Min. 88.0	-	Kett-c-1
7	SO ₂ (ppm)		Max. 30.0		Quantitative analysis
8	Acidity(st)		Max. 3.0		KFDA METHOD
9	Starch Value	(%)	Min. 98.0		DS%
10	Foreign mate	mal	Pass		¥.

REPORT

Chiral purity test of Dried L-Valine Fermentation Product using HPLC

Original Final report date: Oct 12, 2021

CJ Research Institute of Biotechnology

CONTENTS

1. OBJECTIVE OF THE STUDY	3
2. MATERIAL	3
(1) Standard reagent	3
(2) Test article	3
3. METHOD	3
(1) Preparation of sample solution	3
(2) Preparation of calibration standard solutions of DL-valine	3
(3) Limit of detection	4
(4) HPLC condition	5
4. CHIRAL PURITY TEST OF DRIED L-VALINE FERMENTATION PRODUCT	5
(1) Chromatogram of standard solution	5
(2) Linearity	7
(3) Limit of detection (Calculation using regression analysis)	7
(4) Limit of detection (measurement from signal/noise ration)	8
(4) Chiral purity test of 'Dried L-Valine Fermentation Product'	9
5. CONCLUSION	

TITLE: Chiral purity test of Dried L-Valine Fermentation Product using HPLC

1. OBJECTIVE OF THE STUDY

Chiral purity test of 'Dried L-Valine Fermentation Product' using HPLC was carried out to evaluate that 'Dried L-Valine Fermentation Product' has only L-form of valine.

2. MATERIAL

(1) Standard reagent

Reagents	Supplier	Batch number
L-Valine	(b) (4)	BCBZ8642
DL-Valine		BCBR9321V

(2) Test article

- 1) Identity: Dried L-Valine Fermentation Product (^{(b) (4)}, minimum of 72% of L-valine)
- 2) Lot No.: GVAL200910 and NGVAL191221
- 3) Storage conditions: Room temperature

3. METHOD

(1) Preparation of sample solution

Approximately 4.5 g of 'Dried L-Valine Fermentation Product' was weighed and put them into 50 mL of volumetric flask. It was adjusted to the volume with distilled water (64.8 g/L as L-valine), and filtered using syringe filter.

(2) Preparation of calibration standard solutions of DL-valine

Calibration standard solution was prepared by the 5, 12.5, 25.1, 50.2, and 125.5 mg/L of D-valine with distilled water as presented below.

Solution	Dilution	Concentration of	Concentration of
		D-valine (mg/L)*	DL-valine (mg/L)
Stock			(b) (4)
solution	-		
STD 5	1/2 dilution of stock solution		

STD 4	1/5 dilution of stock solution	(b) (4)
STD 3	1/2 dilution of STD 4	
STD 2	1/10 dilution of STD 5	
STD 1	1/5 dilution of STD 3	

* It was regarded that the ratio of D-/L-valine is 50:50 in this test.

(3) Limit of detection

1) Calculation using calibration curve

Calibration curve was provided to express LOD (limit of detection). In addition, regression analysis was also carried out using this curve to figure out 'Residual standard deviation' to calculate LOD (*Anal. Chem.* 1999, 71, 2672-2677).

LOD may also be calculated based on the standard deviation of the response (σ) of the curve and the slope of the calibration curve (S) at levels approximating the LOD according to the formula: LOD = $3.3*(\sigma/S)$. The standard deviation of the response can be determined based on the standard deviation of y-intercepts of regression lines.

In this case, deviation of response would be residual standard deviation.

The residual standard deviation is a statistical term used to describe the difference in standard deviations of observed values versus predicted values as shown by points in a regression analysis. Regression analysis is a method used in statistics to show a relationship between two different variables, and to describe how well you can predict the behavior of one variable from the behavior of another.

Residual standard deviation is also referred to as the standard deviation of points around a fitted line or the standard error of estimate. The formulas for residual and residual standard deviation is :

Residual = $(Y - Y_{est})$

$$S_{res} = \sqrt{\frac{\sum (Y - Y_{est})^2}{n - 2}}$$

 $S_{res} = Residual standard deviation$

Y= Observed value

Y_{est}= Estimated or projected value

n= Data points in population

We preformed 5 point calibration for D-valine as below and described the summary output of regression analysis.

2) Calculation using signal/noise ratio

The LOD is the concentration at which the signal level of the substance reaches at least 3 times the signal noise of the baseline. We also checked the signal/noise ratio of the peak assumed to be LOD.

Analytical condition		
Column	sumichiral OA 5000 (150 x 4.6mm)	
Mobile phase	2 mmol/L copper(II) sulfate in water	
Flow rate	1mL/min	
Analysis time	50 min	
Column temperature	35 °C	
Injection volume	20 μL	
Wavelength	(b) (4)	

(4) HPLC condition

4. CHIRAL PURITY TEST OF DRIED L-VALINE FERMENTATION PRODUCT

(1) Chromatogram of standard solution

As shown in Figure 1(b), two peaks were detected in the chromatogram of DL-valine standard solution. To sort out peak for L-valine and D-valine, a standard solution of L-valine was prepared and analyzed. The L-valine was analyzed at approximately 10.2 min as shown in Figure 1(d). From this result, the retention time of L-valine and D-valine was determined as approximately

It was also found that when the concentration of L-valine is too high, it seemed the peak of L-valine is different from the chromatogram of standard solution due to the saturation of the L-valine peak. So, we prepared high concentration of L-valine standard solution (50 g/L) and analyzed serially diluted L-valine standard solution to clarify that saturated peak is a peak L-valine (Figure 1(d)).

Figure 1. Chromatograms of standard solution. (a) Blank, (b) Standard solution of DL-valine, (c) Standard solution of DL-valine as diluted and (d) Identification of saturated L-valine peak with a serially diluted L-valine standard solution.

(2) Linearity

Calibration levels (mg/L)	(b) (4)
Peak area	
Calibration curve	
Correlation coefficient (r ²)	

Figure 2. Linearity of D-valine

(3) Limit of detection (Calculation using regression analysis)

1) Limit of detection of D-valine

Limit of detection of D-valine were ^{(b) (4)}.

2) Summary output for regression analysis study

Regression statistics Multiple R (Correlation coefficient) (b) (4) R Square (Coefficient of determination) Adjusted R Square Standard Error (Residual standard deviation) Observations

3) LOD of D-valine

LOD

(4) Limit of detection (measurement from signal/noise ration)

To clarify the calculated detection limit, we also injected 1 mg/kg of D-valine (from the calculation, LOD was (0) and checked the signal/noise ratio (S/N ration) from the Empower software program. S/N ration of D-valine was 10.9 at 1 mg/kg, so injected again with half of injection volume (10 µL). Since the injection volume was half, the concentration was 0.5 mg/kg, and S/N ration of D-valine was 3.2 at 0.5 mg/kg.

So even the LOD was calculated as from the regression analysis, the LOD of D-valine would be lower to 0.5 mg/kg.

In addition, limit of detection of D-valine in 'Dried L-Valine Fermentation Product' were approximately ^{(b)(4)} due to the concentration of valine in water is about 64.8 g/L and 'Dried L-Valine Fermentation Product' contained 72% of valine.

Table 2. Limit of detection (LOD)

(a) Limit of detection (LOD) of D-valine from the chromatogram (S/N ration).

LOD	Concentration (mg/kg)
LOD	(b) (4)

(b) Limit of detection (LOD) of D-valine in 'Dried L-Valine Fermentation Product' a).

LOD	Concentration (mg/kg)	
	(b) (4)	

^{a)} The concentration of valine in water is approximately 64.8 g/L and 'Dried L-Valine Fermentation Product' contained 72% of valine (dilution factor would be approximately 11.1). Therefore, analyze D-valine in 'Dried L-Valine Fermentation Product', the LOD is different.

(b) (4)

(b) (4)

Figure 3. Chromatogram and S/N ration of 0.5 mg/kg of DL-valine

(4) Chiral purity test of 'Dried L-Valine Fermentation Product'

The developed HPLC method was applied to determine the content of D-valine in 'Dried L-Valine Fermentation Product' produced by CJ. High concentration of sample solutions were prepared (GVAL200910: 89.95 g/L, and NGVAL191221: 89.84 g/L) to prove the presence or absence of D-valine.

Compared to chromatogram of standard solution of DL-valine, no D-valine was observed in the 'Dried L-Valine Fermentation Product' produced by CJ. Chromatograms of sample solution were shown in Figure 4.

Figure 4. Chromatogram of Dried L-Valine Fermentation Product

To confirm there is no D-valine in Dried L-Valine Fermentation Product, we also compared the chromatogram with expansion version. It was also shown that D-valine is not included in Dried L-Valine Fermentation Product.

Figure 5. Chromatogram of Dried L-Valine Fermentation Product (expansion version)

Lot No	Concentration	unit
GVAL200910	(b) (4)	
NGVAL191221		mg/kg

Table 4. Content of D-valine in 'Dried L-Valine Fermentation Product'

* N.D.: Not detected (LOD= (b)(4))

5. CONCLUSION

This study was conducted to evaluate the chiral purity of the Dried L-Valine Fermentation Product using HPLC. Linearity was checked in the range of 5-125.5 mg/L of D-valine. Using developed analytical method, limit of detection of test article formulation were evaluated. This method was applied to determine the content of D-valine in 'Dried L-Valine Fermentation Product' produced by CJ. Based on the results above, there was no D-valine in the 'Dried L-Valine Fermentation Product' that produced by CJ.

CONFIDENTIAL REPORT

Confirmation of production strain of Dried L-Valine Fermentation Product

Version 1.0

TITLE

Confirmation of production strain of Dried L-Valine Fermentation Product

OBJECTIVE OF THE STUDY

This study was conducted to confirm that the pilot scale batches of test sample used for the previous submission is produced by C. glutamicum KCCM 80240 which is used for the commercial batch of Dried L-Valine Fermentation Product.

SCHEDULE OF THE STUDY

Initiation of experiment: October 7, 2021 Termination of experiment: October 8, 2021 Submission of final report: October 12, 2021

TESTING FACILITY

R&BD)Regulatory Affairs, CJ CheilJedang 55, Gwanggyo-ro 42beon-gil, Yeongtong-gu, Suwon-si, Gyeonggi-do 16495, Korea

RESPONSIBLE STAFFS

Analyst and Author

Taeyeon Kim

Report approved by

Yang Hee Kim

'brute yonfee

CONTENTS

INTRODUCTION	.4
MATERIALS AND METHODS	.5
Test sample	.5
DNA extraction	.5
PCR analysis	.6
RESULTS	.7
[Attachment 1] Certificate of Analysis	.9

INTRODUCTION

Samples used for the previous submission of Dried L-Valine Fermentation Product were pilot scale batches of the final product. To confirm that the samples were produced by *Corynebacterium glutamicum* KCCM 80240 which will be used for the commercial production strain of Dried L-Valine Fermentation Product, PCR analysis was carried out.

Two different kinds of genetically modified region in *C. glutamicum* KCCM 80240 were selected to analyze: 1) Pcj7-*gap*N (*L.delbreuckii*) and 2) partially deleted *ilv*A gene region.

(b) (4)

MATERIALS AND METHODS

Test sample

Eight batches of Dried L-Valine Fermentation Product were tested. The certificate of analysis of test samples are provided as Attachment 1 at the end of this test report.

- Batch No.:

NGVAL191221, NGVAL191222, NGVAL191223 - used for stability (shelf-life) study

GVAL200910, GVAL200911, GVAL200912, GVAL200916, GVAL200917 – used for compositional analysis, heavy metal analysis, viable cell analysis, and mash feed stability study

DNA extraction

A genomic DNA of *C. glutamicum* ATCC 14067, CA08-0012, KCCM 80240 and total DNA present in the samples were extracted by using (b)(4)

as follows.

STUDY NO: CP-01-2021

PCR analysis

Primers were designed from the specific region of the production strain (Table 1).

Target		Size of PCR product (bp)			
	Sequence (5'→3')	Before modification	After modification		
gapN			(b) (4		
(L. delbrueckii)					
Partially deleted ilvA gene					

Table 1. Primers used for this study

(b) (4)

RESULTS

The amplification of target genes were observed by PCR analysis. All test sample showed specific amplification for foreign *gap*N gene (Table 2 and Figure 2) and partially deleted *ilv*A gene (Table 3 and Figure 3), which were genetically modified region of the production strain.

Based on this result, it is confirmed that the pilot batches of test samples were produced by *C. glutamicum* KCCM 80240 which is used for producing commercial batches of Dried L-Valine Fermentation Product.

		Result	
	Distilled water	(b) (4)	
Negative control	C. glutamicum ATCC 14067, wild-type strain		
	C. glutamicum CA08-0012, parental strain		
Positive control	C. glutamicum KCCM 80240		
	Batch No. NGVAL191221		
	Batch No. NGVAL191222		
	Batch No. NGVAL191223		
Sampla	Batch No. GVAL200910		
Sample	Batch No. GVAL 200911		
	Batch No. GVAL200912		
	Batch No. GVAL200916		
	Batch No. GVAL200917		

Table 2. PCR analysis of Pcj7-gapN (L. delbreuckii) gene

(-), no amplification; (+), specific amplification

(b) (4)

Table	3. PCR analysis of partially deleted i	IvA gene

		Result
	Distilled water	(b) (4)
Negative control	C. glutamicum ATCC 14067, wild-type strain	
	C. glutamicum CA08-0012, parental strain	
Positive control	C. glutamicum KCCM 80240	
	Batch No. NGVAL191221	
	Batch No. NGVAL191222	
	Batch No. NGVAL191223	
Comple	Batch No. GVAL200910	
Sample	Batch No. GVAL 200911	
	Batch No. GVAL200912	
	Batch No. GVAL200916	
	Batch No. GVAL200917	

(-), no amplification; (+), specific amplification

(b) (4)

55, Gwanggyo-ro Gyeonggi-do, 1649 TEL : 031) 8	42beon-gil, Yeongt 95, Korea <u>www.cj.co.kr</u> 8099-2450 FAX : 031)	ong-gu, Su) 8099-2918	iwon-si,	cJ	CHEILJEDANG
	Certifi	cate of	analysis		
Certificate No.	2020-PR-001	Recei	pt No.	2	2020-AN-001
Client	÷	Date of	Receipt		2020.02.12.
Client Name	-	Date	of Test		2020.02.12.
Client Tel	-	Use of	Report	F	Reference test
Client Address					
Test Sample	L-Valine (70%)			
Manuf. Date 2019.12.21.					
Lot. No	NGVAL191221				
Quantity (kg)					
Test Item(s)	Test Item(s) Specification Test Res		Test Result		Test method used
L-Valine(dry base) Not less than	n 70 %		(b) (4)	HPLC
Moisture (Loss on drying)	Not more that	an 5 %			AOAC 934.01
* Information					
* Temperature : (22- * The results shown The Test Report c	28) ℃, Relative Hun in this test report re annot be reproduced	nidity : (30~ fer only to t I, except in f	50) % he sample te ull.	sted unl	ess otherwise stated.
-	10011110		0.000	1.0	Feb, 14, 202

[Attachment 1] Certificate of Analysis

55, Gwanggyo-ro 42beon-gil, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16495, Korea

www.cj.co.kr

TEL: 031) 8099-2450 FAX: 031) 8099-2918

Certificate of analysis

Certificate No					
certificate No.	2020-PR-00	2 Rece	eipt No.	2	2020-AN-002
Client	5	Date o	of Receipt	100	2020.02.12.
Client Name		Date	of Test	1	2020.02.12.
Client Tel	÷.	Use c	of Report	R	leference test
Client Address			- 45 - ⁰ -		
Test Sample	L-Valine	(70%)			
Manuf. Date	2019.12.	22.			
Lot. No	NGVAL1	91222			
Quantity (kg)	0 -				
Test Item(s)	Spec	Specification Test Result		lt	Test method used
L-Valine(dry ba	se) Not less	s than 70 %		(b) (4)	HPLC
Moisture (Loss on dryin	g)	re than 5 %			AOAC 934.01
* Information					
	20) % D-1-4	- Humidity + (20	60) 9/		
* Temperature : (2; * The results show The Test Report	cannot be reproc	ort refer only to	the sample to	(b) (4)	ess otherwise stated.
* Temperature : (2; * The results show The Test Report	cannot be reproc	ort refer only to	the sample to	(b) (4)	ess otherwise stated. Feb, 14, 2020

55, Gwanggyo-ro 42beon-gil, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16495, Korea

www.cj.co.kr

TEL: 031) 8099-2450 FAX: 031) 8099-2918

CJ CHEILJEDANG

Certificate of analysis

Certificate No.	2020-PR-003		Receipt No.		3	2020-AN-003
Client			Date o	of Receipt		2020.02.12.
Client Name	-		Date	of Test	- 1.4	2020.02.12.
Client Tel			Use o	of Report	F	Reference test
Client Address						
Test Sample	L-Va	line (70%)				
Manuf. Date	2019	9.12.23.				
Lot. No	NGV	AL191223				
Quantity (kg)						
Test Item(s)		Specification		Test Result		Test method used
L-Valine(dry ba	se) Not	Not less than 70 %		(b) (4		HPLC
Moisture (Loss on dryin	g) Not	Not more than 5 %				AOAC 934.01
* Information					-	
* Temperature : (22 * The results show The Test Report	2~28) ℃, Rel n in this test cannot be re	ative Hum report refe	idity : (30- er only to except in	~60) % the sample t full.	ested un (16)(4)	less otherwise stated. Feb. 14, 2020
	1.47. C. A.			1.		160, 14, 2020
	CJ Resea	arch Ins	stitute	of Biotec	hnolog	av

55, Gwanggyo-ro 42beon-gil, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16495, Korea

www.cj.co.kr

TEL: 031) 8099-2450 FAX: 031) 8099-2918

CJ CHEILJEDANG

Certificate of analysis

			-		-		
Certificate No.	2021-PR-1	021-PR-124		t No. 2021-AN-		092	
Client	4		Date of Receipt		2020.11.19.		
Client Name	-		Date of	f Test	2020.11.2	2.	
Client Tel	ie.		Use of	Report	Reference	test	
Client Address	L						
Test Sample		L-Valine (Val	pro)				
Manuf. Date		2020.09.10.					
Lot. No		GVAL200910)				
Quantity (kg)		-					
Test Item(s)		lot number		Test Result		Test method used	
L-Valine(dry bas	se)	Not less than 72 %			(b) (4	HPLC	
Moisture (Loss	on drying)	Not more than 5 %				AOAC 934.01	
Ash		Not more th	Not more than 5 %			AOAC 942.05	
* Information							
* Temperature : * The results sh The Test Report	(20~28) ℃ own in this cannot be	, Relative Hum test report ref reproduced, ex	iidity : (30- ier only to xcept in fu	~60) % the sampl II.	e tested un (6)(4)	ess otherwise stated.	
						Oct. 07, 202	

CJ Research Institute of Biotechnology

55, Gwanggyo-ro 42beon-gil, Yeongtong-gu, Suwon-si,

Gyeonggi-do, 16495, Korea

www.cj.co.kr

TEL: 031) 8099-2450 FAX: 031) 8099-2918

CJ CHEILJEDANG

Certificate of analysis

Certificate No.	202	1-PR-125	Receipt N	lo.	2021-AN-093			
Client	6	Sec. 1	Date of Red	ceipt	2020.11.19.			
Client Name		-	Date of T	est	2020.11.22.			
Client Tel		4	Use of Rep	port	Reference test			
Client Address					-			
Test Sampl	е	L-Valine (Val pro)						
Manuf. Dat	e	2020.09.11.	1.1.1					
Lot. No	1.1	GVAL20091	1					
Quantity (k	g)	4						
Test Item(s	;)	Specifi	cation	Test Result	Test method used			
L-Valine(dry base)		Not less than 72 %		(b) (4) HPLC			
Moisture (Loss on	drying)	Not more than 5 %			AOAC 934.01			
Ash		Not more than 5 %			AOAC 942.05			
* Information	9.000							
* Temperature : (2 * The results show The Test Report ca	0∼28) °C, n in this annot be	Relative Hun test report re reproduced. e	nidity : (30~60) fer only to the s except in full.	% sample tested ur (6) (4)	nless otherwise stated.			
	CJ Re	search In	stitute of E	Biotechnolo	Oct, 07, 2021			

55, Gwanggyo-ro 42beon-gil, Yeongtong-gu, Suwon-si,

Gyeonggi-do, 16495, Korea

www.cj.co.kr

TEL: 031) 8099-2450 FAX: 031) 8099-2918

CJ CHEILJEDANG

Certificate of analysis

Certificate No.	2021-PR-126		Receip	Receipt No.		021-AN-094
Client		-	Date of	Date of Receipt		2020.11.19.
Client Name		-	Date o	of Test	2020.11.22.	
Client Tel		à	Use of	Report	R	eference test
Client Address				-		-
Test Sample L-Valine (Val pro)					1	
Manuf. Da	te	2020.09.12.				
Lot. No		GVAL200912				
Quantity ((g)	1 .				
Test Item(s)	Specific	cation	Test Result		Test method used
L-Valine(dry l	base)	Not less th	han 72 %		(b) (4)	HPLC
Moisture (Loss on drying)		Not more than 5 %				AOAC 934.01
Ash	-	Not more	than 5 %			AOAC 942.05
* Information						
* Temperature : (* The results show The Test Report of	20~28) °C wn in this cannot be	, Relative Hur test report re reproduced a	nidity : (30~6 fer only to th except in full	50) % ne sample te	ested unle	ess otherwise stated.
	CJ Re	esearch In	stitute o	f Biotecl	hnolog	Oct, 07, 2021

CJ BIO-AD form 100-01 REV.01

T

55, Gwanggyo-ro 42beon-gil, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16495, Korea

www.cj.co.kr

TEL: 031) 8099-2450 FAX: 031) 8099-2918

Certificate of analysis

	220					
Certificate No.	202	1-PR-127	Receipt No.		2	021-AN-095
Client		7	Date of Receipt		2020.11.19.	
Client Name		÷	Date of	Test		2020.11.22.
Client Tel		4	Use of R	Report	R	eference test
Client Address		-		- 65 m		
Test Samp	le	L-Valine (Va	l pro)			
Manuf. Dat	te	2020.09.16.	1			
Lot. No		GVAL20091	6			
Quantity (k	g)	-				
Test Item(s	s)	Specific	cation	Test Resu	lt	Test method used
L-Valine(dry b	Valine(dry base) Not		Not less than 72 %		(b) (4)	HPLC
Moisture (Loss or	n drying)	Not more than 5 %				AOAC 934.01
Ash		Not more than 5 %				AOAC 942.05
* Information					-	
* Temperature : (2 * The results show The Test Report c:	20~28) ℃, vn in this annot be	Relative Hun test report re reproduced. e	nidity : (30~60 fer only to the except in full.	0) % e sample tes დ	ted unle	ess otherwise stated.
						Oct, 07, 202
	CJ Re	search In	stitute of	Biotech	nolog	у

55, Gwanggyo-ro 42beon-gil, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16495, Korea

www.cj.co.kr

TEL: 031) 8099-2450 FAX: 031) 8099-2918

Certificate of analysis

Certificate No.	202	1-PR-128	Receipt N	lo. 2	2021-AN-096
Client		4	Date of Rec	eipt	2020.11.19.
Client Name			Date of Te	est	2020.11.22.
Client Tel		÷.	Use of Rep	ort R	leference test
Client Address	_				
Test Sam	ole	L-Valine (Va	al pro)		
Manuf. Da	ate	2020.09.17.			
Lot. No		GVAL20091	7		
Quantity (kg)	-			
Test Item	(s)	Specifi	fication Test Result		Test method used
L-Valine(dry	base)	Not less t	han 72 %	(b) (4)	HPLC
Moisture (Loss on drying)		Not more than 5 %			AOAC 934.01
Ash		Not more than 5 %			AOAC 942.05
* Information					
* Temperature : (20~28) ℃	Relative Hun	nidity : (30~60) ⁽	%	
* The results sho	wn in this	test report re	fer only to the s	ample tested unl	ess otherwise stated.
The Test Report	cannot be	reproduced, e	except in full.		
	Contraction of the second			(b) (4)	
					Oct, 07, 2021
	6.135	Sec.			
	CJ Re	search In	stitute of B	liotechnolog	ау

REPORT

Analytical Method Validation of Dried L-Valine Fermentation Product using HPLC (Confidential)

Original final report date: Dec 21, 2020

Study Director	Quality Assurance Manager		
	(b) (4)		
Dami Jeong	Seok-Hun Yun		

CJ Research Institute of Biotechnology

Table of contents

1. Introduction
2. Test article
3. HPLC analytical condition
4. Standard preparation
5. Sample preparation
6. Data processing and calculation
7. Specificity
8. System suitability
9. Homogeneity
10. Stability11
11. Linearity
12. Limit of detection and limit of quantification
13. Precision
14. Accuracy
15. Robustness
16. Impurity identification
17. Conclusion
18. Raw data file

1. Introduction

There are several official methods to analyze L-valine. The commonly used method of L-valine analysis is potentiometric titration with perchloric acid, however, most other amino acids could also be detected by this method. Therefore, titration method is not applicable in case of sample containing the other amino acids as an impurity.

For this reason, CJ developed the analytical method for 'Dried L-Valine Fermentation Product' and this analytical method was verified by method validation.

2. Test article

- 2.1. Test Article
- 1) Identity: Dried L-Valine Fermentation Product (VAL Pro)
- 2) Lot number: GVAL200910
- 3) Purity: > 72.0% (L-Valine, dry basis)
- 4) Date of receipt: November 30, 2020
- 5) Amount of receipt: approximately 100 g
- 6) Storage conditions: room temperature
- 7) Supplier: CJ Research Institute of Biotechnology

2.2. Reference standard

- 1) Identity: L-Valine
- 2) Product No.: V0500 (SLCD6123)
- 3) Purity: 100%
- 4) Quality release Date: October 04, 2019
- 5) Amount of receipt: 25 g
- 6) Storage conditions: room temperature
- 7) Supplier: (b) (4)
- 8) Expiry date (retest date): October, 2022

3. HPLC analytical condition

3.1. HPLC Condition

Table 1. HPLC Condition

	Condition
System	HPLC (SHIMADZU Nexera UPLC-30A)
Detector	Fluorescence detector (Excitation λ : 338nm Emission λ : 425nm)
Column	ODS C18, 150×4.6 mm, particle size 3 μ m
Column temperature	40°C
Mobile phase	16.7 mM-KH ₂ PO ₄ + 5 mM OSA in 12% CH ₃ CN, pH 2.5 (by H ₃ PO ₄)
Flow rate of mobile phase	1.0 ml/min
Reaction reagent	201.91mM-KOH + 241.39mM-H ₃ BO ₃ + 2.53mM-OPA + C ₂ H ₆ OS 1mL + CH ₃ OH 5mL + 3.5%-Brij 1.25mL
Flow rate of reaction reagent	0.5 ml/min
Sample temperature	15°C
Injection volume	5 µl
Concentration of sample and standard solution	0.1 g/L (L-valine concentration basis)

3.2. Preparation reagent for mobile phase and reaction reagent

Table 2. Preparation reagent for mobile phase and reaction reagent

Mobile phase			
	Purity	Manufacturer	Product No.
Acetonitrile(CH ₃ CN)	HPLC Grade	(b) (4)	(b) (4)
Potassium dihydrogen phosphate (KH ₂ PO ₄)	≥99%	(b) (4)	(b) (4)
Phosphoric acid(H ₃ PO ₄)	≥85%	(b) (4)	(b) (4)
1-Octanfonic acid sodium salt (OSA)	≥98%	(b) (4)	(b) (4)
Distilled water	minimum conductivity (18.2 $M\Omega$)		

Reaction reagent			
	Purity	Manufacturer	Product No.
Potassium hydroxide	≥85%	(b) (4)	(b) (4)
Boric acid	≥99.5%	(b) (4)	(b) (4)
O-phthalaldehyde (OPA)	≥97%	(b) (4)	(b) (4)
2-Mercapto ethanol(2-ETSH)	≥99%	(b) (4)	(b) (4)
Methyl alcohol	≥98%	(b) (4)	(b) (4)
Distilled water	minimum conductivity (18.2 $M\Omega$)		

3.3. Mobile phase solution preparation method

Table 3. Mobile phase solution preparation method

Reagent name	Concentration (mM)	Amount (g)	Total volume (mL)
Potassium dihydrogen phosphate (KH ₂ PO ₄)			(b) (4)
1-Octanfonic acid sodium salt (OSA)			
Acetonitrile (CH ₃ CN)			1137
Phosphoric Acid (H ₃ PO ₄)			

3.4. Reaction reagent preparation method

Table 4. Reaction reagent preparation method

Reagent name	Concentration (mM)	Amount (g)	Total volume (mL)
Potassium hydroxide		(b) (4)	
Boric acid			
O-phthalaldehyde (OPA)			1000
2-Mercaptoethanol (2-ETSH)			1000
Methyl alcohol			
3.5%-Brij solution			

4. Standard preparation

(b) (4)

5. Sample preparation

(b) (4)

6. Data processing and calculation

(b) (4)

(b) (4)

Table 5. Data calculation

	Standard solution	Sample solution
Weight		(b) (4)
Preparation concentration		
Area 1		
Area 2		
Area 3		
Area 4		
Average		
STDEV		(b) (4
%RSD*		
R.F.		
(Response factor		
Measurement		
concentration		
Result		

* If the area difference is $RSD \ge 1\%$, reanalyze and if the difference is still over 1%, instrument should be checked.

7. Specificity

8. System suitability

Tabl	e 6.	Reference	standard	soluti	ion (0.025	g/L)
------	------	-----------	----------	--------	-------	-------	------

Table 7. Reference standard solution (0.1 g/L)

	Peak area (STD 1, 0.025 g/L)	0	Peak area (STD 4, 0.100 g/L)
1	(b) (4)	1	(b) (4)
2		2	
3		3	
4		4	
5		5	
6		6	
7		7	
8		8	
9		9	
10		10	
%RSD	0.18%	%RSD	0.16%

9. Homogeneity

	(b) (4)
1	
0	

Table 8. Homogeneity of sample

Sample	Sample weight (g)	L-Valine (%)
Sampling 1	0.13775 g/1000mL	(b) (4)
Sampling 2	0.13705 g/1000mL	
Sampling 3	0.13787 g/1000mL	
Sampling 4	0.13761 g/1000mL	
Sampling 5	0.13678 g/1000mL	
Average	-	72.19
%RSD	-	0.28

10. Stability

And %RSD was 0.17%.

The recovery of sample was satisfied with the acceptance criteria of 98%-102% and %RSD criteria of < 1%.

Time (day)	Time (h)	L-Valine (%)	Recovery (%)
day 1_1	0		(b) (4)
day 1_2	5		
day 1_3	10		
day 2_1	23		
day 2_2	28		
day 2_3	32		
day 3_1	53		
day 3_2	57		
day 3_3	62		
%RS	SD	0.17%	3

Table 9. Stabilit	v of the sample	(investigation of	precision of	sample)
ruore	y of the sumple	(investigation of	precision or	Sumple)

(c) (b) (4) 4.00-3.00-> 2.00-1.00-0.00-3.00 200 4.00 8.00 1.00 6.00 7.00 0.00 5.00 9.00 Minutes (d) **(b)** (4) 4.00-3.00-> 2.00-1.00-0.00-1.00 0.00 2.00 3.00 6.00 7.00 8.00 4.00 5.00 9.00 Minutes (e) (b) (4) 4.00-3.00-> 2.00-1.00-0.00-7.00 1.00 2.00 3,00 4.00 6.00 8.00 0.00 5.00 9.00 Minutes

page 14 / 47

11. Linearity

(b) (4)

Table 10. Calibration curve

	L-Valine (g/L)	Peak area*
STD 1 (25%)		(b) (4
STD 2 (50%)		
STD 3 (80%)		
STD 4 (100%)		
STD 5 (120%)		

* Mean area of triplet injection

Figure 5. Calibration curve

Validation report – Dried L-Valine Fermentation Product

12. Limit of detection and limit of quantification

12.1. LOD and LOQ of L-valine

Table 11. .Summary output for regression analysis study

13. Precision

Table 12. Repeated injection of sample solution

	Sample solution
1	(b) (4)
2	
3	
4	
5	
6	
7	
8	
9	
10	
%RSD	0.17 %

Table 13. Repeated injection of CRM solution

	CRM solution	
1		(b) (4)
2		
3		
4		
5		
6		
7		
8		
9		
10		
%RSD	0.12 %	

page 20 / 47

Validation report - Dried L-Valine Fermentation Product

14. Accuracy

(b) (4)
1.00
 (b) (4)
(0) (4)

14.1. Summary of uncertainty measurement

Table 14. Uncertainty measurement

Uncertainty contributor	Measurement value	Standard uncertainty	Relative standard uncertainty	Effective degree of freedom	Туре	Probability distribution
14.2.1. Standard preparation						(b) (4,
14.2.1.1. Uncertainty in weight determination						
1) Dispersion in repeated measurements						
2) Uncertainty of Balance calibration result						
14.2.1.2. Volumetric measuring						

1) Dispersion
in repeated
measurements
2) Uncertainty
of balance
calibration result
3) Uncertainty
of 1000 mL
volumetric flask
calibration result
14.2.2. Sample
preparation
1/ 2 2 1
It.2.2.1.
sample weight
sample weight
determination
1) Dispersion
in repeated
measurements
2) Uncertainty
of balance
calibration result
14.2.2.2
Volumetric
measuring
1) Dispersion
mensurements
2) Uncertainty
of balance
calibration result
3) Uncertainty
of 250 mL
volumetric flask
calibration result
1123 Provision
of the instrument
of the instrument
14.2.3.1.
Uncertainty of
dispersion in the
standard solution
repeated
measurement
14.2.3.2.
Uncertainty of
dispersion in the
sample solution
repeated
measurement

Relative combined standard uncertainty	(b) (4,
Effective degree of freedom	
Coverage factor <i>k</i>	
Expanded uncertainty	
Results	

14.2. Uncertainty measurement

14.2.1. Standard preparation

14.2.1.1. Uncertainty in weight determination

1) Dispersion in repeated measurements

Type A uncertainty

Number of sample measurements	Measurement value (g)
1	(b) (4)
2	
3	
4	
5	
Measurement value	
standard deviation	
standard uncertainty	
relative standard uncertainty	
degree of freedom	
- Standard uncertainty =	(b) (4)
- Relative standard uncertainty =	(b) (4)
- A Type degree of freedom =	(b) (4)
2) Uncertainty of balance calibration result

Type B uncertainty

Balance	Mass (g)	Uncertainty	Standard uncertainty	Relative standard uncertainty
	0.10004	0.0005	(b) (4)	
Standard uncertainty		(b)) (4)	
Relative standard uncertainty				
Degree of freed	dom			

(b) (4)

3) Relative combined standard uncertainty

4) Effective degree of freedom

14.2.1.2. Volumetric measuring

1) Dispersion in repeated measurements

Type A uncertainty

Number of sample measurements	Measurement value (g)
1	(b) (4)
2	(b) (4)

3	(b) (4)
4	(b) (4)
5	(b) (4)
Measurement value	(b) (4)
Standard deviation	(b) (4)
Standard uncertainty	(b) (4)
Relative standard uncertainty	(b) (4)
Degree of freedom	(b) (1
	(b) (4)

2) Uncertainty of balance calibration result

Type B uncertainty

Balance	Mass (g)	Uncertainty	Standard uncertainty	Relative standard uncertainty
	1246.33	0.0200	(b) (4)	(b) (4)
Standard uncertain	ty		(b) ((4)
Relative standard unce	rtainty			
Degree of freedor	n			
				(b) (

3) Uncertainty of 1000 mL volumetric flask calibration result

Type B uncertainty

Volumetric flask	Volume (mL)	Uncertainty	Standard uncertainty	Relative standard uncertainty
	1000	0.220	(b) (4)	(b) (4)
Standard uncertain	nty		(b) (4)
Relative standard unce	Relative standard uncertainty			
Degree of freedo	m			
			-	(b)

(b) (4)

(b) (4)

4) Relative combined standard uncertainty

5) Effective degree of freedom

14.2.1.4. Effective degree of freedom of standard preparation

(b) (4)

14.2.2. Sample preparation

14.2.2.1. Uncertainty in sample weight determination

1) Dispersion in repeated measurements

Type A uncertainty

Number of sample measurements	Measurement value (g)
1	(b) (4)
2	(b) (4)
3	(b) (4)
4	(b) (4)
5	(b) (4)
Measurement value	(b) (4)
Standard deviation	(b) (4)
Standard uncertainty	(b) (4)
Relative standard uncertainty	(b) (4)
Degree of freedom	(b)
	(b) (4)

2) Uncertainty of balance calibration result

Type B uncertainty

Balance	Mass (g)	Uncertainty	Standard uncertainty	Relative standard uncertainty
	0.10052	0.0005	(b) (4)	(b) (4)

Standard uncertainty	(b) (4)	
Relative standard uncertainty		
Degree of freedom		

(b) (4)

(b) (4)

3) Relative combined standard uncertainty

4) Effective degree of freedom

14.2.2.2. Volumetric measuring

1) Dispersion in repeated measurements

Type A uncertainty

Number of sample measurements	Measurement value (g)
1	(b) (4)
2	(b) (4)
3	(b) (4)
4	(b) (4)
5	(b) (4)
Measurement value	(b) (4)
Standard deviation	(b) (4)

2) Uncertainty of balance calibration result

Type B uncertainty

Balance	Mass (g)	Uncertainty	Standard uncertainty	Relative standard uncertainty
	1246.33	0.0200	(b) (4)	(b) (4)
Standard uncertainty			(b) (4))
Relative standard uncertainty				
Degree of freedor	n			
		_		

3) Uncertainty of 1000 mL volumetric flask calibration result

Type B uncertainty

Volumetric flask	Volume (mL)	Uncertainty	Standard uncertainty	Relative standard uncertainty
	1000.00	0.220	0.110	0.011
Standard uncertainty			(b) (4)	
Relative standard uncertainty			(b) (4)	

Degree of freedom

(b) (4)

(b) (4)

(b) (4)

(b) (4)

4) Relative combined standard uncertainty

5) Effective degree of freedom

14.2.2.4. Effective degree of freedom of sample preparation

14.2.3. Precision of the instrument

14.2.3.1. Uncertainty of dispersion in the standard solution repeated measurement

Type A uncertainty

Number of sample measurements

Peak area

1	(b) (4)
2	(b) (4)
3	(b) (4)
4	(b) (4)
Measurement value	(b) (4)
Standard deviation	(b) (4)
Standard uncertainty	(b) (4)
Relative standard uncertainty	(b) (4)
Degree of freedom	(b) (1
	(b) (4

14.2.3.2. Uncertainty of dispersion in the sample solution repeated measurement

Type A uncertainty

Number of sample measurements	Peak area
1	(b) (4)
2	(b) (4)
3	(b) (4)
Measurement value	(b) (4)
Standard deviation	(b) (4)
Standard uncertainty	(b) (4)
Relative standard uncertainty	(b) (4)
Degree of freedom	(b) (4
	(b) (4)

14.2.3.3. Relative combined standard uncertainty of precision of the instrument

(b) (4)

(b) (4)

(b) (4)

(b) (4)

14.2.3.4. Effective degree of freedom of precision of the instrument

14.2.4. Relative combined standard uncertainty of valine analysis

14.2.5. Effective degree of freedom of valine analysis

14.2.6. Expanded uncertainty (U)

14.2.7. Result

(b) (4)

15. Robustness

	(b) (4)
	(b) (4)
	(b) (4)
	(b) (4)
(b) (4)	
	(b) (4)

	(b) (4)

Table 15. Data of robustness test

Factor	L-valine (%)	Recovery (%)	Retention time of L-valine	Average peak area of standard	Average peak area of sample
Standard condition			(b) (4)	15915610	15782377
35°C				12291928	12330444
45°C				18942060	18912625
0.8 mL/min				26135362	26103728
1.2 mL/min				8381739	8388608
CH3CN 9%				14742519	14717692
CH ₃ CN 15%				15232148	15206820
рН 2.3				4614004	4589815
pH 2.7				19682457	19674538

(a) (b) (4) 4.00-3.00-> 2.00-1.00-0.00-2.00 4.00 8.00 10.00 12.00 6.00 14.00 0.00 Minutes (b) (b) (4) 4.00-3.00-> 2.00-1.00-0.00-2.00 4.00 10.00 12.00 6.00 8.00 0.00 14.00 Mnutes (b) (4) Figure 12.

16. Impurity identification

Validation report - Dried L-Valine Fermentation Product

(a) 3.00-(b) (4) 2.50 2.00-1.50-> 1.00-0.50 0.00 -0.50 2.50 Minutes 2.00 4.00 4.50 0.50 1.00 1.50 3.00 3.50 5.00 5.50 **(**b) 3.00 (b) (4) 2.50 2.00-1.50 > 1.00 0.50 0.00 -0.50 0.50 1.00 1.50 2.00 4.50 5.00 3.50 2.50 4.00 5.50 3.00 Minutes (c) 3.00 (b) (4) 2.50 2.00-1.50 > 1.00 0.50 0.00 -0.50 0.50 1.00 1.50 2.00 2.50 3.50 4.00 4.50 5.00 5.50 3.00 Minutes

page 44 / 47

17. Conclusion

Table 16. Summary of validation test

	(b) (4)	There is no
Specificity		interference to
		peak response
		by difuent.
System Suitability		\cdot %RSD < 1%
Homogeneity of sample		\cdot %RSD < 1%
		• Recovery 98% ~ 102%
Stability of the sample		
		\cdot %RSD < 1%
Linearity		$\cdot R^2 > 0.9990$
Limit of Detection and		-
Limit of Quantification		
Precision		\cdot %RSD < 1%
A		$ \mathbf{E}_{n} < 1$
Accuracy		$ En \leq 1$
		· Recoverv 98%
Robustness		~ 102%
This validation regults and	firmed that all of the regults were guitable for the reference	as value and that
the analytical method could	the used for rapid and accurate I -value analysis	ice value and that
and analytical method could	a se asea for rupte and accurate L-vanite analysis.	

18. Raw data file

	Data file name	
Specificity		(b) (4
System Suitability		
Homogeneity of sample	-	
Stability of the sample		
Linearity		
Limit of Detection and Limit of Quantification		
Precision		
Accuracy		
Robustness		

Certificate of Analysis

150 17034 ANAB Cert# AB-1470

ISO/IEC 17025 Cert# AI-1467 ANAB

L-VALINE CERTIFIED REFERENCE MATERIAL

CERTIFIED PURITY: 98.9%, Ugm = ±0.07% k = 2.07 (Mass Balance/as is basis)

NOMINAL PACKAGE SIZE: 1g

CATALOG #: PHR1172

LOT #: LRAC2856

CERTIFICATE VERSION: LRAC2856.1

ISSUE DATE: 22 May 2019 Note: Certificates may be updated due to Pharmacopeial Lot changes or the availability of new data. (b) (4) for the most current version. Check our website at:

CRM EXPIRATION: 31 May 2023 (Proper Storage and Handling Required).

RECEIPT DATE: Note: this space is provided for convenience only and its use is not required.

STORAGE: Store at Room Temperature, keep container tightly closed. Attachment of a 20 mm aluminum crimp seal recommended for unused portions.

CHEMICAL FORMULA: C5H11NO2

MW: 117.15

PHYSICAL DESCRIPTION: White powder in amber vial CAS#: 72-18-4

HAZARDS: Read Safety Data Sheet before using. All chemical reference materials should be considered potentially hazardous and should be used only by qualified laboratory personnel.

(b) (4)

Page 1 of 8

INSTRUCTIONS FOR USE: Do not dry, use on the as is basis. The internal pressure of the container may be slightly different from the atmospheric pressure at the user's location. Open slowly and carefully to avoid dispersion of the material. This material is intended for Laboratory Use only. Not for drug, household or other uses.

CONTENTS

1.	L-Valine and moisture contents	•3
2.	Nitrogen containing components	3
3.	Compositional analysis of carbohydrates fraction	3
4.	Compositional analysis of free amino acids fraction	4
5.	Compositional analysis of amino acids fraction from biomass	6
6.	Compositional analysis of organic acids components	7
7.	Compositional analysis of inorganic components	8
8.	Overview of the quantifiable main components	8
9.	Results and methods of 'VAL Pro'	9

component	Unit	GVAL200910	GVAL200911	GVAL200912	GVAL200916	GVAL200917
L-valine (dry basis)	%					(б)
Moisture	%					
				(b) (4)		

1. L-valine and moisture contents in 5 batches of 'VAL Pro', in g per 100 g (%) of the product as is

2. Nitrogen containing components in 5 batches of 'VAL Pro', in g per 100 g (%) of the product as is

Component	Unit	GVAL200910	GVAL200911	GVAL200912	GVAL200916	GVAL200917
Ammonium (as NH ₃)	%	1				(b) (4)
Nitrates (as NO ₃)	%					
Betaine	%					
Sum of quantifiable NH3, NO3, betaine	%					

(b) (4)

3. Compositional analysis of the carbohydrates fraction in 5 batches of 'VAL Pro', in g per 100 g (%) of the

product as is

Component	Unit	GVAL200910	GVAL200911	GVAL200912	GVAL200916	GVAL200917
Trehalose	%					(b) (4)
Glucose	%					
Fructose	%					(b) (4)
Sucrose	%					
Isomaltose	%					
Maltose	%					

VAL Pro

Sum of quantifiable sugars	%	(b) (4)
		(6)

4. Amino acid contents in 5 batches of 'VAL Pro', in g per 100 g (%) of the product as is

Component	Unit	GVAL200910	GVAL200911	GVAL200912	GVAL200916	GVAL200917
Phosphoserine	%					(b) (4
Taurine	%					
Phosphoethanolamine	%					
Urea	%					
Aspartic acid	%					
Threonine	%					
Serine	%					
Glutamic acid	%					
Sarcosine	%					
α-Aminoadipic acid	%					
Glycine	%					
Alanine	%					
Citrulline	%					
α -Amino-n-butyric acid	%					
Cystine	%					
Methionine	%					
Cysthathionine	%					
Isoleucine	%					
Leucine	%					
Tyrosine	%					
Phenylalanine	%					

CJ Research Institute of Biotechnology

CJ BIO-RD form 100-01 REV.01

β-Alanine	%
β-Aminoisobutyric acid	%
γ-Amino-n-butyric acid	%
Ethanolamine	%
Hydroxylysine	%
Ornithine	%
Lysine	%
1-Methylhistidine	%
Histidine	%
3-methylhistidine	%
Asparagine	%
Carnosine	%
Arginine	%
Hydroxyproline	%
Proline	%
Sum of amino acids	0/2
other than L-valine	70

VAL Pro

Component	Unit	GVAL200910	GVAL200911	GVAL200912	GVAL200916	GVAL200917
Aspartic acid	%					(b) (4)
Threonine	%	-				
Serine	%					
Glutamic acid	%					
Glycine	%					
Alanine	%					
Cystine	%					(b) (4)
Valine	%					
Methionine	%					
Isoleucine	%					
Leucine	%					
Tyrosine	%					
Phenylalanine	%					
Lysine	%					
Histidine	%	Carlo and				
Arginine	%					
Proline	%					
Tryptophan	%					
Sum of 'hydrolyzed amino acids' in insoluble part ¹	%					(b) (4)

5. Hydrolyzed amino acids contents in insoluble part in 5 batches of 'VAL Pro', in g per 100 g (%) of the product as is
VAL Pro

6. Compositional analysis of organic acids fraction in 5 batches of 'VAL Pro', in g per 100 g (%) of the product as is

Component	Unit	GVAL200910	GVAL200911	GVAL200912	GVAL200916	GVAL200917
Citric Acid	%					(b) (4
Malic Acid	%					
Succinic Acid	%					
Lactic Acid	%					
Formic Acid	%					
Acetic Acid	%					
Sum of quantifiable organic acids	%					

(b) (4)

(b) (4)

Component	Unit	GVAL200910	GVAL200911	GVAL200912	GVAL200916	GVAL200917
Ash	%					(b) (4
Sodium	%					
Potassium	%					
Calcium	%					
Magnesium	%					
Fluoride	%					
Bromide	%					
Chloride	%					
Phosphate	%					
Sulfate	%					
Sum of quantifiable inorganic anions and cations	%					

7. Compositional analysis of inorganic components in 5 batches of 'VAL Pro', in g per 100 g (%) of the product as

(b) (4)

8. Overview of the quantifiable main components of 'VAL Pro', in g per 100 g (%) of the product as is

Component	Unit	GVAL200910	GVAL200911	GVAL200912	GVAL200916	GVAL200917
L-valine (as dry basis)	%					(b) (4)
Hydrolyzed amino acids (in insoluble biomass part)	%					
Free amino acids (other than L-valine)	%					
Moisture	%					

CJ BIO-RD form 100-01 REV.01

Ammonium, nitrates and betaine	đ	%		(6) (4
Sugars	=	%		
Organic acids		%		
Inorganic anions/cations		%		
Ash		%		
			(b) (4)	

9. Results and methods of 'VAL Pro'

Component	Results ¹	Analytical method
L-valine		(b) (4) HPLC-FLD (modified AOAC 999.13)
		AOAC 994.12
Hydrolyzed amino acids		AOAC 988.15
(m insolucie ciomass part)		AOAC 985.28
Free amino acids (other than L-valine)		AOAC 999.13
Moisture		AOAC 934.01
Ammonium minutes and hate in		ASTM D 4327-03
Annionum, mutates and betame		Korean Feed Standards Codex, 18 of chapter 21.
Sugars		AOAC 995.13
Organic acids		Korean Feed Standards Codex, 1 of chapter 14
		ASTM D 4327-03
morganic amons/cations		ASTM D 6919–03
Ash		AOAC 942.05

¹Results are mean value of five batches

Result Set Report Validation

Sample Set Name:	Granule Valine_1 Day	Processed By:	System/Administrator
Sample Set Method:	Granule Valine_1 Day	Printed By:	System
System Node:	Client13	Result Set ID:	
System Name:	UC10	# of Results:	20
Acquired By:	System		
Sample Set Start Date:	12/17/2020 6:52:02 PM KST		
Sample Set Finish Date:	12/18/2020 12:24:42 PM KST		

Sample Set Table

	Sample Name	Sample Type	Vial	lnj #	Injection Volume (ul)	Acquistion Method Set	F	Processed Channel Descr.
1	SS1_1	Unknow n	68	1	5.00	VAL_ACR	Detector A	(b) (4)
2	SS1_2	Unknow n	68	1	5.00	VAL_ACR	Detector A	
3	SS1_3	Unknow n	68	1	5.00	VAL_ACR	Detector A	
4	SS1_4	Unknow n	68	1	5.00	VAL_ACR	Detector A	
5	SS1_5	Unknow n	68	1	5.00	VAL_ACR	Detector A	
6	SS1_6	Unknow n	68	1	5.00	VAL_ACR	Detector A	
7	SS1_7	Unknow n	68	1	5.00	VAL_ACR	Detector A	
8	SS1_8	Unknow n	68	1	5.00	VAL_ACR	Detector A	
9	SS1_9	Unknow n	68	1	5.00	VAL_ACR	Detector A	
10	SS1_10	Unknow n	68	1	5.00	VAL_ACR	Detector A	
11	SS4_1	Unknow n	69	1	5.00	VAL_ACR	Detector A	
12	SS4_2	Unknow n	69	1	5.00	VAL_ACR	Detector A	
13	SS4_3	Unknow n	69	1	5.00	VAL_ACR	Detector A	
14	SS4_4	Unknow n	69	1	5.00	VAL_ACR	Detector A	
15	SS4_5	Unknow n	69	1	5.00	VAL_ACR	Detector A	
16	SS4_6	Unknow n	69	1	5.00	VAL_ACR	Detector A	
17	SS4_7	Unknow n	69	1	5.00	VAL_ACR	Detector A	
18	SS4_8	Unknow n	69	1	5.00	VAL_ACR	Detector A	
19	SS4_9	Unknow n	69	1	5.00	VAL_ACR	Detector A	
20	SS4_10	Unknow n	69	1	5.00	VAL_ACR	Detector A	

1/1		
	luco	

	Peak Name	RT	Area	USP Plate Count
1	Valine			(b) (4)

Valine

9.00

	Peak Name	RT	Area	USP Plate Count
1	Valine			(6) (4)

	Peak Name	RT	Area	USP Plate Count
1	Valine			(b) (4)

9.00

4.00

Minutes

Area

3.00

RT

2.00

Peak Name

Valine

5.00

6.00

USP Plate Count

7.00

(b) (4)

8.00

9.00

0.00-

0 00

1.00

1

	Peak Name	RT	Area	USP Plate Count
1	Valine			(b) (4)

(h

	Peak Name	RT	Area	USP Plate Count
1	Valine			(0) (4)

			Minutes	
	Peak Name	RT	Area	USP Plate Count
1	Valine			(0) (4)

Minutes

	Peak Name	RT	Area	USP Plate Count
1	Valine			(b) (4)

	Peak Name	RT	Area	USP Plate Count
1	Valine			(b) (4)

Software: Empower 3 Software Build 3471

Result Set Report Validation

Sample Set Name:	Granule Valine_2 Day	Processed By:	System/Administrator
System Node:	Client13	Result Set ID:	System
System Name:	UC10	# of Results:	19
Acquired By:	System		
Sample Set Start Date:	12/18/2020 12:24:43 PM KST		
Sample Set Finish Date:	12/19/2020 6:05:57 AM KST		

	Sample Name	Sample Type	Vial	lnj #	Injection Volume (ul)	Acquistion Method Set	I	Processed Channel Descr.
1	STD_1	Unknow n	77	1	5.00	VAL_ACR	Detector A	(b) (4)
2	H1_1	Unknow n	78	1	5.00	VAL_ACR	Detector A	
3	H2_1	Unknow n	79	1	5.00	VAL_ACR	Detector A	
4	H3_1	Unknow n	80	1	5.00	VAL_ACR	Detector A	
5	H4_1	Unknow n	81	1	5.00	VAL_ACR	Detector A	
6	H5_1	Unknow n	82	1	5.00	VAL_ACR	Detector A	
7	STD_2	Unknow n	83	1	5.00	VAL_ACR	Detector A	
8	H1_2	Unknow n	84	1	5.00	VAL_ACR	Detector A	
9	H2_2	Unknow n	85	1	5.00	VAL_ACR	Detector A	
10	H3_2	Unknow n	86	1	5.00	VAL_ACR	Detector A	
11	H4_2	Unknow n	87	1	5.00	VAL_ACR	Detector A	
12	H5_2	Unknow n	88	1	5.00	VAL_ACR	Detector A	
13	STD_3	Unknow n	89	1	5.00	VAL_ACR	Detector A	
14	H1_3	Unknow n	90	1	5.00	VAL_ACR	Detector A	
15	H2_3	Unknow n	91	1	5.00	VAL_ACR	Detector A	
16	H3_3	Unknow n	92	1	5.00	VAL_ACR	Detector A	
17	H4_3	Unknow n	93	1	5.00	VAL_ACR	Detector A	
18	H5_3	Unknow n	94	1	5.00	VAL_ACR	Detector A	
19	STD_4	Unknow n	95	1	5.00	VAL_ACR	Detector A	

Sample Set Table

1

Valine

9.00

	Peak Name	RT	Area	USP Plate Count
1	Valine			(b) (4)

	Peak Name	RT	Area	USP Plate Count
1	Valine			(b) (4)

Software: Empower 3 Software Build 3471

Result Set Report Validation

Sample Set Name: Sample Set Method:	Granule Valine_1 Day Granule Valine_1 Day	Processed By: Printed By:	System/Administrator System
System Node: System Name:	UC10	Result Set ID: # of Results:	21
Acquired By: Sample Set Start Date:	System 12/17/2020 6:52:02 PM KST		
Sample Set Finish Date:	12/18/2020 12:24:42 PM KST		

Sample Set Table

	Sample Name	Sample Type	Vial	lnj#	Injection Volume (ul)	Acquistion Method Set	Processed Channel Descr.	
1	SSTD11_1	Unknow n	1	1	5.00	VAL_ACR	Detector A	(b) (
2	SSPL11_1	Unknow n	2	1	5.00	VAL_ACR	Detector A	
3	SSTD11_2	Unknow n	3	1	5.00	VAL_ACR	Detector A	
4	SSPL11_2	Unknow n	4	1	5.00	VAL_ACR	Detector A	
5	SSTD11_3	Unknow n	5	1	5.00	VAL_ACR	Detector A	
6	SSPL11_3	Unknow n	6	1	5.00	VAL_ACR	Detector A	
7	SSTD11_4	Unknow n	7	1	5.00	VAL_ACR	Detector A	
8	SSTD12_1	Unknow n	8	1	5.00	VAL_ACR	Detector A	
9	SSPL12_1	Unknow n	9	1	5.00	VAL_ACR	Detector A	
10	SSTD12_2	Unknow n	10	1	5.00	VAL_ACR	Detector A	
11	SSPL12_2	Unknow n	11	1	5.00	VAL_ACR	Detector A	
12	SSTD12_3	Unknow n	12	1	5.00	VAL_ACR	Detector A	
13	SSPL12_3	Unknow n	13	1	5.00	VAL_ACR	Detector A	
14	SSTD12_4	Unknow n	14	1	5.00	VAL_ACR	Detector A	
15	SSTD13_1	Unknow n	15	1	5.00	VAL_ACR	Detector A	
16	SSPL13_1	Unknow n	16	1	5.00	VAL_ACR	Detector A	
17	SSTD13_2	Unknow n	17	1	5.00	VAL_ACR	Detector A	
18	SSPL13_2	Unknow n	18	1	5.00	VAL_ACR	Detector A	
19	SSTD13_3	Unknow n	19	1	5.00	VAL_ACR	Detector A	
20	SSPL13_3	Unknow n	20	1	5.00	VAL_ACR	Detector A	
21	SSTD13_4	Unknow n	21	1	5.00	VAL_ACR	Detector A	

	Peak Name	RT	Area	USP Plate Count
1	Valine			(b) (4)

	Peak Name	RT	Area	USP Plate Count
1	Valine			(b) (4)

Minutes

	Peak Name	RT	Area	USP Plate Count
1	Valine			(b) (4)

	Peak Name	RT	Area	USP Plate Count
1	Valine			(b) (4)

	Peak Name	RT	Area	USP Plate Count
1	Valine			(6) (4)

Software: Empower 3 Software Build 3471

Result Set Report Validation

Sample Set Name: Sample Set Method: System Node:	Granule Valine_2 Day Granule Valine_2 Day Client13	Processed By: Printed By: Result Set ID:	System/Administrator System
System Name:	UC10	# of Results:	21
Acquired By:	System		
Sample Set Start Date:	12/18/2020 12:24:43 PM KST		
Sample Set Finish Date:	12/19/2020 6:05:57 AM KST		

Sample Set Table

	Sample Name	Sample Type	Vial	lnj#	Injection Volume (ul)	Acquistion Method Set		Processed Channel Descr.
1	SSTD21_1	Unknow n	1	1	5.00	VAL_ACR	Detector A	(b)
2	SSPL21_1	Unknow n	2	1	5.00	VAL_ACR	Detector A	
3	SSTD21_2	Unknow n	3	1	5.00	VAL_ACR	Detector A	
4	SSPL21_2	Unknow n	4	1	5.00	VAL_ACR	Detector A	
5	SSTD21_3	Unknow n	5	1	5.00	VAL_ACR	Detector A	
6	SSPL21_3	Unknow n	6	1	5.00	VAL_ACR	Detector A	
7	SSTD21_4	Unknow n	7	1	5.00	VAL_ACR	Detector A	
8	SSTD22_1	Unknow n	8	1	5.00	VAL_ACR	Detector A	
9	SSPL22_1	Unknow n	9	1	5.00	VAL_ACR	Detector A	
10	SSTD22_2	Unknow n	10	1	5.00	VAL_ACR	Detector A	
11	SSPL22_2	Unknow n	11	1	5.00	VAL_ACR	Detector A	
12	SSTD22_3	Unknow n	12	1	5.00	VAL_ACR	Detector A	
13	SSPL22_3	Unknow n	13	1	5.00	VAL_ACR	Detector A	
14	SSTD22_4	Unknow n	14	1	5.00	VAL_ACR	Detector A	
15	SSTD23_1	Unknow n	15	1	5.00	VAL_ACR	Detector A	
16	SSPL23_1	Unknow n	16	1	5.00	VAL_ACR	Detector A	
17	SSTD23_2	Unknow n	17	1	5.00	VAL_ACR	Detector A	
18	SSPL23_2	Unknow n	18	1	5.00	VAL_ACR	Detector A	
19	SSTD23_3	Unknow n	19	1	5.00	VAL_ACR	Detector A	
20	SSPL23_3	Unknow n	20	1	5.00	VAL_ACR	Detector A	
21	SSTD23_4	Unknow n	21	1	5.00	VAL_ACR	Detector A	

	SAMPLE	INFORMATI	O N	
Sample Name: Sample Type: Vial: Injection #: Injection Volume: Run Time: Date Acquired:	SSTD21_4 Unknown 7 1 5.00 ul 9.0 Minutes 12/18/2020 8:12:10 PM KST	Acquired By: Sample Set Name: Acq. Method Set: Processing Method: Channel Name: Proc. Chnl. Descr.:	System Granule Valine_2 Day VAL_ACR Valine_1 Detector A Detector A	(b) (4)
Date Processed:	12/21/2020 11:51:14 AM KST			(b) (4)
4.00-				
3.00-				
> 2.00-				
1.00-				
0.00-				
000 100	200 300	400 500 6		9

Minutes

	Peak Name	RT	Area	USP Plate Count
1	Valine			(b) (4)

Software: Empower 3 Software Build 3471

Result Set Report Validation

Sample Set Name: Sample Set Method: System Node: System Name: Acquired By: Sample Set Start Date:	Granule Valine_3 Day_2nd Granule Valine_3 Day_2nd Client13 UC10 System 12/19/2020 9:59:47 PM KST	Processed By: Printed By: Result Set ID: # of Results:	System/Administrator System 21
Sample Set Start Date:	12/19/2020 9:59:47 PM KST		
Sample Set Finish Date:	12/20/2020 3:30:48 PM KST		

	Sample Name	Sample Type	Vial	lnj#	Injection Volume (ul)	Acquistion Method Set	F	Processed Channel Descr.
1	SSTD31_1	Unknow n	1	1	5.00	VAL_ACR	Detector A	(b) (4)
2	SSPL31_1	Unknow n	2	1	5.00	VAL_ACR	Detector A	
3	SSTD31_2	Unknow n	3	1	5.00	VAL_ACR	Detector A	
4	SSPL31_2	Unknow n	4	1	5.00	VAL_ACR	Detector A	
5	SSTD31_3	Unknow n	5	1	5.00	VAL_ACR	Detector A	
6	SSPL31_3	Unknow n	6	1	5.00	VAL_ACR	Detector A	
7	SSTD31_4	Unknow n	7	1	5.00	VAL_ACR	Detector A	
8	SSTD32_1	Unknow n	8	1	5.00	VAL_ACR	Detector A	
9	SSPL32_1	Unknow n	9	1	5.00	VAL_ACR	Detector A	
10	SSTD32_2	Unknow n	10	1	5.00	VAL_ACR	Detector A	
11	SSPL32_2	Unknow n	11	1	5.00	VAL_ACR	Detector A	
12	SSTD32_3	Unknow n	12	1	5.00	VAL_ACR	Detector A	
13	SSPL32_3	Unknow n	13	1	5.00	VAL_ACR	Detector A	
14	SSTD32_4	Unknow n	14	1	5.00	VAL_ACR	Detector A	
15	SSTD33_1	Unknow n	15	1	5.00	VAL_ACR	Detector A	
16	SSPL33_1	Unknow n	16	1	5.00	VAL_ACR	Detector A	
17	SSTD33_2	Unknow n	17	1	5.00	VAL_ACR	Detector A	
18	SSPL33_2	Unknow n	18	1	5.00	VAL_ACR	Detector A	
19	SSTD33_3	Unknow n	19	1	5.00	VAL_ACR	Detector A	
20	SSPL33_3	Unknow n	20	1	5.00	VAL_ACR	Detector A	
21	SSTD33_4	Unknow n	21	1	5.00	VAL ACR	Detector A	

Sample Set Table

	Peak Name	RT	Area	USP Plate Count
1	Valine			(b) (4)

		SAN	1 P L E	IN	INFORMATION				
Sample Name Sample Type Vial: Injection #: Injection Volu Run Time:	e: : me:	SSTD33_2 Unknown 17 1 5.00 ul 9.0 Minutes			Acquired Sample S Acq. Met Processi Channel Proc. Ch	l By: Set Name: thod Set: ing Method: Name: nl. Descr.:	System Granule VAL_AC Valine_1 Detector Detector	Valine_3 Day_2 R I r A r A	2nd (b) (4)
Date Acquire Date Process	d: ed:	12/20/2020 9:5 12/20/2020 5:0	5:45 AM KST 3:10 PM KST						
4.00- 3.00- > 2.00- 1.00- 0.00-									(b) (4)-
0 00	1.00	2.00	3.00	4.00	5. Minutes	.00	6.00	7.00 8.0)0 <u>9</u> .0
	1	Peak Name	RT		Area	USP Pla	te Count		

Software: Empower 3 Software Build 3471

Result Set Report Validation

Sample Set Name: Sample Set Method: System Node:	Granule Valine_1 Day Granule Valine_1 Day Client13	Processed By: Printed By: Result Set ID:	System/Administrator System
System Name: Acquired By:	UC10 System	# of Results:	15
Sample Set Start Date: Sample Set Finish Date:	12/17/2020 6:52:02 PM KST 12/18/2020 12:24:42 PM KST		

	Sample Name	Sample Type	Vial	lnj #	Injection Volume (ul)	Acquistion Method Set	F	Processed Channel Descr.
1	L1_1	Unknow n	29	1	5.00	VAL_ACR	Detector A	(b) (4)
2	L1_2	Unknow n	30	1	5.00	VAL_ACR	Detector A	
3	L1_3	Unknow n	31	1	5.00	VAL_ACR	Detector A	
4	L2_1	Unknow n	32	1	5.00	VAL_ACR	Detector A	
5	L2_2	Unknow n	33	1	5.00	VAL_ACR	Detector A	
6	L2_3	Unknow n	34	1	5.00	VAL_ACR	Detector A	
7	L3_1	Unknow n	35	1	5.00	VAL_ACR	Detector A	
8	L3_2	Unknow n	36	1	5.00	VAL_ACR	Detector A	
9	L3_3	Unknow n	37	1	5.00	VAL_ACR	Detector A	
10	L4_1	Unknow n	38	1	5.00	VAL_ACR	Detector A	
11	L4_2	Unknow n	39	1	5.00	VAL_ACR	Detector A	
12	L4_3	Unknow n	40	1	5.00	VAL_ACR	Detector A	
13	L5_1	Unknow n	41	1	5.00	VAL_ACR	Detector A	
14	L5_2	Unknow n	42	1	5.00	VAL_ACR	Detector A	
15	L5_3	Unknow n	43	1	5.00	VAL_ACR	Detector A	

Sample Set Table

	Peak Name	RT	Area	USP Plate Count
1	Valine			(b) (4)

	SAMPLE I	INFORMATI	O N	
Sample Name: Sample Type: Vial: Injection #: Injection Volume: Run Time:	L2_2 Unknown 33 1 5.00 ul 9.0 Minutes	Acquired By: Sample Set Name: Acq. Method Set: Processing Method: Channel Name: Proc. Chnl. Descr.:	System Granule Valine_1 Day VAL_ACR Valine_1 Detector A Detector A	(b) (4)
Date Acquired: Date Processed:	12/17/2020 11:04:00 PM KST 12/20/2020 5:13:50 PM KST			
4.00-				(b) (4)
4.00				
3.00-				
> 2.00-				
1.00-				
0.00-				
0 00 1.00	2.00 3.00 4	4.00 5.00 6 Minutes	6.00 7.00 8.00	9.00
	Peak Name RT	Area USP Plat	e Count	

1

Valine

	Peak Name	RT	Area	USP Plate Count
1	Valine			(6) (4)

Software: Empower 3 Software Build 3471

Result Set Report Validation

Sample Set Name: Sample Set Method: System Node: System Name: Acquired By: Sample Set Start Date:	Granule Valine_1 Day Granule Valine_1 Day Client13 UC10 System 12/17/2020 6:52:02 PM KST	Processed By: Printed By: Result Set ID: # of Results:	System/Administrator System 3
Sample Set Start Date:	12/17/2020 6:52:02 PM KST		

Sample Set Table

	Sample Name	Sample Type	Vial	lnj #	Injection Volume (ul)	Acquistion Method Set	I	Processed Channel Descr.	
1	BLANK	Unknow n	105	1	5.00	VAL_ACR	Detector A	(b) ((4)
2	LOD_1ppm	Unknow n	44	1	5.00	VAL_ACR	Detector A		
3	LOQ_3ppm	Unknow n	46	1	5.00	VAL_ACR	Detector A		

(b) (4)

1

Valine

Software: Empower 3 Software Build 3471

Result Set Report Validation

Sample Set Name:	Granule Valine_1 Day	Processed By:	System/Administrator
Sample Set Method.	Glanule valine_1 Day		System
System Node:	Client 13	Result Set ID:	00
System Name:		# of Results:	20
Acquired By:	System		
Sample Set Start Date:	12/17/2020 6:52:02 PM KST		
Sample Set Finish Date:	12/18/2020 12:24:42 PM KST		

	Sample Name	Sample Type	Vial	lnj #	Injection Volume (ul)	Acquistion Method Set	F	Processed Channel Descr.	
1	ZSTD_1	Unknow n	48	1	5.00	VAL_ACR	Detector A		(b) (
2	ZSTD_2	Unknow n	49	1	5.00	VAL_ACR	Detector A		
3	ZSTD_3	Unknow n	50	1	5.00	VAL_ACR	Detector A		
4	ZSTD_4	Unknow n	51	1	5.00	VAL_ACR	Detector A		
5	ZSTD_5	Unknow n	52	1	5.00	VAL_ACR	Detector A		
6	ZSTD_6	Unknow n	53	1	5.00	VAL_ACR	Detector A		
7	ZSTD_7	Unknow n	54	1	5.00	VAL_ACR	Detector A		
8	ZSTD_8	Unknow n	55	1	5.00	VAL_ACR	Detector A		
9	ZSTD_9	Unknow n	56	1	5.00	VAL_ACR	Detector A		
10	ZSTD_10	Unknow n	57	1	5.00	VAL_ACR	Detector A		
11	ZSPL_1	Unknow n	58	1	5.00	VAL_ACR	Detector A		
12	ZSPL_2	Unknow n	59	1	5.00	VAL_ACR	Detector A		
13	ZSPL_3	Unknow n	60	1	5.00	VAL_ACR	Detector A		
14	ZSPL_4	Unknow n	61	1	5.00	VAL_ACR	Detector A		
15	ZSPL_5	Unknow n	62	1	5.00	VAL_ACR	Detector A		
16	ZSPL_6	Unknow n	63	1	5.00	VAL_ACR	Detector A		
17	ZSPL_7	Unknow n	64	1	5.00	VAL_ACR	Detector A		
18	ZSPL_8	Unknow n	65	1	5.00	VAL_ACR	Detector A		
19	ZSPL_9	Unknow n	66	1	5.00	VAL_ACR	Detector A		
20	ZSPL_10	Unknow n	67	1	5.00	VAL_ACR	Detector A		

Sample Set Table

	SAM	IPLE I	NFORMATI	O N	
Sample Name: Sample Type: Vial: Injection #: Injection Volume Run Time:	ZSTD_7 Unknown 54 1 : 5.00 ul 9.0 Minutes		Acquired By: Sample Set Name: Acq. Method Set: Processing Method: Channel Name: Proc. Chnl. Descr.:	System Granule Valine_1 VAL_ACR Valine_1 Detector A Detector A	Day (b) (4)
Date Acquired: Date Processed:	12/18/2020 3:14 12/20/2020 5:1	4:50 AM KST 5:23 PM KST			
4.00-					(ხ) (4)
3.00-					
> 2.00-					
1.00-					
0.00-					
0.00 1.0	0 2.00	3.00 4.0	0 5.00 6 Minutes	.00 7 .00	'' '''' 8.00 9.0
	De els Nerre	DT		- Osumt	

	Peak Name	RT	Area	USP Plate Count
1	Valine			(0) (4)

		SAN	1 P L E	ΙN	FOR	ΜΑΤΙ	O N			
Sample Name Sample Type Vial: Injection #: Injection Volu Run Time:	e: e: ume:	ZSTD_8 Unknown 55 1 5.00 ul 9.0 Minutes			Acquired I Sample Se Acq. Meth Processin Channel N Proc. Chn	By: et Name: od Set: g Method: vame: I. Descr.:	System Granule VAL_AC Valine_1 Detector Detector	Valine_1 Day R A	y (b	ı) (4)
Date Acquire Date Process	ed: sed:	12/18/2020 3:2 12/20/2020 5:1	4:31 AM KST 5:23 PM KST							
4.00- 3.00- > 2.00- 1.00- 0.00-										(b) (4)
o oo	1.00	2.00	3.00	4.00	5.00 Minutes	0 6.	00	7.00	8.00	9.00
	1	Peak Name Valine	RT	4	Area	USP Plate	e Count			

	Peak Name	RT	Area	USP Plate Count
1	Valine			(b) (4)

Software: Empower 3 Software Build 3471

Result Set Report Validation

Sample Set Name: Sample Set Method: System Node: System Name: Acquired By: Sample Set Start Date:	Granule Valine_1 Day Granule Valine_1 Day Client13 UC10 System 12/17/2020 6:52:02 PM KST	Processed By: Printed By: Result Set ID: # of Results:	System/Administrator System 7
Acquired By: Sample Set Start Date:	System 12/17/2020 6:52:02 PM KST		
Sample Set Finish Date:	12/18/2020 12:24:42 PM KST		

Sample Set Table

	Sample Name	Sample Type	Vial	lnj #	Injection Volume (ul)	Acquistion Method Set	I	Processed Channel Descr.	
1	ASTD_1	Unknow n	22	1	5.00	VAL_ACR	Detector A	(1	b) (4)
2	ASPL_1	Unknow n	23	1	5.00	VAL_ACR	Detector A		
3	ASTD_2	Unknow n	24	1	5.00	VAL_ACR	Detector A		
4	ASPL_2	Unknow n	25	1	5.00	VAL_ACR	Detector A		
5	ASTD_3	Unknow n	26	1	5.00	VAL_ACR	Detector A		
6	ASPL_3	Unknow n	27	1	5.00	VAL_ACR	Detector A		
7	ASTD_4	Unknow n	28	1	5.00	VAL_ACR	Detector A		

_										
			SAN	1 P L E	IN	FOR	ΜΑΤΙ	O N		
	Sample Nam Sample Type Vial: Injection #: Injection Volu Run Time:	e: e: ume:	ASTD_1 Unknown 22 1 5.00 ul 9.0 Minutes			Acquired Sample S Acq. Meth Processin Channel I Proc. Chr	By: et Name: nod Set: ng Method: Name: nl. Descr.:	System Granule VAL_AC Valine_1 Detector Detector	Valine_1 Day R A	y (b) (4)
	Date Acquire Date Proces	ed: sed:	12/18/2020 11: 12/20/2020 5:1	17:30 AM KS 2:21 PM KST	Г					
										(b)
	4.00-									
	3.00-									
>	2.00-									
	1.00-									
	0.00-									
	0 00	1.00	2.00	3.00	4.00	5.0 Minutes	0 6	5.00	7.00	8.00 9
			Peak Name	RT	A	rea	USP Plat	e Count		
		1	Valine					(*) (*)		

	SAMPLE	INFORMATI	O N	
Sample Name: Sample Type: Vial: Injection #: Injection Volume: Run Time: Date Acquired: Date Processed:	ASPL_2 Unknown 25 1 5.00 ul 9.0 Minutes 12/18/2020 11:46:32 AM KST 12/20/2020 5:12:22 PM KST	Acquired By: Sample Set Name: Acq. Method Set: Processing Method: Channel Name: Proc. Chnl. Descr.:	System Granule Valine_1 Day VAL_ACR Valine_1 Detector A Detector A	(b) (4)
4.00-				(b) (4)
3.00-				
> 200-				
1.00-				
0.00-				
0 00 1.00	2.00 3.00	4.00 5.00 6. Minutes	.00 7.00 8.00	9.00

	Peak Name	RT	Area	USP Plate Count
1	Valine			(b) (4)

Software: Empower 3 Software Build 3471

Result Set Report Validation

Sample Set Name:	Granule Valine_4 Day	Processed By:	System/Administrator
Sample Set Method:	Granule Vallne_4 Day	Printed By:	System
System Node:	Client13	Result Set ID:	
System Name:	UC10	# of Results:	14
Acquired By:	System		
Sample Set Start Date:	12/20/2020 3:41:57 PM KST		
Sample Set Finish Date:	12/20/2020 6:26:58 PM KST		

	Sample Name	Sample Type	Vial	lnj #	Injection Volume (ul)	Acquistion Method Set	Processed Channel Descr.	
1	35STD_1	Unknow n	36	1	5.00	VAL_ACR_Oven Temp_35	Detector A	(b) (4
2	35SPL_1	Unknow n	37	1	5.00	VAL_ACR_Oven Temp_35	Detector A	
3	35STD_2	Unknow n	38	1	5.00	VAL_ACR_Oven Temp_35	Detector A	
4	35SPL_2	Unknow n	39	1	5.00	VAL_ACR_Oven Temp_35	Detector A	
5	35STD_3	Unknow n	40	1	5.00	VAL_ACR_Oven Temp_35	Detector A	
6	35SPL_3	Unknow n	41	1	5.00	VAL_ACR_Oven Temp_35	Detector A	
7	35STD_4	Unknow n	42	1	5.00	VAL_ACR_Oven Temp_35	Detector A	
8	45STD_1	Unknow n	43	1	5.00	VAL_ACR_Oven Temp_45	Detector A	
9	45SPL_1	Unknow n	44	1	5.00	VAL_ACR_Oven Temp_45	Detector A	
10	45STD_2	Unknow n	45	1	5.00	VAL_ACR_Oven Temp_45	Detector A	
11	45SPL_2	Unknow n	46	1	5.00	VAL_ACR_Oven Temp_45	Detector A	
12	45STD_3	Unknow n	47	1	5.00	VAL_ACR_Oven Temp_45	Detector A	
13	45SPL_3	Unknow n	48	1	5.00	VAL_ACR_Oven Temp_45	Detector A	
14	45STD_4	Unknow n	49	1	5.00	VAL_ACR_Oven Temp_45	Detector A	

Sample Set Table

	Peak Name	RT	Area	USP Plate Count	
1	Valine			(b) (4)	

		SAN	1 P L E	ΙN	FOR	МАТ	ΙΟΝ			
Sample Name Sample Type: Vial: Injection #: Injection Volu Run Time:	e: 3 : L 3 me: 5 9	5SPL_2 Jnknown 9 5.00 ul 9.0 Minutes			Acquired Sample S Acq. Meth Processir Channel I Proc. Chr	By: tet Name: nod Set: ng Method Name: nl. Descr.:	System Granule VAL_AC : Valine_ Detecto Detecto	Valine_4 CR_Oven T Femp 35 r A r A	Day Гетр_35	(b) (4)
Date Acquired Date Process	d: 1 ed: 1	2/20/2020 4:1 2/20/2020 5:4	1:35 PM KST 1:31 PM KST							
										(b) (4)
4.00-										
3.00-										
> 2.00-										
1.00-										
0.00-										
0 00	1.00	2.00	3.00	4.00	5.0 Minutes	0	6.00	7.00	8.00	9.0
Г								1		

	Peak Name	RT	Area	USP Plate Count
1	Valine			(6) (4)

Sample Name: 35STD_4 Acquired By: System Sample Type: Unknown Sample Set Name: Granule Valine_4 Day Vial: 42 Acq. Method Set: VAL_ACR_Oven Temp_35 Injection #: 1 Processing Method: Valine_Temp 35 Injection Volume: 5.00 ul Channel Name: Detector A Run Time: 9.0 Minutes Proc. Chnl. Descr.: Detector A Date Acquired: 12/20/2020 4:40:37 PM KST Detector A Detector A 4.00- 3.00- 3.00- Sample Set Name: System		S A M P	<u>LE INFORM</u>	<u>ATION</u>		
Date Acquired: 12/20/2020 4:40:37 PM KST Date Processed: 12/20/2020 5:41:32 PM KST 4.00- 3.00-	Sample Name Sample Type Vial: Injection #: Injection Volu Run Time:	e: 35STD_4 e: Unknown 42 1 ume: 5.00 ul 9.0 Minutes	Acquired B Sample Se Acq. Metho Processing Channel Na Proc. Chnl.	y: System t Name: Granule od Set: VAL_AC Method: Valine_ ame: Detecto Descr.: Detecto	e Valine_4 Day CR_Oven Temp_35 Temp 35 r A r A	(b) (4)
4.00- 3.00-	Date Acquire Date Process	ed: 12/20/2020 4:40:37 sed: 12/20/2020 5:41:32	PM KST PM KST			
3.00-	4.00-					(b) (4)
3.00-	4.00					
	3.00-					
> 2.00-	> 2.00-					
1.00-	1.00-					
0.00-	0.00-					
0 00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 Minutes	0 00	1.00 2.00 3.0	0 4.00 5.00 Minutes	6.00	7.00 8.00	9.

	Peak Name	RT	Area	USP Plate Count
1	Valine			(b) (4)

Software: Empower 3 Software Build 3471

Result Set Report Validation

Sample Set Name:	Granule Valine_3 Day_2nd	Processed By:	System/Administrator
Sample Set Method:	Granule Valine_3 Day_2nd	Printed By:	System
System Node:	Client13	Result Set ID:	
System Name:	UC10	# of Results:	14
Acquired By:	System		
Sample Set Start Date:	12/19/2020 9:59:47 PM KST		
Sample Set Finish Date:	12/20/2020 3:30:48 PM KST		

	Sample Name	Sample Type	Vial	lnj #	Injection Volume (ul)	Acquistion Method Set	F	Processed Channel Descr.	
1	FSTD1_1	Unknow n	22	1	5.00	VAL_ACR_Flow Rate 08	Detector A	(b) (4	
2	FSPL1_1	Unknow n	23	1	5.00	VAL_ACR_Flow Rate 08	Detector A		
3	FSTD1_2	Unknow n	24	1	5.00	VAL_ACR_Flow Rate 08	Detector A		
4	FSPL1_2	Unknow n	25	1	5.00	VAL_ACR_Flow Rate 08	Detector A		
5	FSTD1_3	Unknow n	26	1	5.00	VAL_ACR_Flow Rate 08	Detector A		
6	FSPL1_3	Unknow n	27	1	5.00	VAL_ACR_Flow Rate 08	Detector A		
7	FSTD1_4	Unknow n	28	1	5.00	VAL_ACR_Flow Rate 08	Detector A		
8	FSTD2_4	Unknow n	35	1	5.00	VAL_ACR_Flow Rate 12	Detector A		
9	FSPL2_3	Unknow n	34	1	5.00	VAL_ACR_Flow Rate 12	Detector A		
10	FSPL2_2	Unknow n	32	1	5.00	VAL_ACR_Flow Rate 12	Detector A		
11	FSTD2_2	Unknow n	31	1	5.00	VAL_ACR_Flow Rate 12	Detector A		
12	FSTD2_3	Unknow n	33	1	5.00	VAL_ACR_Flow Rate 12	Detector A		
13	FSPL2_1	Unknow n	30	1	5.00	VAL_ACR_Flow Rate 12	Detector A		
14	FSTD2_1	Unknow n	29	1	5.00	VAL_ACR_Flow Rate 12	Detector A		

Sample Set Table

		SAMPLE	IN	FORMATI	O N	
	Sample Name: Sample Type: Vial: Injection #: Injection Volume: Run Time:	FSTD1_1 Unknown 22 1 5.00 ul 14.0 Minutes		Acquired By: Sample Set Name: Acq. Method Set: Processing Method: Channel Name: Proc. Chnl. Descr.:	System Granule Valine_3 Day_2nd VAL_ACR_FlowRate 08 Valine_FR08 Detector A Detector A	(b) (4)
	Date Acquired: Date Processed:	12/20/2020 11:52:28 AM KST 12/21/2020 12:04:21 PM KST				
						(b) (4)
	4.00-					
	3.00-					
>	2.00-					
	2.00					
	1.00-					
	0.00-					
	0 00 2.	00 4.00 6.1	00	8.00 8.00	10.00 12.00	14.00
		Peak Name RT	/	Area USP Plate	e Count	

	Peak Name	RT	Area	USP Plate Count
1	Valine			(0) (4)

Software: Empower 3 Software Build 3471

Result Set Report Validation

Sample Set Name: Sample Set Method: System Node: System Name: Acquired By: Sample Set Start Date:	Granule Valine_4 Day_2nd Granule Valine_4 Day_2nd Client13 UC10 System 12/20/2020 6:51:02 PM KST	Processed By: Printed By: Result Set ID: # of Results:	System/Administrator System 14
Sample Set Start Date:	12/20/2020 6:51:02 PM KST		
Sample Set Finish Date:	12/20/2020 10:57:43 PM KST		

	Sample Name	Sample Type	Vial	lnj #	Injection Volume (ul)	Acquistion Method Set	I	Processed Channel Descr.
1	PSTD1_1	Unknow n	50	1	5.00	VAL_ACR	Detector A	(b) (4
2	PSPL1_1	Unknow n	51	1	5.00	VAL_ACR	Detector A	
3	PSTD1_2	Unknow n	52	1	5.00	VAL_ACR	Detector A	
4	PSPL1_2	Unknow n	53	1	5.00	VAL_ACR	Detector A	
5	PSTD1_3	Unknow n	54	1	5.00	VAL_ACR	Detector A	
6	PSPL1_3	Unknow n	55	1	5.00	VAL_ACR	Detector A	
7	PSTD1_4	Unknow n	56	1	5.00	VAL_ACR	Detector A	
8	PSTD2_1	Unknow n	57	1	5.00	VAL_ACR	Detector A	
9	PSPL2_1	Unknow n	58	1	5.00	VAL_ACR	Detector A	
10	PSTD2_2	Unknow n	59	1	5.00	VAL_ACR	Detector A	
11	PSPL2_2	Unknow n	60	1	5.00	VAL_ACR	Detector A	
12	PSTD2_3	Unknow n	61	1	5.00	VAL_ACR	Detector A	
13	PSPL2_3	Unknow n	62	1	5.00	VAL_ACR	Detector A	
14	PSTD2_4	Unknow n	63	1	5.00	VAL_ACR	Detector A	

Sample Set Table

		SAMPLE	INFORMATI	0 N	
	Sample Name: Sample Type: Vial: Injection #: Injection Volume: Run Time:	PSTD1_1 Unknown 50 1 5.00 ul 10.0 Minutes	Acquired By: Sample Set Name: Acq. Method Set: Processing Method: Channel Name: Proc. Chnl. Descr.:	System Granule Valine_4 Day_2nd VAL_ACR Valine_pH2 3 Detector A Detector A	(b) (4)
	Date Acquired: Date Processed:	12/20/2020 7:45:56 PM KST 12/20/2020 8:59:13 PM KST			
					(b) (4)
	4.00-				
	3.00-				
>	2 00-				
-	2.00				
	1.00-				
	0.00-				
	0 00 1.00	2.00 3.00 4.00	5.00 6.00	7.00 8.00 9.00	10.0
			Minutes		
		Peak Name RT	Area USP Plat	e Count (b) (4)	
	[1]	vaine			

	SAN	MPLE	INFOR	MATI	O N		
Sample Name Sample Type: Vial: Injection #: Injection Volur Run Time:	: PSPL1_1 Unknown 51 1 me: 5.00 ul 10.0 Minutes		Acquired Sample S Acq. Met Processi Channel Proc. Ch	l By: Set Name: hod Set: ng Method: Name: nl. Descr.:	System Granule VAL_ACI Valine_p Detector Detector	Valine_4 Da <u>y</u> R H2 3 A A	_2nd (6) (4)
Date Acquired Date Processe	l: 12/20/2020 7: ed: 12/20/2020 8:	56:32 PM KST 59:40 PM KST					
							(b) (4)
4.00-							
3.00-							
> 200-							
~ 2.00							
1.00-							
0.00-							
0,00 1	00 200	300 400	500	600	7 00	8 00	900 100
-	2.00		Minutes	0.00	1.00	0.00	0.00 10.00
	Peak Name	RT	Area	USP Plate	e Count		
	1 Valine						

	SAN	M P L E	INFORMATION				
Sample Name: Sample Type: Vial: Injection #: Injection Volun Run Time:	PSTD1_4 Unknown 56 1 ne: 5.00 ul 10.0 Minutes		Acquired Sample S Acq. Meth Processir Channel Proc. Chr	By: bet Name: nod Set: ng Method: Name: nl. Descr.:	System Granule \ VAL_ACR Valine_ph Detector / Detector /	/aline_4 Day_2 R H2 3 A	2nd (b) (4)
Date Acquired Date Processe	d: 12/20/2020 8:4	49:53 PM KST 00:17 PM KST					
							(b) (4)
4.00-							
3.00-							
> 2.00-							
1.00-							
0.00-							
0 00 1	00 2.00	3.00 4.00	5.00 Minutes	6.00	7.00	8.00 9.	.00 10.00
	Peak Name	RT	Area	USP Plate	e Count		
	l Valine				(0) (4)		

Software: Empower 3 Software Build 3471

Result Set Report Validation

Sample Set Name:	Granule Valine_3 Day	Processed By:	System/Administrator
System Node:	Client13	Result Set ID:	System
System Name:	UC10	# of Results:	14
Acquired By:	System		
Sample Set Start Date:	12/19/2020 1:16:11 PM KST		
Sample Set Finish Date:	12/19/2020 9:44:54 PM KST		

	Sample Name	Sample Type	Vial	lnj #	Injection Volume (ul)	Acquistion Method Set	F	Processed Channel Descr.
1	OSTD2_1	Unknow n	37	1	5.00	VAL_ACR	Detector A	(b) (4)
2	OSPL2_1	Unknow n	38	1	5.00	VAL_ACR	Detector A	
3	OSTD2_2	Unknow n	39	1	5.00	VAL_ACR	Detector A	
4	OSPL2_2	Unknow n	40	1	5.00	VAL_ACR	Detector A	
5	OSTD2_3	Unknow n	41	1	5.00	VAL_ACR	Detector A	
6	OSPL2_3	Unknow n	42	1	5.00	VAL_ACR	Detector A	
7	OSTD2_4	Unknow n	43	1	5.00	VAL_ACR	Detector A	
8	OSTD1_1	Unknow n	44	1	5.00	VAL_ACR	Detector A	
9	OSPL1_1	Unknow n	45	1	5.00	VAL_ACR	Detector A	
10	OSTD1_2	Unknow n	46	1	5.00	VAL_ACR	Detector A	
11	OSPL1_2	Unknow n	47	1	5.00	VAL_ACR	Detector A	
12	OSTD1_3	Unknow n	48	1	5.00	VAL_ACR	Detector A	
13	OSPL1_3	Unknow n	49	1	5.00	VAL_ACR	Detector A	
14	OSTD1_4	Unknow n	50	1	5.00	VAL_ACR	Detector A	

		S A M	PLE	INFO	RMATI	O N		
Sample Name Sample Type Vial: Injection #: Injection Volu Run Time:	e: OSI 2: Unk 40 1 1 1 1 8.0	PL2_2 nown) ul Minutes		Acqui Samp Acq. I Proce Chan Proc.	red By: le Set Name: Method Set: essing Method: nel Name: Chnl. Descr.:	System Granule VAL_AC Valine_A Detector Detector	Valine_3 Day R ACN15% A	(b) (4)
Date Acquire Date Process	d: 12/ [.] sed: 12/2	19/2020 4:23 20/2020 5:24	:14 PM KST :46 PM KST					
								(b) (4)
4.00-								
3.00-								
> 2.00-								
1.00-								
0.00-								
0.00								
0 00	1.00	2.00	3.00	4.00 Minutes	5.00	6.0	00 7.00	8.00
	Pea	k Name	RT	Area	USP Pla	te Count		
	1 V	aline				(b) (4)		

	S	SAMPLE	E IN	FORMAT	ION		
Sample Name Sample Type Vial: Injection #: Injection Volu Run Time:	e: OSTD1_ :: Unknowr 44 1 ime: 5.00 ul 14.0 Min	1 utes		Acquired By: Sample Set Name: Acq. Method Set: Processing Method Channel Name: Proc. Chnl. Descr.:	System Granule Valir VAL_ACR : Valine_ACN9 Detector A Detector A	ne_3 Day %	(b) (4)
Date Acquire Date Process	d: 12/19/20 sed: 12/20/20	020 8:02:51 PM 020 5:27:00 PM	KST KST				
4.00- 3.00- > 2.00- 1.00-							(b) (4)
0.00- 0 00	2.00	4.00	6.00	8.00 Minutes	10.00	12.00	14.00
	Peak Nar 1 Valine	me RT	.	Area USP Pla	te Count (b) (4)		

	SAMPLE	INFORMATI	O N	
Sample Name: Sample Type: Vial: Injection #: Injection Volume: Run Time:	OSPL1_1 Unknown 45 1 5.00 ul 14.0 Minutes	Acquired By: Sample Set Name: Acq. Method Set: Processing Method: Channel Name: Proc. Chnl. Descr.:	System Granule Valine_3 Day VAL_ACR Valine_ACN9% Detector A Detector A	(б) (4)
Date Acquired: Date Processed:	12/19/2020 8:17:31 PM KST 12/20/2020 5:27:10 PM KST			
4.00-				(b) (4)
3.00- > 2.00-				
1.00- 0.00-				
0 00 2.	00 4.00 6	5.00 8.00 Minutes	10.00 12.00	14.0

	Peak Name	RT	Area	USP Plate Count
1	Valine			(0) (4)

		SAMPL	E II	NFORM	ATION	1	
Sample Name Sample Type Vial: Injection #: Injection Volu Run Time:	e: OSTD1 :: Unknow 50 1 ime: 5.00 ul 14.0 Mi	_4 vn nutes		Acquired By Sample Set Acq. Method Processing Channel Na Proc. Chnl.	: Sys Name: Gra d Set: VAL Method: Vali me: Det Descr.: Det	tem inule Valine_3 Da ACR ne_ACN9% ector A ector A	у (b) (4)
Date Acquire Date Process	d: 12/19/2 sed: 12/20/2	020 9:30:49 PM 020 5:27:12 PM	M KST M KST				
							(b) (4)
4.00-							
3.00-							
> 2.00-							
1.00-							
0.00-							
0 00	2.00	4.00	6.00	8.00 Minutes) 10	.00 12.00	0 14.0
	Peak Na	ame R	т	Area	JSP Plate Cou	Int (b) (4)	
	1 Valin	e					

Validaiton Chromatogram uk

Sample Set Name: Sample Set Method: System Node: System Name: Acquired By:	Granule Valine_2 Day Granule Valine_2 Day Client13 UC10 System	Processed By: Printed By: Result Set ID: # of Results:	System/Administrator System 4
Acquired By: Sample Set Start Date:	System 12/18/2020 12:24:43 PM KST		
Sample Set Finish Date:	12/19/2020 6:05:57 AM KST		

	Sample Name	Sample Type	Vial	lnj #	Injection Volume (ul)	Acquistion Method Set	F	Processed Channel Descr.
1	NH4OH	Unknow n	96	1	5.00	VAL_ACR	Detector A	(b) (4
2	Glutamic acid	Unknow n	73	1	5.00	VAL_ACR	Detector A	
3	Alanine	Unknow n	74	1	5.00	VAL_ACR	Detector A	
4	Glycine	Unknow n	76	1	5.00	VAL_ACR	Detector A	

2.50

3.00

Minutes

Area

3.50

USP Plate Count

4.00

(b) (4

4.50

5.00

5.50

2.00

RT

-0.50-

0.00

0.50

1

1.00

Peak Name

Glutamic acid

1.50

Result Set Report Validation

Sample Set Name: Sample Set Method: System Node: System Name:	Granule Valine_3 Day Granule Valine_3 Day Client13 UC10	Processed By: Printed By: Result Set ID: # of Results:	System/Administrator System 4
Acquired By: Sample Set Start Date: Sample Set Finish Date:	System 12/19/2020 1:16:11 PM KST 12/19/2020 9:44:54 PM KST		

	Sample Name	Sample Type	Vial	lnj #	Injection Volume (ul)	Acquistion Method Set	F	Processed Channel Descr.	
1	Glutamic acid	Unknow n	32	1	5.00	VAL_ACR	Detector A	(b)	(4
2	Alanine	Unknow n	33	1	5.00	VAL_ACR	Detector A		
3	Glycine	Unknow n	34	1	5.00	VAL_ACR	Detector A		
4	NH4OH	Unknow n	35	1	5.00	VAL_ACR	Detector A		

Validaiton Chromatogram uk 1

Sample Set Name:	Granule Valine_2 Day, Granule	Processed By:	System/Administrator			
Sample Set Method:	Granule Valine_2 Day, Granule	Printed By:	System			
System Node:	Client13	Result Set ID:				
System Name:	UC10	# of Results:	2			
Acquired By:	System					
Sample Set Start Date:	12/18/2020 12:24:43 PM KST, 12/19/2020 1:16:11 PM KST					
Sample Set Finish Date:	12/19/2020 6:05:57 AM KST, 12/19/2020 9:44:54 PM KST					

	Sample Name	Sample Type	Vial	lnj #	Injection Volume (ul)	Acquistion Method Set	I	Processed Channel Descr.	
1	H1_1	Unknow n	78	1	5.00	VAL_ACR	Detector A	(b) ((4)
2	OSPL1_1	Unknow n	45	1	5.00	VAL_ACR	Detector A		

0.10								
0.20	1	.00 2.00 3.00	4.00	5.00	6.00	7.00	8.00	9.00
			Min	utes				
		Peak Name	RT	Area	USP Plate Count			
	1 Glycine+Glutamic acid					(b) (4)		
	2	Alanine						
	3	Ammonia						
	4	Valine						

>

CONFIDENTIAL REPORT

Determination of antibiotic minimum inhibitory concentration (MIC) of *C. glutamicum* KCCM 80240

Version 1.0

TITLE

Determination of antibiotic minimal inhibitory concentration (MIC) of Corynebacterium glutamicum KCCM 80240

OBJECTIVE OF THE STUDY

This study was conducted to determine MIC of Val Pro producing strain C. glutamicum KCCM 80240.

SCHEDULE OF THE STUDY

Initiation of experiment: September 8, 2020 Termination of experiment: September 18, 2020 Submission of final report: December 31, 2020

TESTING FACILITY

Institute of Biotechnology) Scientific and Regulatory Affairs, CJ CheilJedang 55, Gwanggyo-ro 42beon-gil, Yeongtong-gu, Suwon-si, Gyeonggi-do 16495, Korea

RESPONSIBLE STAFFS

Analyst and Author

Taeyeon Kim

Report approved by

Yang Hee Kim

yoogle

CONTENTS

INTRODUCTION	4
MATERIALS AND METHODS	5
Preparation of antibiotics solution	5
Preparation of inoculum	5
Broth microdilution method	5
RESULTS	6
REFERENCES	9

INTRODUCTION

Corynebacterium glutamicum KCCM 80240 used as a production microorganism of L-valine. In order to observe antimicrobial susceptibility, minimum inhibitory concentration (MIC) test of *C. glutamicum* KCCM 80240 was conducted by comparing with wild-type strain *C. glutamicum* ATCC 14067 and parent strain, the NTG-treated strain, *C. glutamicum* CA08-0012. The two fold serial dilutions procedure in broth with antibiotics were used and the MIC is determined as the lowest concentration of the antibiotics that inhibits bacterial growth.
MATERIALS AND METHODS

The MIC of production strain was evaluated in accordance with the broth microdilution method given in the Clinical and Laboratory Standards Institute (CLSI) guideline [1].

Preparation of antibiotics solution

RESULTS

Table 1. Antimicrobial susceptibility of ATCC 14067, CA08-0012 and RCCIVI 80240								
Antibiotics	MIC (mg·L ⁻¹)			Interpretation ^a				
	ATCC 14067	CA08-0012	KCCM 80240	ATCC 14067	CA08-0012	KCCM 80240		
Ampicillin						(b) (4)		
Vancomycin								
Gentamycin								
Kanamycin								
Streptomycin								
Erythromycin								
Clindamycin								
Tetracycline								
Chloramphenicol								
						(b) (4)		

Table 1. Antimicrobial susceptibility of ATCC 14067, CA08-0012 and KCCM 80240

As shown in Table 1, the cell growth inhibition of production strain was observed in susceptible range. Therefore, it can be conclude that antimicrobial susceptibility by genetic modification is not occurred.

Figure 1. Graph representing the minimum inhibitory concentration (MIC) of *C. glutamicum* ATCC 14067 (wild-type strain), *C. glutamicum* CA08-0012 (parent strain) and *C. glutamicum* KCCM 80240 (L-valine production strain) measured against different antibiotics.

Figure 2. Effect of (a) ampicillin, (b) vancomycin, (c) gentamicin (d) kanamycin, (e) streptomycin, (f) erythromycin, (g) clindamycin, (h) tetracycline and (i) chloramphenicol on production strain (●: ATCC 14067, ■: CA08-0012, ○: KCCM 80240) growth.

REFERENCES

- [1] Clinical and Laboratory Standards Institute. 2012. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard—9th ed. CLSI document M07-A9. Clinical and Laboratory Standards Institute, Wayne, PA
- [2] EFSA FEEDAP Panel (EFSA Panel on Additives and Products or Substances used in Animal Feed), 2018. Guidance on the characterisation of microorganisms used as feed additives or as production. EFSA Journal, 16(3), 5206. DOI: 10.2903/j.efsa.2018.5206. Available online: <u>https://efsa.onlinelibrary.wiley.com/doi/full/10.2903/j.efsa.2018.5206</u>.

CONFIDENTIAL REPORT

Determination of viable cells of the production strain in Dried L-Valine Fermentation Product

Version 1.0

TITLE

Determination of viable cells of the production strain in Dried L-Valine Fermentation Product

OBJECTIVE OF THE STUDY

This study was conducted to determine the viable cells of the production strain Corynebacterium glutamicum KCCM 80240 in the final product and manufacturing process.

SCHEDULE OF THE STUDY

Initiation of experiment: October 23, 2020 Termination of experiment: November 5, 2020 Submission of final report: December 31, 2020

TESTING FACILITY

Institute of Biotechnology) Scientific and Regulatory Affairs, CJ CheilJedang 55, Gwanggyo-ro 42beon-gil, Yeongtong-gu, Suwon-si, Gyeonggi-do 16495, Korea

RESPONSIBLE STAFFS

Analyst and Author

Taeyeon Kim

Report approved by

Yang Hee Kim

yonfle

CONTENTS

INTRODUCTION4
MATERIALS AND METHODS5
Test sample5
Limit of detection test5
Sample analysis5
Control test6
Spike test6
RESULTS7
Determination of limit of detection of analysis7
Viable cell test8
REFERENCES
[APPENDIX 1] Certificate of Analysis13
[APPENDIX 2] Manufacturing Process and Sampling Point16

INTRODUCTION

Corynebacterium glutamicum KCCM 80240 is a production microorganism to produce L-valine as a fermentation product. In accordance with EFSA guidance on microorganism used as feed additives or as production organisms, the absence of the production strain in the final product should be investigated for safety aspects [1]. In order to confirm the absence of viable cells in the final products, the membrane filtration method was used.

MATERIALS AND METHODS

Test sample

(A) Detection of viable cells in the final product

Three independent batches of Dried L-Valine Fermentation Product were tested to analyse the existence of viable cell. The certificate of analysis of test samples are attached as Appendix 1.

- Batch No. : GVAL200910, GVAL200911, GVAL200912

(B) Detection of viable cells in the manufacturing process

Samples were taken from the representative step of manufacturing process to determine the existence of viable cells. The sampling point from the manufacturing process is divided into five steps: fermentation, pH adjustment, biomass inactivation, concentration and final product. Details of sampling point is marked in Appendix 2 of this report.

Limit of detection test

Sample analysis

(b) (4)
1

(b) (4)	

Control test

Spike test

RESULTS

Determination of limit of detection of analysis

Strain	Dilution fold	Number of viable cells(CFU mL ⁻¹
C. glutamicum KCCM 80240		(b) (4)

Viable cell test

(A) Detection of viable cells in the final product

Product	Batch	Number of viab		
	number	1 st analysis	2 nd analysis	3 rd analysis
Dried L-Valine Fermentation Product	GVAL200910			(b) (4)
	GVAL200911			
	GVAL200912			

(b) (4)

(b) (4)

(B) Detection of viable cells in the manufacturing process

Table 3. Number of viable cells in Dried L-Valine Fermentation Product manufacturing process

	Number of viable cell (CFU mL ⁻¹)				
	1 st analysis	2 nd analysis	3 rd analysis		
Fermentation				(b) (4) [.]	
pH adjustment					
Cell inactivation					
Concentration					
Product (CFU g ⁻¹)	_				

(6) (4)

REFERENCES

[1] EFSA FEEDAP Panel (EFSA Panel on Additives and Products or Substances used in Animal Feed), 2018. Guidance on the characterisation of microorganisms used as feed additives or as production. EFSA Journal, 16(3), 5206. DOI: 10.2903/j.efsa.2018.5206. Available online: <u>https://efsa.onlinelibrary.wiley.com/doi/full/10.2903/j.efsa.2018.5206</u>.

[APPENDIX 1] Certificate of Analysis

GVAL200910

55, Gwanggyo- Gyeonggi-do, 1 TEL : 03	ro 42beo 6495, Kor <u>ww</u> 31) 8099-24	n-gil, Yeongt rea <u>w.cj.co.kr</u> 450 FAX : 031)	ong-gu, Su 8099-2918	won-si,	сј	CHEILJEDANG	
		Certifi	cate of	analysis	S		
Certificate No.	202	0-PR-132	Receip	ot No.	20	020-AN-106	
Client		-	Date of	Receipt	4	2020.11.19.	
Client Name			Date o	of Test		2020.11.23.	
Client Tel		ie.	Use of	Report	Re	eference test	
Client Address				-			
Test Sam	ple	L-Valine (Val	pro)				
Manuf. Date		2020.09.10.					
Lot. No		GVAL200910					
Quantity ((kg)	4		1.11			
Test Item	(S)	Specific	cation	Test Result		Test method used	
L-Valine(dry	base)	Not less th	nan 72 %	(0)(4)		HPLC	
Moisture (Loss o	on drying)	Not more	than 5 %			AOAC 934.01	
* Information							
* Temperature : (, * The results sho The Test Repor Tested by Approved by Te	20~28) °C, wn in this t cannot b echnical M CJ Re	Relative Hum test report refe e reproduced. anage anage	idity : (30~60 er only to the except in ful)) % e sample tes I. () f Biotecl	sted unless ຈາຜ hnology	otherwise stated. Dec, 23, 202	

CJ BIO-AD form 100-01 REV.01

GVAL200911

55, Gwanggyo-ro Gyeonggi-do, 16 TEL : 03'	o 42beo 495, Kor <u>ww</u> 1) 8099-24	n-gil, Yeongt ea <mark>w.cj.co.kr</mark> 450 FAX : 031)	ong-gu, Suw 8099-2918	on-si, C	J	CHEILJEDANG	
		Certifi	cate of a	nalysis			
Certificate No.	202	0-PR-133	Receipt	No.	2020-AN-107		
Client		- Date of Receipt				2020.11.19.	
Client Name		-	Date of	Test		2020.11.23.	
Client Tel		-	Use of R	eport	Re	eference test	
Client Address				e.			
Test Sample L-Valine (Val pro)							
Manuf. Date		2020.09.11.					
Lot. No		GVAL200911					
Quantity (k	(g)	-					
Test Item(s)	Specific	cation	Test Result		Test method used	
L-Valine(dry b	oase)	Not less th	han 72 %	(b) (4) ⁻		HPLC	
Moisture (Loss or	n drying)	Not more	than 5 %			AOAC 934.01	
* Information							
* Temperature : (2 * The results show	:0~28) ℃, vn in this t	Relative Hum test report ref	idity : (30~60) er only to the	% sample teste	d unles	s otherwise stated.	

GVAL200912

CJ Research Institute of Biotechnology

55, Gwanggyo-ro 42beon-gil, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16495, Korea

www.cj.co.kr

TEL : 031) 8099-2450 FAX : 031) 8099-2918

		Certifi	cate of	analysis			
Certificate No.	2020	D-PR-134 Rece		pt No.	2	020-AN-108	
Client	÷.		Date of	f Receipt		2020.11.19.	
Client Name	- ÷		Date	of Test		2020.11.23.	
Client Tel			Use of	Report R		eference test	
Client Address							
Test Sample L-Valine (Val		pro)					
Manuf. Dat	te	2020.09.12.					
Lot. No		GVAL200912					
Quantity (k	g)	-					
Test Item(s)		Specific	ation	Test Result		Test method used	
L-Valine(dry base)		Not less th	nan 72 %	n 72 %		HPLC	
Moisture (Loss on	n drying)	Not more	than 5 %	an 5 %		AOAC 934.01	
Information				1	-		
Temperature : (20 The results show The Test Report Tested by Approved by Teo	0~28) ℃, in in this t cannot b chnical M	Relative Hum test report refe e reproduced, (6) anager	idity : (30~6 er only to th except in fu	0) % le sample teste ill. (b)(4	d unles	s otherwise stated. Dec, 23, 202	

CJ BIO-AD form 100-01 REV.01

CONFIDENTIAL REPORT

Genetic Stability of C. glutamicum KCCM 80240

Version 1.0

TITLE

Genetic stability of C. glutamicum KCCM 80240

OBJECTIVE OF THE STUDY

This study was conducted to examine the genetic stability of L-valine production strain, C. glutamicum KCCM 80240.

SCHEDULE OF THE STUDY

Initiation of experiment: November 5, 2020 Termination of experiment: November 25, 2020 Submission of final report: December 24, 2020

TESTING FACILITY

Institute of Biotechnology) Scientific and Regulatory Affairs, CJ CheilJedang 55, Gwanggyo-ro 42beon-gil, Yeongtong-gu, Suwon-si, Gyeonggi-do 16495, Korea

RESPONSIBLE STAFFS

Analyst and Author

Taeyeon Kim

Report approved by

Yang Hee Kim

1 sonfre

CONTENTS

NTRODUCTION	4
MATERIALS AND METHODS	5
Test sample	5
PCR analysis	5
RESULTS	7
Confirmation of genetic stability	7

INTRODUCTION

Corynebacterium glutamicum KCCM 80240 is a genetically modified strain for L-valine production. Among the genetically modified region, Pcj7-gapN (*L. delbreuckii*) region was constructed to supplement NADPH toward L-valine production. Through this genetic modification, L-valine concentration was increased because of sufficient co-factor supply.

In this study, the genetic stability of *C. glutamicum* KCCM80240 was confirmed by detecting maintenance of specifically modified gene with PCR analysis. To verify the genetic stability of production strain, the maintenance of Pcj7-gapN (*L. delbreuckii*) region was observed during the fermentation.

MATERIALS AND METHODS

Test sample

	(9) (4)
	(b) (4)
	(0)(4)
PCR analysis	
	(b) (4)

STUDY NO: GS-05-2020

(b) (4)
(b) (4)

RESULTS

Confirmation of genetic stability

Table 2. PCR analysis of Pcj7-gapN (L. delbreuckii) gene

	1 st analysis	2 nd analysis	3 rd analysis
Negative control			(b) (4)
Positive control	0		
Pre-seed culture			
Seed culture	Des des des des		
Main culture			
Final culture	1		
F	Negative control Positive control Pre-seed culture Geed culture Main culture Final culture	Vegative control Positive control Pre-seed culture Geed culture Main culture Final culture	It analysis It analysis Negative control Pre-seed culture Pre-seed culture Seed culture Main culture Sinal culture

(b) (4)

CONFIDENTIAL REPORT

Whole genome sequence analysis of *Corynebacterium glutamicum* KCCM 80240

Version 1.0

TITLE

Whole genome sequence analysis of Corynebacterium glutamicum KCCM80240

OBJECTIVE OF THE STUDY

This study was conducted to analyse the genomic features of production strain, Corynebacterium glutamicum KCCM 80240.

SCHEDULE OF THE STUDY

Initiation of experiment: 7 September 2020 Termination of experiment: 10 December 2020 Submission of final report: 15 December 2020

TESTING FACILITY

Institute of Biotechnology) Data Science Team, CJ CheilJedang 55, Gwanggyo-ro 42beon-gil, Yeongtong-gu, Suwon-si, Gyeonggi-do 16495, Korea

RESPONSIBLE STAFFS

Analyst

Sang Jun Kim

Author

Su Jin Kim

Adore. Guijin pin more

Report approved by

Sung Gun Lee

CONTENTS

INTRODUCTION4
MATERIALS AND METHODS
1. Whole genome sequencing5
1-1. PacBio library construction and sequencing5
1-2. <i>De novo</i> genome assembly5
2. Bioinformatics analysis6
2-1. Genome annotation6
2-2. Bacterial identification6
2-3. Identification of antimicrobial resistance (AMR) genes6
2-4. Identification of toxicity and pathogenicity-related genes6
RESULTS7
1. Overview on construction of production strain7
2. WGS analysis of the parental strain <i>C. glutamicum</i> CA08-00128
2-1. Genome properties of the parental strain <i>C. glutamicum</i> CA08-00128
3. WGS analysis of the production strain <i>C. glutamicum</i> KCCM 8024011
3-1. Sequencing quality evaluation11
3-2. Genome properties of the production strain <i>C. glutamicum</i> KCCM8024011
4. Identification of microorganism23
5. Identification of antimicrobial resistance gene23
6. Identification of toxigenic and pathogenic genes26
REFERENCES
SUPPLEMENTARY DATA

INTRODUCTION

L-Valine is produced by fermentation with *Corynebacterium glutamicum* KCCM80240. The genome sequence analysis of the production strains should be performed for safety aspects in accordance with EFSA guidance on the characterisation of microorganisms used as feed additives or as production organisms [1]. This study provide the information about the analysis method and WGS-based charaterisation of the production strain *C. glutamicum* KCCM80240.

MATERIALS AND METHODS

1. Whole genome sequencing

(b) (4)

2. Bioinformatics analysis

2-1. Genome annotation

(b)	(4)

2-2. Bacterial identification

2-3. Identification of antimicrobial resistance (AMR) genes

2-4. Identification of toxicity and pathogenicity-related genes

(b) (4)

RESULTS

Table 1. Genome features of three C. glutamicum strain	Table	e 1.	Genome	features	of three	C.	glutamicum	strain
--	-------	------	--------	----------	----------	----	------------	--------

and a state of the	C. glutamicum strains	S		
Feature	Wild-type strain ATCC 14067	Parental strain CA08-0012	Production strain KCCM 80240	
Genome size (bp)			C	(b) (4)
G+C content (%)				
ORFs*				
tRNA				
rRNA				

* The number of ORFs was counted except the pseudogene.

2. WGS analysis of the parental strain C. glutamicum CA08-0012

Table2. General features of the wild-type ATCC 14067 and the NTG mutant CA08-0012 genome

Items	C. glutamicum ATCC 14067	C. glutamicum CA08-0012
Genome length (bp)		(0) (4)
G+C contents (%)		
Predicted ORFs		
Predicted tRNAs		
Predicted rRNAs		

(b) (4)

STUDY NO: WGS-09-2020

STUDY NO: WGS-09-2020

(b) (4)

Table 6. General features of the C. glutamicum KCCM 80240 genomes

Items		Parental strain <i>C. glutamicum</i> CN08-0012	Production strain C. glutamicum KCCM 80240
	(b) (4)		(6)(

(b) (4) (b) (4)

(b) (4)

(b) (4)

No.	Parental stain <i>C. glutamicum</i> CA08-0012	Production strain C. glutamicum KCCM 80240	_ Involved genes*	
	Position	Modification type		
1				(b) (4)
2				
3				
4				
5				
6				
7				
8				

Table 7. Rearranged chromosome region of C. glutamicum KCCM 80240

* The genetic modified site is marked in red.

(b) (4)

No	Genetic modification	Name	Types of structural element	Type of genetic modification	Location	Purpose and function	
1	-						(b) (d
2							
_							
3							
4							
5							
_							
6							
	-						
STU	DY NO: WGS-09-20	20				PAGE 21 / 59	

Table 8. Modified structural elements of the C. glutamicum KCCM 80240 chromosome

4. Identification of microorganism

Table 9. ANI for C. glutamicum KCCM 80240 with the wild-type Corynebacterium species

Rank	Species	GenBank accession no.	ANI value
1			(b) (4)
2			
3			
4			
5			

5. Identification of antimicrobial resistance gene

(b) (4)

 Table 10. Screening for antimicrobial resistance genes using ResFinder data base

 Table 11. Screening for antimicrobial resistance genes using ARG-ANNOT data base

Gene ID of C. glutamicum KCCM 80240		Gene ID in ARG-ANNOT DB			ntity	Coverage
Name	Length	Name	Length	(/)	(%)	(%)
						(9

6. Identification of toxigenic and pathogenic genes

(b) (4)

(b) (4)

Table 12. Screening of toxigenic and pathogenic-related genes using VFDB data base

Gene ID in VFDB	C. glu	C. glutamicum ATCC 14067			C. glutamicum KCCM 80240			10
	Gene ID	Identity	Identity	Coverage	Gene ID	Identity	Identity	Coverage

REFERENCES

- [1] EFSA FEEDAP Panel (EFSA Panel on Additives and Products or Substances used in Animal Feed), 2018. Guidance on the characterisation of microorganisms used as feed additives or as production. EFSA Journal, 16(3), 5206. DOI: 10.2903/j.efsa.2018.5206. Available online: https://efsa.onlinelibrary.wiley.com/doi/full/10.2903/j.efsa.2018.5206.
- [2] Qiagen. MagAttract HMW DNA Handbook
- [3] Covaris. User manual: g-TUBE
- [4] Seemann T. 2014. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 30(14):2068-9
- [5] Jain C et al. 2018. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat Commun. 9: 5114
- [6] Zankari E et al. 2012. Identification of acquired antimicrobial resistance genes. J Antimicrob Chemother. 67(11): 2640-2644
- [7] Gupta SK et al. 2014. ARG-ANNOT, a new bioinformatic tool to discover antibiotic resistance genes in bacterial genomes. Antimicrob Agents Chemother. 58(1): 212–220
- [8] Liu B et al. 2019. VFDB 2019: a comparative pathogenomic platform with an interactive web interface. Nucleic Acids Res. 47(Database issue): D687–D692
- [9] Gordon AJ et al. 1988. N-methyl-N'-nitro-N-nitrosoguanidine-induced mutation in a RecA strain of Escherichia coli. Mutat Res. 201(1):219-28
- [10] Ishii Y and Kondo S. 1975. Comparative analysis of deletion and base-change mutabilities of Escherichia coli B strains differing in DNA repair capacity (wild-type, uvrA-, polA-, recA-) by various mutagens. Mutat Res. 27(1):27-44.
- [11] Hu S et al. 2011. Comparative genomic and transcriptomic analysis revealed genetic characteristics related to solvent formation and xylose utilization in *Clostridium acetobutylicum* EA 2018. BMC Genomics. 12:93
- [12] Marc Harper M and Lee CJ. 2012. Genome-wide analysis of mutagenesis bias and context sensitivity of N-methyl-N'-nitro-N-nitrosoguanidine (NTG). Mutat Res. 731(1-2):64-7
- [13] Stokes HW and Gillings MR. 2011. Gene flow, mobile genetic elements and the recruitment of antibiotic resistance genes into Gram-negative pathogens. FEMS Microbiology Reviews 35(5):790-819.
- [14] Durrant MG et al. 2020. A bioinformatic analysis of integrative mobile genetic elements highlights their role in bacterial adaptation. Cell Host Microbe. 8;27(1):140-153.
- [15] Rankin DJ et al. 2011. What traits are carried on mobile genetic elements, and why? Heredity (Edinb). 106(1):1-10.
- [16] Raeside C et al. 2014. Large chromosomal rearrangements during a long-term evolution experiment with *Escherichia coli*. mBio. 5(5):e01377-14

- [17] Lee J. et al. 2016. Adaptive evolution and metabolic engineering of a cellobiose- and xylosenegative *Corynebacterium glutamicum* that co-utilizes cellobiose and xylose. Microb Cell Fact. 15:20
- [18] Graf M et al. 2019. Continuous adaptive evolution of a fast-Growing *Corynebacterium* glutamicum strain Independent of protocatechuate. Front Microbiol. 10: 1648.
- [19] Yang J and Yang S. 2017. Comparative analysis of *Corynebacterium glutamicum* genomes: a new perspective for the industrial production of amino acids. BMC Genomics. 25;18(Suppl 1):940.
- [20] Goris J et al. 2007. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol. 57:81-91
- [21] Konstantinidis KT and Tiedje JM. 2005. Genomic insights that advance the species definition for prokaryotes. Proc Natl Acad Sci USA 102:2567–2572
- [18] Eoh H and Rhee KY. 2014. Methylcitrate cycle defines the bactericidal essentiality of isocitrate lyase for survival of *Mycobacterium tuberculosis* on fatty acids. Proc Natl Acad Sci USA. 111(13):4976–81.
- [19] Eprintsev AT et al. 2014. Isocitrate lyase isozymes and their role in organisms with different levels of organization. Biol Bull Rev. 4:323–334.
- [20] Reinscheid DJ et al. 1994. Characterization of the isocitrate lyase gene from *Corynebacterium* glutamicum and biochemical analysis of the enzyme. J Bacteriol. 176(12):3474-83

SUPPLEMENTARY DATA

	C. gl	utamicum ATCC 14	067	C. glutamicum CA08-0012			
No	type	Ref. Position	Ref. Seq. Nuc.	Var. Nuc	Var. Position	Var. ORF Name	
1				-			(b) (4)
2							
3							
4							
5							
6							
7							
8							
9							
10							
11							
12							
13							
14							
15							
16							
17							
18							
19							
20							
21							
22							
23							
24							
25							
26							
27							
28							
29							
30							
31							
32							
33							
34							
35							
36							
37							
38							
39							
40							
41							
42							
43							
44							
45							

Table S1. Nucleotide sequence variation of *C. glutamicum* CA08-0012 strain

STUDY NO: WGS-09-2020

	(b) (4)
46		
47		
48		
49		
50		
51		
52		
53		
54		
55		
56		
57		
58		
59		
60		
61		
62		
63		
64		
65		
66		
67		
68		
69		
70		
71		
72		
73		
74		
75		
76		
77		
78		
79		
80		
81		
82		
83		
84		
85		
86		
87		
88		
89		
90		
91		
92		
93		
94		
95		
96		

Ē

		(h) (d)
97		(0) (4
98		
99		
100		
101		
102		
103		
104		
105		
106		
107		
108		
109		
110		
111		
112	-	
113		
114		
115		
116		
117		
118	-1	
119		
120		
120		
122		
122		
123		
125		
126		
127		
128		
129		
130		
131		
132		
133		
134	- 100	
135		
136		
137		
138		
139		
140	-1.	
141		
142		
143		
144		
145		
145		
140		
147		

					1.00
148	()			(5) (4)
149					
150					
151					
152					
153					
154					
155					
156					
157					
157					
150					
160					
161	0				
162	2				
163					
164					
165					
166					
167	2.				
168					
169					
170					
171					
172	91 - C				
173					
174					
175					
176					
177					
178					
179	9				
180					
181					
182					
183					
184	1				
185					
186					
187					
188					
189					
190					
191					
192	1				
193	0				
194	1				
195	1				
196	1000				
197					
198					

1.129		(b) (4)
199		
200		
201		
202		
203		
204		
205		
206		
200		
207		
200		
209		
210	- 200	
211		
212		
213		
214		
215		
216		
217		
218		
219		
220		
221		
222		
223		
224		
225		
225		
220		
227		
228	-200	
229		
230		
231		
232		
233		
234		
235		
236		
237		
238		
239		
240		
241		
242		
243		
244		
244		
245		
240		
24/		
248		
249		

250	(b)
250	
251	
252	
253	
254	
255	
256	
257	
258	
259	
260	
261	
262	
263	
264	
265	
266	
267	
268	
269	
270	
271	
272	
273	
274	
275	
276	
277	
278	
279	
280	
281	
282	
202	
284	
204	
205	
200	
207	
200	
200	
230	
201	
292	
293	
234	
293	
290	
297	
298	
299	
300	

201	(6)
301	
302	
303	
304	
305	
306	
307	
308	
309	
310	
311	
212	
212	
212	
215	
315	
316	
317	
318	
319	
320	
321	
322	
323	
324	
325	
326	
327	
328	
329	
330	
221	
222	
332	
333	
334	
335	
336	
33/	
338	
339	
340	
341	
342	
343	
344	
345	
346	
347	
348	
349	
350	
351	

252	(b) (4)
332	
353	
354	
355	
356	
357	
358	
359	
360	
361	
362	
363	
364	
365	
366	
367	
200	
200	
309	
370	
3/1	
372	
373	
374	
375	
376	
377	
378	
379	
380	
381	
382	
383	
384	
385	
386	
387	
388	
290	
200	
201	
202	
392	
393	
394	
395	
396	
397	
398	
399	
400	
401	
402	

		(b) (4)
403		
404		
405		
406		
407		
408		
409		
410		
411		
412		
413		
414		
415		
416		
417		
418		
419		
420		
421		
422		
423		
424		
425		
426		
427		
428		
429		
430		
431		
432		
433		
434		
435		
436	- /	
437		
438		
439		
440		
441		
442		
443		
444		
445		
446		
447		
448		
449		
450		
451		
452		
453		

	(b) (4)
454	
455	
456	
457	
458	
459	
460	
461	
462	
463	
464	
465	
466	
467	
468	
469	
470	
471	
472	
473	
474	
475	
476	
477	
478	
479	
480	
481	
482	
483	
484	
485	
486	
487	
488	
489	
490	
491	
492	
493	
494	
495	
496	
497	
498	
499	
500	
501	
502	
503	
504	

C.

	2.0	(b) (4)
505		
506		_
507		
508		
509		
510		-
511	- 6 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	-
		-
512		-
513		-
514		_
515		_
516		
517		
518		
519		
520		-
520		-
521		-
522	-	-
523		-
524		_
525		_
526		
527		
528		
529		-
530		-
531		-
522	-	-
532		-
533		-
534		-
535		
536		
537		
538		
539		
540		_
541		-
5/2		-
54Z	-0.0	-
545		-
544		-
545		<u>-</u>
546		
547		
548		
549		
550		
551		
552		
552		
555		-
554		-
555		
-		

	(b) (4)
556	
557	
558	
559	
560	
561	
501	
562	
563	
564	
565	
566	
567	
568	
569	
570	
571	
572	
572	
575	
5/4	
5/5	
5/6	
577	
578	
579	
580	
581	
582	
583	
584	
585	
EQC	
500	
787	
588	
589	
590	
591	
592	
593	
594	
595	
596	
597	
598	
500	
555	
000	
601	
602	
603	
604	
605	
606	

f

607		(b) (4)
609	-	
000		
609		
610		
611		
612		
613		
614		
615		
616		
617		
618		
619		
620		
621		
622		
622	-	
623		
624		
625		
626		
627		
628		
629		
630		
631		
632		
633		
634		
635		
636		
637		
638		
630		
640		
640		
641	- 10	
642		
643		
644		
645		
646		
647		
648		
649		
650		
651		
652		
653		
654		
655		
656		
657		
031		
-		

650		(b) (4)
658		
659		
660		
661		
662		
663		
664		
665		
666		
667		
668		
669		
670		
671		
672		
673		
674		
675		
676		
677		
678		
679		
680		
691		
692		
692		
694		
695		
600	-	
080	-V.,.	
007		
688		
689		
690		
691		
692		
693		
694		
695		
696		
697		
698		
699		
700		
701		
702		
703		
704		
705		
706		
707		
708		

700	(b)	(4
709		
710		
711		
712		
/13		
714		
715		
/16		
/1/		
718		
719		
720		
721		
722		
723		
724		
725		
720		
720		
720		
730		
730		
732		
733		
734		
735		
736		
737		
738		
739		
740		
741		
742		
743		
744		
745		
746		
747		
748		
749		
750		
751		
752		
753		
754		
755		
756		
757		
758		
759		

Ē

760 761 762 763 764 765 766 767 770 771 771 773 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 799 800 801 802 803 804 805 806 807 808 809 801		(b) (4)
761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 800 801	760	
763 764 765 766 767 768 769 770 771 777 777 777 778 779 778 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 809 800 801	761	
763 764 765 766 767 768 769 770 770 771 773 774 775 776 777 778 778 778 778 778 778 778 778 778 778 779 780 781 782 783 784 785 796 791 792 793 794 795 795 796 797 798 800 801 802 803 804 805 806 807 808 809 801	762	
745 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 801	763	
765 766 770 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 789 790 791 792 793 794 795 795 796 797 801 802 803 804 805 806 807 801 802 803 804 805 806 807 801	764	
766 767 768 769 770 771 772 773 776 777 776 777 778 779 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 807 800 801	765	
$ \begin{array}{c} 767\\ 768\\ 769\\ 770\\ 770\\ 770\\ 777\\ 772\\ 773\\ 774\\ 775\\ 776\\ 777\\ 778\\ 779\\ 780\\ 781\\ 782\\ 783\\ 784\\ 783\\ 784\\ 785\\ 786\\ 786\\ 787\\ 786\\ 787\\ 789\\ 790\\ 790\\ 790\\ 791\\ 792\\ 792\\ 793\\ 799\\ 799\\ 799\\ 799\\ 799\\ 799\\ 799$	766	
768 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 800 800 801 802 803 804 805 806 807 808 809 801	767	
$ \begin{array}{r} {769} \\ {770} \\ {771} \\ {773} \\ {774} \\ {775} \\ {776} \\ {777} \\ {778} \\ {779} \\ {780} \\ {781} \\ {782} \\ {783} \\ {784} \\ {783} \\ {784} \\ {785} \\ {786} \\ {787} \\ {788} \\ {789} \\ {799} \\ {790} \\ {790} \\ {791} \\ {792} \\ {793} \\ {795} \\ {796} \\ {800} \\ {801} \\ {802} \\ {803} \\ {804} \\ {805} \\ {806} \\ {807} \\ {808} \\ {809} \\ {810} \\ \end{array} $	768	
770 771 772 773 774 775 776 777 778 779 778 779 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 800 800 801 802 803 804 805 806 807 808 809 810	769	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	770	
772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810	771	
773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810	772	
774 775 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810	773	
775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810	774	
776 777 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810	775	
$ \begin{array}{c} 777\\ 778\\ 779\\ 779\\ 780\\ 781\\ 781\\ 782\\ 783\\ 784\\ 785\\ 786\\ 787\\ 786\\ 787\\ 788\\ 789\\ 799\\ 799\\ 799\\ 799\\ 799$	776	
778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810	777	
779 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810	778	
780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 800 801 802 803 804 805 806 807 810	779	
781 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810	/80	
782 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810	781	
783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810	/82	
784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810	/83	
785 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810	784	
785 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810	785	
787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810	780	
788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810	700	
785 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810	700	
790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810	700	
792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810	790	
793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810	792	
794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810	793	
795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810	794	
795 797 798 799 800 801 802 803 804 805 806 807 808 809 810	795	
797 798 799 800 801 802 803 804 805 806 807 808 809 810	796	
798 799 800 801 802 803 804 805 806 807 808 809 810	797	
799 800 801 802 803 804 805 806 807 808 809 810	798	
800 801 802 803 804 805 806 807 808 809 810	799	
801 802 803 804 805 806 807 808 809 810	800	
802 803 804 805 806 807 808 809 810	801	
803 804 805 806 807 808 809 810	802	
804 805 806 807 808 809 810	803	
805 806 807 808 809 810	804	
806 807 808 809 810	805	
807 808 809 810	806	
808 809 810	807	
809 810	808	
810	809	
	810	
811		(b) (4)
-----	----------	---------
812		
813		
814		
815		
816		
817		
818		
819		
820		
821		
822	0	
823		
824		
825		
826		
827		
828		
829		
830		
831	<u>.</u>	
832		
833		
834		
835		
836	-80	
837		
838		
839		
840		
841		

	C. glutamicum ATCC 14067					C. glutamicum CA08-0012			
NO	Gene ID	Туре	Start	Gene ID	Туре	Function	Gene ID	Туре	Function
	CEY17_00470		100	(b) (4)					(b) (4)
1									
1	and the state								
2	CEY17_00475								
21	CEY17_01065								
2	CEY17_01070								
2	CEY17_01075								
	CEY17_01080								
1	CEY17 02090								
101	-	-		-					
3	CEY17_02095			-					
	CEY17_02100	+		-					
-	CEY17_02105	÷		-					
	CEY17_04320	+		-					
	CEY17_04330	+		-					
	CEY17_04335	+		-					
	CEV17_04340	+		-					
	CEV17_04343	ł		-					
4	CEV17_04350	÷		-					
	CEV17_04355	+		-					
	CEV17_04365	•		-					
	CEV17_04303	·		-					
	CEV17_04375	t		-					
2	CEY17 04380	t		-					
-	CEY17_08925	ť		-					
5									
<u> </u>									

Table S2. Gene modified regions of C. glutamicum CA08-0012* MGEs related gene is highlighted in yellow.

STUDY NO: WGS-09-2020

CEYI7_08230 0 GEYI7_06270 0 CEYI7_06275 0 CEYI7_10440 0 CEYI7_10450 0 CEYI7_10450 0 CEYI7_10450 0 CEYI7_10450 0 CEYI7_10455 0 CEYI7_10450 0 CEYI7_10455 0 CEYI7_112870 0 CEYI7_112870 0 CEYI7_112870 0 CEYI7_11288 0 CEYI7_11100 0 CEYI7_11100 0 CEYI7_11100 0 CEYI7_11100 0 CEYI7_11110 0 CEYI7_11110 0 CEYI7_11110 0 CEYI7_11110 0		and the second second	(b) (4)	a.v.
6 CEY17_06270 CEY17_06275 CEY17_10420 CEY17_10450 CEY17_10450 CEY17_10455 CEY17_10465 CEY17_10465 CEY17_10465 CEY17_12865 CEY17_12865 8 CEY17_13185 9 CEY17_15000 CEY17_15000 CEY17_15000 CEY17_15005 CEY17_15000 CEY17_15105 CEY17_15105 CEY17_15105 CEY17_15105 CEY17_15120 CEY17_15135 CEY17_15135 CEY17_15135 CEY17_15135 CEY17_15135 CEY17_15130 CEY17_15135 CEY17_15130 CEY17_15135 CEY17_15135 CEY17_15135 CEY17_15135 CEY17_15135 CEY17_15135 CEY17_15140 CEY17_15140 CEY17_15140 CEY17_15140 CEY17_15140		CEY17_08930		(0) (
6 CEY17_06275 CEY17_10440 7 CEY17_10455 CEY17_10465 CEY17_10465 CEY17_10465 CEY17_12885 8		CEY17_06260		
CFY17_06205 CFY17_10450 CFY17_10465 CFY17_15105 CFY17_15120 CFY17_15135 CFY17_15136 CFY17_15140 CFY17_15145 CFY17_15145	6	CEY17_06270		
CEY17_10440 CEY17_10450 CEY17_10460 CEY17_10465 CEY17_10855 CEY17_12805 CEY17_12870 CEY17_13190 CEY17_15070 CEY17_15070 CEY17_15095 CEY17_15095 CEY17_15095 CEY17_15105 CEY17_15105 CEY17_15105 CEY17_15130 CEY17_15135 CEY17_15135 CEY17_15135 CEY17_15135 CEY17_15135 CEY17_15135 CEY17_15135 CEY17_15135		CEY17_06275		
CEY17_10450 CEY17_10465 CEY17_12865 8 CEY17_12870 CEY17_12870 CEY17_12870 CEY17_13185 9 CEY17_15070 CEY17_15075 CEY17_15095 CEY17_15100 CEY17_15115 CEY17_15120 CEY17_15130 CEY17_15130 CEY17_15130 CEY17_15130 CEY17_15130 CEY17_15130 CEY17_15130 CEY17_15130 CEY17_15145 CEY17_15145		CEY17_10440		
7 CEY17_10455 CEY17_10465		CEY17_10450		
CEY17_10460 CEY17_12865 8 CEY17_12870 CEY17_13185 9 CEY17_13185 9 CEY17_1500 CEY17_15005 CEY17_15085 CEY17_15095 CEY17_15100 CEY17_15100 CEY17_15101 CEY17_15102 CEY17_15103 CEY17_15104 CEY17_15130	7	CEY17_10455		
CEY17_10465 CEY17_12865 8 CEY17_12870 CEY17_13185 9 CEY17_13190 CEY17_1500 CEY17_15085 CEY17_15090 CEY17_15095 CEY17_15105 CEY17_15115 10 CEY17_15120 CEY17_15130		CEY17_10460		
8		CEY17_10465		
8		CEY17_12865		
CEY17_12870 CEY17_13185 9 CEY17_13190 CEY17_15070 CEY17_15085 CEY17_15090 CEY17_15095 CEY17_15105 CEY17_15100 CEY17_15100 CEY17_15100 CEY17_15100 CEY17_15100 CEY17_15100 CEY17_15100 CEY17_15100 CEY17_15100 CEY17_15130 CEY17_15145 CEY17_15150	0			
CEY17_12870 CEY17_13185 9 CEY17_15070 CEY17_15085 CEY17_15090 CEY17_15095 CEY17_15055 CEY17_15105 CEY17_15105 CEY17_15120 CEY17_15120 CEY17_15130 CEY17_15140 CEY17_15150	0	1.000		
9	1	CEY17_12870		
9	1	CEY17_13185		
CEY17_13190 CEY17_15070 CEY17_15085 CEY17_15090 CEY17_15095 CEY17_15105 CEY17_15110 CEY17_15115 10 CEY17_15120 CEY17_15130 CEY17_15130 CEY17_15130 CEY17_15135 CEY17_15140 CEY17_15150 CEY17_15145 CEY17_15150	0	1		
CEY17_13190 CEY17_15070 CEY17_15085 CEY17_15090 CEY17_15095 CEY17_15105 CEY17_15100 CEY17_15110 CEY17_15120 CEY17_15120 CEY17_15130 CEY17_15130 CEY17_15135 CEY17_15140 CEY17_15145 CEY17_15145 CEY17_15145 CEY17_15145 CEY17_15145 CEY17_15150	9	A		
CEY17_15070 CEY17_15085 CEY17_15090 CEY17_15095 CEY17_15105 CEY17_15110 CEY17_15115 10 CEY17_15120 CEY17_15130 CEY17_15130 CEY17_15130 CEY17_15135 CEY17_15145 CEY17_15150	_	CEY17_13190		
CEY17_15085 CEY17_15090 CEY17_15095 CEY17_15105 CEY17_15110 CEY17_15115 10 CEY17_15120 CEY17_15130 CEY17_15135 CEY17_15136 CEY17_15135 CEY17_15140 CEY17_15154 CEY17_15155 CEY17_15156		CEY17_15070		
CEY17_15090 CEY17_15095 CEY17_15105 CEY17_15110 CEY17_15115 10 CEY17_15120 CEY17_15125 CEY17_15130 CEY17_15135 CEY17_15140 CEY17_15150 CEY17_15145 CEY17_15150		CEY17_15085		
CEY17_15095 CEY17_15105 CEY17_15110 CEY17_15115 10 CEY17_15120 CEY17_15125 CEY17_15130 CEY17_15135 CEY17_15140 CEY17_15145 CEY17_15145 CEY17_15150		CEY17_15090		
CEY17_15105 CEY17_15110 CEY17_15115 10 CEY17_15120 CEY17_15125 CEY17_15130 CEY17_15135 CEY17_15140 CEY17_15145 CEY17_15150 CEY17_15145 CEY17_15145 CEY17_15150		CEY17_15095		
CEY17_15110 CEY17_15115 10 CEY17_15120 CEY17_15130 CEY17_15135 CEY17_15140 CEY17_15145 CEY17_15150		CEY17_15105		
CEY17_15115 10 CEY17_15120 CEY17_15130 CEY17_15135 CEY17_15140 CEY17_15145 CEY17_15150 CEY17_15150		CEY17_15110		
10 CEY17_15120 CEY17_15125 CEY17_15130 CEY17_15135 CEY17_15140 CEY17_15145 CEY17_15150		CEY17_15115		
CEY17_15125 CEY17_15130 CEY17_15135 CEY17_15140 CEY17_15145 CEY17_15150	10	CEY17_15120		
CEY17_15130 CEY17_15135 CEY17_15140 CEY17_15145 CEY17_15150		CEY17_15125		
CEY17_15135 CEY17_15140 CEY17_15145 CEY17_15150		CEY17_15130		
CEY17_15140 CEY17_15145 CEY17_15150		CEY17_15135		
CEY17_15145 CEY17_15150		CEY17_15140		
CEY17_15150		CEY17_15145		
		CEY17_15150		
CEY1/_15155	_	CEY17_15155		

STUDY NO: WGS-09-2020

	(b) (4)	(h) (d
CEY17_1517	0	(0)(4
CEV17 1517	5	
CEY17 1518	0	
CEV17_1518	5	
CEY17 1519	0	
CEY17 1519	<u> </u>	
CEY17 1521	5	
CEY17 1522	0	
CEY17 1522	5	
CEY17 1523	0	
CEY17 1524	0	
CEY17 1524	5	
CEY17 1525	0	
CEY17_1525	5	
CEY17_1526	0	
CEY17_1526	5	
CEY17_1527	0	
CEY17_1528	0	
CEY17_1528	5	
CEY17_1529	0	
CEY17_1529	5	
CEY17_1530	0	
CEY17_1530	5	
CEY17_1531	0	
CEY17_1531	5	
CEY17_1532	0	
CEY17_1532	5	
CEY17_1533	5	
CEY17_1534	0	
CEY1/_1534	5	
CEY17_1535		

STUDY NO: WGS-09-2020

CEY17_15360	(b) (4)	(b) (4)
CEY17_15365		
CEY17_15370		
CEY17_15380		
CEY17_15385		
CEY17_15390		
CEY17_15395		
CEY17_15400		
CEY17_15405		
CEY17_15410		
CEY17_15420		

-

	C. glutamicm	CA08-0012	-0012 C. glutamicm KCCM80240			0240	2	
No.	Ref. Position	Ref. Seq. Nuc.	Var. Nuc	Var. Position	Туре	Var. ORF Name		
1							(b) (4)	
2								
3								
4								
5	0							
6	- 1							
7	_							
8	1.00							
9								
10	-							
	-							
12	-							
13								
14	-							
15	-							
17	-201							
18	-							
19	-							
20	-							
21	1							
22								
23								
24								
25								
26								
27								
28								
29								
30	_							
31								
32	-							
33	-							
34	-							
- 35	-							
30	-							
38	-							
39								
40	-							
41	-							
42	1							
43	The second second							
44								
45	1.00							
46								
	Ga							

 Table S3. Nucleotide sequence variation of C. glutamicum KCCM 80240 strain

 * The genetic modified site is marked in red.

Ē

	(b) (4)
4/	
48	
49	-
50	
51	
52	
53	
54	
50	
57	
58	-
60	
61	-
62	
64	
04	
66	
67	
69	
69	-
70	-
71	
72	
73	-
74	
75	-
76	
77	
78	
79	-
80	-
81	
82	
83	
84	
85	
86	
87	
88	
89	
90	
91	
92	
93	
94	
95	
96	
97	

0.0	(b) (4)-
90	-
100	+
100	-
101	- 2. · · · · · · · · · · · · · · · · · ·
102	-
103	
104	- 21
105	-
100	-
107	-
100	-
110	- C
111	-
112	-
113	-
114	-
115	-
116	+**
117	+
118	+
	+
119	
420	
120	
121	
122	
123	
124	
125	
126	
127	
128	
129	
130	
131	
132	
133	-
134	-
135	
136	-
137	- 3
138	-
139	-
140	- 20
141	
142	
143	
144	-
145	
140	1

147	(6)	(4)
		1
148		
149		
150		
151		
152		
153		
155		
104		
155		
156		
157		
158		
159		
160		
161		
162		
162		
103		
104		
165		
166		
167		
168		
169		
170		
171		
172		
173		
174		
175		
175		
170		
1//		
180		
181		
182		
183		
184		
185		
186		
197		
100		
100		
189		
190		
191		
192		
193		
194		
195		
196		
197		

109	(b) (4
198	
199	
200	
201	
202	
203	
204	
205	
206	
207	
208	
209	
211	
212	
215	
216	
218	
219	
220	
222	
223	
224	
225	
220	
22/	
220	
229	
230	
231	
232	
235	
234	
235	
230	
237	
230	
240	
241	
241	
242	
245	
245	
245	
247	
247	

Ē

249	(b) (4
250	
251	
252	
253	
254	
255	
256	
257	
258	
259	
260	
261	
262	
263	
264	
265	
266	
267	
268	
269	
270	
271	
272	
273	
274	
275	
276	
277	
278	
279	
280	
281	
282	
283	
284	
285	
286	
287	
288	
289	
290	
291	
292	
293	
294	
295	
296	
297	
298	
299	

300			(b) (4)
301			
302			
303			
304			
305			
306			
307			
308			
309			
310			
311			
312			
313			
314			
315			
316			
317			
318			
319			
320			
321			
322			
323			
324			
325			
326			
327			
328			
329			
330			
The second secon			

Table S2. Gene modified regions of C. glutamicum KCCM 80240

* MGEs related gene is highlighted in yellow. The genetic modified site is marked in red.

No	C. glutamicum CA08-0012				C. glutamicum KCCM 80240				
	Gene ID	Туре	Position	Strd	Function	Modified type	Gene ID	Function	
1									(b) (4)
2									
3									
4									
5									

Figure S1. Phylogenetic tree of C. glutamicum KCCM 80240 based on 16s rDNA sequence analysis

CONFIDENTIAL REPORT

Metabolic flux analysis of C. glutamicum KCCM 80240

Version 1.0

TITLE

Metabolic flux analysis of C. glutamicum KCCM 80240

OBJECTIVE OF THE STUDY

Metabolic flux analysis was conducted to determine intracellular fluxes of C. glutamicum KCCM 80240.

SCHEDULE OF THE STUDY

Initiation of experiment: September 8, 2020 Termination of experiment: December 3, 2020 Submission of final report: December 28, 2020

TESTING FACILITY

Institute of Biotechnology) Data Science Team, CJ CheilJedang 55, Gwanggyo-ro 42beon-gil, Yeongtong-gu, Suwon-si, Gyeonggi-do 16495, Korea

RESPONSIBLE STAFFS

Analyst and Author

Daekyun Im

Report approved by

Sung gun Lee

ojenz ma

CONTENTS

INTRODUCTION	4
METHODS	5
Translation level measurement	5
Extracellular metabolite measurement	5
Off-gas analysis	5
Metabolic network	5
MFA computation	7
RESULTS	9
Carbon balance analysis	9
Translation level measurement	10
Metabolic flux analysis	10
REFERENCES	15

INTRODUCTION

Metabolic flux analysis (MFA) has been extensively used to determine intracellular fluxes of many organisms to investigate certain metabolic state through observable phenotypes, such as amount of biomass, extracellular concentrations of substrates, products and by-products [1-3].

MFA could provide valuable insights into cell physiology because it is based on a stoichiometric model which represents major metabolic pathways of organisms.

Here, we report re-directed metabolic fluxes of production strain, *C. glutamicum* KCCM 80240, compared to those of the wild type strain, *C. glutamicum* ATCC 14067, through MFA.

METHODS

Translation level measurement

Extracellular metabolite measurement

Off-gas analysis

Metabolic network

(b) (4)

(b) (4)

(b) (4)

Table 1. Metabolic network for MFA

MFA computation

(b) (d)

RESULTS

Carbon balance analysis

Table 2. Amount of carbon atom per 1 g of compound

(b) (4)

 Table 1. gapA and gapN translation levels of C. glutamicum KCCM 80240

Metabolic flux analysis

Table 2. Measured extracellular flux rates. Carbon consumption rates are represented by a negative signal. Unit of each measurement is mmol/gdcw/h, except biomass (/h) and each analysis was carried out in duplicate.

(b) (4)

(b) (4)

(b) (4)

Table 3. Result of MFA

REFERENCES

APPENDIX 2. PRE-FERMENTATION INFORMATION (CONFIDENTIAL)

Table of Contents

APPENDIX 2. PRE-FERME	ENTATION INFORMATION (CONFIDENTIAL)1
List of Tables		2
List of Figures		4
A. CHARACTERIZATION	OF THE PRODUCTION MICROORGANISM	5
A.1 Scientific Name and Ta	xonomy of <i>C. glutamicum</i> KCCM 80240	
A.2 Nature Habitat of C. gli	utamicum and Its Ecological Role	
A.3 Phenotypic Characterist	tics of C. glutamicum KCCM 80240	
A.4 Genetic Comparison of	Host to Published Data of the Species	7
B. INFORMATION OF D STRAIN, CORYNEBACTER	DRIED L-VALINE FERMENTATION PRODUCIUM GLUTAMICUM KCCM 80240	JCT PRODUCING
B.1 Information of Genetic	Modification in C. glutamicum KCCM 80240	
B.1.1 Random Mutagenes	sis	12
B.1.2 Site-directed Mutag	genesis	12
B.1.3 Overexpression of E for Producing C. glutamic	Biosynthetic Genes, Especially Deregulated Genes En cum KCCM 80240	16 coding Key Enzymes,
B.2 Donor Organism		
B.3 Descriptions of Genetic	Modification	
B.3.1 Vector Used for Ge	netic Modification	
B.3.2	(b) (4)	23
B.3.3	(b) (4)	24
B.3.4	(b) (4)	26
B.3.5	(b) (4)	27
B.3.6		(b) (4)29
B.3.7	(b) (4)	
B.3.8	(b) (4)	
B.3.9	(b) (4)	
B.3.10	(b) (4)	
B.3.11	(b) (4)	

B.4 Identification and Detection Techniques
B.5 Description of Gene Deletion Region(s)
B.6 Promoter Information
B.7 Description of Gene Integration
B.8 Safety of DNA Modification
B.9 Genetic Stability of C. glutamicum KCCM 80240 60
B.10 Open Reading Frame (ORF) Analysis of Genetically Modified Region
B.11 Open Reading Frame Analysis of Full Genome Sequence of C. glutamicum KCCM 80240 62
C. SPILL-OVER ANALYSIS
C.1 Comparison Metabolic Flux of C. glutamicum ATCC 14067 and C. glutamicum KCCM 8024063
C.2 Comparison of Metabolite in C. glutamicum ATCC 14067 and C. glutamicum KCCM 80240 67
C.3 Biogenic Amines
D. LIST OF ATTACHMENTS71
E. LIST OF REFERENCES72

List of Tables

Table A.3.1. <i>C. glutamicu</i>	Phenotypic characteristics of <i>C. glutamicum</i> ATCC14067, <i>C. glutamicum</i> CA08-0012 and <i>m</i> KCCM 80240
Table B.1.1.	Summary of genetic modification in <i>C. glutamicum</i> KCCM 80240 17
Table B.3.1.	Sequence of pDZ-MCS
Table B.3.1.	Primer sequence used to construct C. glutamicum KCCM 80240 37
Table B.4.1. KCCM 8024	Comparison of PCR products sizes between <i>C. glutamicum</i> ATCC 14067 and <i>C. glutamicum</i> 0
Table B.5.1.	Size and function of deleted gene 40
Table B.5.2.	^{(b) (4)}
Table B.6.1.	^{(b) (4)}
Table B.7.1.	Location of integrated genes in genome
Table B.7.2.	(b) ⁽⁴⁾
Table B.7.3.	^{(b) (4)}
Table B.7.4.	^{(b) (4)}
Table B.7.5.	(b) ⁽⁴⁾

Table B.7.6.	(b) (4)	
Table B.7.7.	(b) (4)	
Table B.7.8.	(b) (4)	
Table B.7.9.	(b) (4)	
Table B.7.10.	(b) (4)	
Table B.10.1. Loo	cation of modified gene in genome	
Table B.11.1. Co and <i>C. glutamicu</i>	omparison of ORF between the <i>C. glutamicum</i> ATCC1406 m KCCM80240	67, C. glutamicum CA08-0012
Table C.1.1 MFA	A of <i>C. glutamicum</i> ATCC 14067 and <i>C. glutamicum</i> KC	CM 80240 65
Table C.2.1. Ami KCCM 80240 fer	no acid of <i>C. glutamicum</i> ATCC 14067, <i>C. glutamicum</i> C rmentation broth	A08-0012 and <i>C. glutamicum</i>
Table C.2.2. Orga KCCM 80240 fer	anic acid of <i>C. glutamicum</i> ATCC 14067, <i>C. glutamicum</i> C rmentation broth	CA08-0012 and <i>C. glutamicum</i>
Table C.2.6. Bio glutamicum KCC	ogenic amines of <i>C. glutamicum</i> ATCC 14067, <i>C. glu</i> CM 80240 fermentation broth	<i>tamicum</i> CA08-0012 and <i>C</i>

List of Figures

T

Figure A.1.1. Certificate of deposition (C. glutamicum KCCM 80240)	8
Figure A.3.1. 16s rDNA sequence analysis of C. glutamicum KCCM 80240	11
Figure B.1.1. L-Valine biosynthetic pathway in <i>C. glutamicum</i> KCCM 80240. Blue letters indic corresponding gene in the reaction and yellow oval indicates regulator.	cates 13
Figure B.3.1. Marker free insertion method	19
Figure B.3.2. (b) (4)	20
Figure B.3.3.	(b) (4)
n en	23
Figure B.3.4.	(b) (4)
	_ 24
Figure B.3.5.	(b) (4)
Figure P.2.6	(b) (4)
	27
Figure B.3.7.	(b) (4)
	28
Figure B.3.8.	(b) (4)
	29
Figure B.3.9.	(b) (4)
Ei	30
Figure B.3.10.	31
Figure B.3.11	(b) (4)
	33
Figure B.3.12.	(b) (4)
	34
Figure B.3.13.	(b) (4)
	35
Figure B.3.14.	(b) (4)
Eigure C 1 1	50
	64

A. CHARACTERIZATION OF THE PRODUCTION MICROORGANISM

A.1 Scientific Name and Taxonomy of C. glutamicum KCCM 80240

A.2 Nature Habitat of C. glutamicum and Its Ecological Role

It was reported that Corynebacteriaceae are rod-shaped, fast growing, non-sporulating gram-positive bacteria that are found widespread in nature. A large number of corynebacterial species were isolated from human clinical samples or animals, but several others were isolated from soils, cheese, dairy products, vegetables and fruits. Some of these species were also found in marine samples. It seems that these bacteria are widely spread throughout nature which induces high diversity in the Corynebacterium genus. The natural habitat of *C. glutamicum* strains have been reported in soil, soils contaminated with bird feces, sewage, manure, and vegetables and fruits (Eggeling and Bott, 2005).

A.3 Phenotypic Characteristics of C. glutamicum KCCM 80240

(b) (4)

Table A.3.1. Phenotypic characteristics of C. glutamicum ATCC14067, C. glutamicum CA08-0012 and C. glutamicum KCCM 80240

	C. glutamicum ATCC 14067 (Wild-type strain)	C. glutamicum CA08- 0012 (Parental strain)	C. glutamicum KCCM 80240 (Production strain)
Colony shape	, · · · · · · · · · · · · · · ·	(b) (4)	(b) (4)
Colony color			
Cell arrangement			
Cell shape			
16s rDNA			
homology			
Optimal			
temperature range			
Optimal pH range			

A.4 Genetic Comparison of Host to Published Data of the Species

Figure A.1.1. Certificate of deposition (C. glutamicum KCCM 80240)

2) [3364] 사율시 서대분구 함체내271월 45 유명할당 TEL: (02)391-0560 FAX: (02)392-2699 Home Poge: Mttp://www.kocin.or.m

KOREAN CULTURE CENTER OF MICROORGANISMS

45. Honglehoe 2goligi, Seodolemuniqui, Seoul, 00341. Korea TEL: 92/2-091-0055 FAX: 82/2-392/2099 Hosmie Page : http://www.kccm.or.kc

No.20-83

2020-09-25

Certification of Analysis

Dear CJ CheilJedang 330, Dongho-ro, Jung-gu, Seoul, Korea 04560

We have performed the 16S rDNA sequence analysis of your strain KCCM80240. The result is as follows:

KCCM80240 : Corynebacterium glutarnicum (GenBank Data homology search result : 99%)

Please refer to sequence and phylogeny tree.

Sincerely yours

(b) (4)

Korean Culture Collection of Microorganisms (KCCM) 45, Hongjenae 2ga-gil, Seodaemun-gu, Seoul, Korea. 03641 Tel : 82-2-391-0950 FAX: 82-2-392-2859 (6)(4)

>KCCM80240

Figure A.3.1. 16s rDNA sequence analysis of C. glutamicum KCCM 80240

B. INFORMATION OF DRIED L-VALINE FERMENTATION PRODUCT PRODUCING STRAIN, CORYNEBACTERIUM GLUTAMICUM KCCM 80240

B.1 Information of Genetic Modification in C. glutamicum KCCM 80240

B.1.1 Random Mutagenesis

B.1.2 Site-directed Mutagenesis

(b) (4)

(b) (4)

(b) (4)

(b) (4)	
	(b) (
(b) (4)	

(b) (4)
(b) (4)
(b) (4
(b) (4)

(b) ((4)
(b) ((4)
(b) (4)
	i.
	i.
(b) ((4)
- 4.57	
(b) (+)

B.1.3 Overexpression of Biosynthetic Genes, Especially Deregulated Genes Encoding Key Enzymes, for Producing C. glutamicum KCCM 80240

(b) (4)
(b) (4)
(b) (4)
(b) (4)

(6) (
	and the second se		
	- C. A. J.		
(b) (
(0)(

The production strain of Dried L-Valine Fermentation Product was deposited as *C. glutamicum* KCCM 80240 at KCCM (Korea Culture Center of Microorganisms) located in the South Korea.

Table B.1.1. Summary of genetic modification in C. glutamicum KCCM 80240

	Madified	Modification	Conv number of	Characteristic	S
lodified gene	locus	method	integration gene	Parental organism	Donor organism
		1		organism	(6)

B.2 Donor Organism

	(b) (4)
(b) (4)	
B.3 Descriptions of Genetic Modification	

B.3.1 Vector Used for Genetic Modification

(b) (4)
_

Page 21

B.3.2 Partial Deletion of ilvA Gene

	(b) (4)
	(b) (4)
	(b) (4)
(b) (4)	

(b) (4)	
	(b) (4)
	(b) (4)
	(6) (4)
	(b) (4

Page 24

(b) (4)
(b) (4)
(b) (4)
-
A) (1
(0) (4,

	(b) (4)	
		(b) (4)
		(b) (4)
		(b) (4)

Page 26

	(b) (4)			
			(b) (4)
			(b) (4)	
	(b) (4)			
			6) (A)	
			(0) (4)	

(b) (4)		
		(b) (4
	(b) (4) (b) (4)	
(b) (4)		

				(b) (4)
	(b) (4)		_	
				(
				(
		(b) (4)		
		(0) (4)		
				(b) (4)
_				
_				

) (4)

	(b) (4)
(b) (4)	
	(b) (4)
(b) (4)	
	(b) (4)

			(b) (4)	
				(b) (4)
	 _	_	_	
	_			_
(b) (4)				
				(b) (4)
(b) (4)				

Page 32

(b) (4)

	(b) (4)	
		(b) (4
(b) (4)		
	(b) (4)	

	I
) (4)
(b) (4)	
	(b) (4)
) (4)

No	SEQ ID	Sequence $(5' \rightarrow 3')$
1	SEQ ID No 01	(b) (4)
2	SEQ ID No 02	
3	SEQ ID No 03	
4	SEQ ID No 04	
5	SEQ ID No 05	
6	SEQ ID No 06	
7	SEQ ID No 07	
8	SEQ ID No 08	
9	SEQ ID No 09	
10	SEQ ID No 10	
11	SEQ ID No 11	
12	SEQ ID No 12	
13	SEQ ID No 13	
14	SEQ ID No 14	
15	SEQ ID No 15	
16	SEQ ID No 16	
17	SEQ ID No 17	
18	SEQ ID No 18	
19	SEQ ID No 19	
20	SEQ ID No 20	
21	SEQ ID No 21	
22	SEQ ID No 22	
23	SEQ ID No 23	
24	SEQ ID No 24	
25	SEQ ID No 25	
26	SEQ ID No 26	
27	SEQ ID No 27	
28	SEQ ID No 28	
29	SEQ ID No 29	
21	SEQ ID No 30	
22	SEQ ID No 31	
22	SEQ ID No 32	
33	SEQ ID No 33	
35	SEQ ID No 34	
36	SEQ ID No 36	
37	SEQ ID No 37	
38	SEQ ID No 38	
39	SEQ ID No 39	
40	SEQ ID No 40	
41	SEQ ID No 41	
42	SEQ ID No 42	
43	SEQ ID No 43	
44	SEQ ID No 44	
45	SEQ ID No 45	
46	SEQ ID No 46	

Table B.3.1. Primer sequence used to construct C. glutamicum KCCM 80240

No	SEQ ID	Sequence $(5' \rightarrow 3')$
47	SEQ ID No 47	(6)
48	SEQ ID No 48	
49	SEQ ID No 49	
50	SEQ ID No 50	
51	SEQ ID No 51	
52	SEQ ID No 52	
53	SEQ ID No 53	
54	SEQ ID No 54	
55	SEQ ID No 55	
56	SEQ ID No 56	
57	SEQ ID No 57	
58	SEQ ID No 58	
59	SEQ ID No 59	
60	SEQ ID No 60	
61	SEQ ID No 61	
62	SEQ ID No 62	
63	SEQ ID No 63	
64	SEQ ID No 64	
65	SEQ ID No 65	
66	SEQ ID No 66	
67	SEQ ID No 67	
68	SEQ ID No 68	
69	SEQ ID No 69	
70	SEQ ID No 70	
71	SEQ ID No 71	
72	SEQ ID No 72	
73	SEQ ID No 73	
74	SEQ ID No 74	
75	SEQ ID No 75	
76	SEQ ID No 76	
77	SEQ ID No 77	
78	SEQ ID No 78	
/9	SEQ ID No 79	
80	SEQ ID No 80	
81	SEQ ID No 81	
82	SEQ ID No 82	
85	SEQ ID No 83	
84	SEQ ID No 84	
85	SEQ ID No 85	
80	SEQ ID NO 86	

B.4 Identification and Detection Techniques

Table B.4.1. Comparison of PCR products sizes between C. glutamicum ATCC 14067 and C. glutamicum KCCM 80240

Cons	Seq Dimension (51 - 21) Integrate	Integrated	PCR size (bp)	
Gelle	No	Primer sequence $(5^{\circ} \rightarrow 5^{\circ})$	locus	ATCC 14067 KCCM 80240

B.5 Description of Gene Deletion Region(s)

(b) (4)

(b) (4)

Table B.5.1. Size and function of deleted gene

A) (1)

Deleted some	Function	Size (bp)		
Deleted gene		Whole gene	Deleted gene	
			(b)	
			ი	

Name	Sequence $(5' \rightarrow 3')$	Size (bp)
		(6) (4)

Name	Sequence $(5^{\circ} \rightarrow 3^{\circ})$	Size (bp)

B.6 Promoter Information

			(b) (4)		
					(b) (4)
Promoter Name	Origin	(b) (4) Sequence (5' → 3')		Length (bp)	Applied ORF
					(6)(4
B.7 Description of Gene Integration

	(b) (4)
	(b) (4)
(b) (4)	

Table B.7.1. Location of integrated genes in genome

Genes	Integrated locus	Location in genome
A	(0)	
INAME	Sequence $(5' \rightarrow 3')$	(bp) Origin (b)(4)
		(b) (d

Name	Sequence $(5^{\circ} \rightarrow 3^{\circ})$	Size (bp) Origin
		(6) (4)
		(b) (4)
-		(b) (4
		(6) (4
		(6)

Name	Sequence $(5^{\circ} \rightarrow 3^{\circ})$	Size (bp)	Origin
			(b) (4

	(b) (4)		
Name	Sequence $(5' \rightarrow 3')$	Size (bp) Origin	
			(b) (
			(b)
			(0)
			0
			10

Name	Sequence $(5^{\circ} \rightarrow 3^{\circ})$		Size (bp) Origin	
				(b) (4)
				(b) (4)
	la en en	(b) (4)		
Name	Sequence $(5^{\circ} \rightarrow 3^{\circ})$		Size (bp) Origin	(b) (4)

Name	Sequence $(5' \rightarrow 3')$	Size (bp)	Origin
			(b) (

Name	Sequence (5' → 3')	Size (bp)	Origin

Name	Sequence (5' → 3')	Size (bp) Origin
		(b) (4)
		(6) (4

Name	Sequence (5' → 3')	Size (bp) Origin
	(b) (4)	
Name	Sequence (5' → 3')	Size (bp) Origin

Name	Sequence $(5' \rightarrow 3')$	Size (bp) Origin	
			<u>(b)</u> (4)
A CONTRACTOR OF THE OWNER OWNER OF THE OWNER OWNE			

-	Sequence $(5' \rightarrow 3')$	Size (bp) Origin
		(b) (4)
		, much
	(b) (4)	
Name	(b) (4) Sequence (5' → 3')	Size (bp) Origin
Name	(b) (4) Sequence (5' → 3')	Size (bp) Origin
Name	(b) (4) Sequence (5' → 3')	Size (bp) Origin
Name	(b) (4) Sequence (5' → 3')	Size (bp) Origin
Name	(b) (4) Sequence (5' → 3')	Size (bp) Origin
Name	(b) (4) Sequence (5' → 3')	Size (bp) Origin
Name	(b)(4) Sequence (5' → 3')	Size (bp) Origin
Name	(b) (4) Sequence (5' → 3')	Size (bp) Origin

Name	Sequence (5' → 3')	Size (bp)	Origin	
				(0) (

Sequence $(5' \rightarrow 3')$	Size (bp)	Origin
		(b) (4
	Sequence (5' → 3')	Size (bp)

(0) (4			
ame	Sequence $(5' \rightarrow 3')$	Size (bp) Ori	gin
			(6)

Name	Sequence (5' → 3')	Size (bp)	Origin	(b) (4)

Name	Sequence $(5^{2} \rightarrow 3^{2})$	Size (hn)	Origin	
				(6
				(

Name	Sequence $(5' \rightarrow 3')$	Size (bp)	Origin
			(ф) (
ations are underlined.			

		(b) (4)			
Name		Sequence (5' → 3')	Size (bp)	Origin	(Ъ) (
	_		· · · ·		(6)

Traine	Sequence $(5^{\circ} \rightarrow 5^{\circ})$	Size (op)	Origin
<i></i>		• • • • •	

Name		Sequence $(5' \rightarrow 3')$	Size (bp)	Origin
				(0)(6)
				(b) (4
				(b) (4)
B.8 Safety	of DNA Modi	fication		
				(b) (4)

B.9 Genetic Stability of C. glutamicum KCCM 80240

B.10 Open Reading Frame (ORF) Analysis of Genetically Modified Region

(b) (4)

(b) (4)

le B.10.1. Location of modified gene in genome nes Modification type Locus Location in genome	nodified gene in genome		4			8
le B.10.1. Location of modified gene in genome nes Modification type Locus Location in genome	nodified gene in genome Modification type Locus Location in genome					
le B.10.1. Location of modified gene in genome nes Modification type Locus Location in genome	nodified gene in genome Modification type Locus					
le B.10.1. Location of modified gene in genome nes Modification type Locus Location in genome	nodified gene in genome Modification type Locus Location in genome					
le B.10.1. Location of modified gene in genome nes Modification type Locus Location in genome	nodified gene in genome Modification type Locus Location in genome					
le B.10.1. Location of modified gene in genome nes Modification type Locus Location in genome	nodified gene in genome Modification type Locus Location in genome					(h)
le B.10.1. Location of modified gene in genome nes Modification type Locus Location in genome	nodified gene in genome Modification type Locus Location in genome					(0)
le B.10.1. Location of modified gene in genome nes Modification type Locus Location in genome	nodified gene in genome Modification type Locus Location in genome					
le B.10.1. Location of modified gene in genome nes Modification type Locus Location in genome	nodified gene in genome Modification type Locus Location in genome					
le B.10.1. Location of modified gene in genome nes Modification type Locus Location in genome	nodified gene in genome Modification type Locus Location in genome					
le B.10.1. Location of modified gene in genome nes Modification type Locus Location in genome	nodified gene in genome Modification type Locus Location in genome					
le B.10.1. Location of modified gene in genome nes Modification type Locus Location in genome	nodified gene in genome Modification type Locus Location in genome					
le B.10.1. Location of modified gene in genome nes Modification type Locus Location in genome	nodified gene in genome Modification type Locus Location in genome					
le B.10.1. Location of modified gene in genome nes Modification type Locus Location in genome	nodified gene in genome Modification type Locus Location in genome &					
le B.10.1. Location of modified gene in genome nes Modification type Locus Location in genome	nodified gene in genome Modification type Locus Location in genome 					
le B.10.1. Location of modified gene in genome nes Modification type Locus Location in genome	nodified gene in genome Modification type Locus Location in genome					
le B.10.1. Location of modified gene in genome nes Modification type Locus Location in genome	nodified gene in genome Modification type Locus Location in genome 					
le B.10.1. Location of modified gene in genome nes Modification type Locus Location in genome	nodified gene in genome Modification type Locus Location in genome 					
le B.10.1. Location of modified gene in genome nes Modification type Locus Location in genome	nodified gene in genome Modification type Locus Location in genome (b)					
le B.10.1. Location of modified gene in genome nes Modification type Locus Location in genome	nodified gene in genome Modification type Locus Location in genome (*)					
le B.10.1. Location of modified gene in genome nes Modification type Locus Location in genome	nodified gene in genome Modification type Locus Location in genome (b)					
le B.10.1. Location of modified gene in genome nes Modification type Locus Location in genome	nodified gene in genome Modification type Locus Location in genome					
nes Modification type Locus Location in genome	Modification type Locus Location in genome	ble B.10.1. Location		ne	Share and a second second	
	(6	Genes	n of modified gene in genor	Locus	Location in genome	
			n of modified gene in genon Modification type			(6)
			n of modified gene in genor Modification type			
			on of modified gene in geno Modification type			
			n of modified gene in geno Modification type			
			n of modified gene in geno Modification type			
			n of modified gene in geno Modification type			

Page 61

B.11 Open Reading Frame Analysis of Full Genome Sequence of C. glutamicum KCCM 80240

(b) (4)

Table B.11.1. Comparison of ORF between the *C. glutamicum* ATCC14067, *C. glutamicum* CA08-0012 and *C. glutamicum* KCCM80240

Feature	Wild-type strain ATCC 14067	Parental strain CA08-0012	Production strain KCCM 80240
			(b) (d

(b) (4)

C. SPILL-OVER ANALYSIS

(b) (4)	
(.)	
(b) (4)	
.,	
(b) (4)	
	(b) (4)

C.1 Comparison Metabolic Flux of C. glutamicum ATCC 14067 and C. glutamicum KCCM 80240

(b) (4)

Page 64

(b) (4)

Table C 1 1 MEA of C	alutamiana ATCC 14067	and C alutamian VCCM 90240
LADIE C.I.I MITA OI C.	giulumicum AICC 1400/	and C. giulumicum ACCIVI 00240

The second second second second second	Pathway	ATCC 14067	KCCM 80240
			(b) (4)

Pathway ATCC 14067 | KCCM 80240

	Pathway	ATCC 14067	KCCM 80240
Comparison of Mot	abolito in <i>C. glutanigum</i> AT	CC 14067 and C alutamiaum	KCCM 80240
Comparison of Meta	abolite in <i>C. glutamicum</i> AT	CCC 14067 and <i>C. glutamicum</i>	KCCM 80240
Comparison of Meta	abolite in <i>C. glutamicum</i> AT	CCC 14067 and <i>C. glutamicum</i>	KCCM 80240 (6) (4)
Comparison of Meta	abolite in <i>C. glutamicum</i> AT	CC 14067 and <i>C. glutamicum</i>	KCCM 80240 (b) (4)
Comparison of Meta	abolite in <i>C. glutamicum</i> AT	CC 14067 and <i>C. glutamicum</i>	KCCM 80240 (6) (4)
Comparison of Meta	abolite in <i>C. glutamicum</i> AT	CC 14067 and <i>C. glutamicum</i>	KCCM 80240 (6) (4)
Comparison of Meta	abolite in <i>C. glutamicum</i> AT	CC 14067 and <i>C. glutamicum</i>	KCCM 80240 (%)
Comparison of Meta	abolite in <i>C. glutamicum</i> AT	CC 14067 and <i>C. glutamicum</i>	KCCM 80240 (5) (4)

(b) (4)
(6) (4)

Table C.2.1. Amino acid of *C. glutamicum* ATCC 14067, *C. glutamicum* CA08-0012 and *C. glutamicum* KCCM 80240 fermentation broth (3KL Pilot scale, the end of fermentation)

	ATCC 14067 (g/L)	CA08-0012 (g/L)		KCCM (g/	I 80240 (L)	
	Batch1	Batch1	Batch1	Batch2	Batch3	Ave
OD562					(b) (4)	57.6
Asp						0.00
Thr						0.07
Ser						0.01
Glu						0.20
Gly						0.14
Ala						0.17
Cys						0.00
Val						92.51
Met						0.00
Ile						0.12
Leu						0.14
Tyr						0.11
Phe						0.32
Lys	1000					0.02
His						0.31
Arg	Manager and State					0.00

* Asp: aspartate, Thr: threonine, Ser: serine, Glu: glutamate, Gly: glycine, Ala: alanine, Cys: cysteine, Val: valine, Met: methionine, Ile: isoleucine, Leu: leucine, Tyr: tyrosine, Phe: phenylalanine, Lys: lysine, His: histidine, Arg: arginine

** Analytical method: L-Valine-HPLC, Free amino acids (except L-valine)-AOAC 999.13

Page 68

Table C.2.2. Organic acid of *C. glutamicum* ATCC 14067, *C. glutamicum* CA08-0012 and *C. glutamicum* KCCM 80240 fermentation broth (3KL Pilot scale, the end of fermentation)

	ATCC 14067	CA08-0012	KCCM 80240							
	(g/L)	(g/L)		(g/L)						
	Batch1	Batch1	Batch1	Batch2	Batch3	Ave.				
Citric acid					(b) (4)	0.00				
Malic acid						0.04				
Succinic acid						0.00				
Lactic acid						0.00				
Formic acid						0.00				
Acetic acid						0.01				

* Analytical method: Korean Feed Standards Codex, 1 of chapter 14

(b) (4)

C.3 Biogenic Amines

(b) (4)

(b) (4)

(b) (4)

Page 70

	ATCC 14067 (mg/L)				CA08-0012 (mg/L)				KCCM 80240 (mg/L)			
	Batch1	Batch2	Batch3	Ave.	Batch1	Batch2	Batch3	Ave.	Batch1	Batch2	Batch3	Ave.
Cadaverine			(b) (4)	0.110	(b) (4)	(b) (4)	(b) (4)	0.128	(b) (4)	(b) (4)	(b) (4)	0.020
Histamine				0.104	(b) (4)	(b) (4)	(b) (4)	0.185	(b) (4)	(b) (4)	(b) (4)	0.153
Phenylethyl-			Ì	0.067	(h) (d)	(h) (l)	(h) (l)	0.070	(A)	(h) (d)	(h) (d)	0.077
amine				0.007	(0)(4)	(0)(4)	(0)(4)	0.079	(0)(4)	(0)(4)	(0) (4)	0.077
Putrescine				1.015	(b) (4)	(b) (4)	(b) (4)	1.352	(b) (4)	(b) (4)	(b) (4)	0.248
Tryptamine				0.010	(b) (4)	(b) (4)	(b) (4)	0.010	(b) (4)	(b) (4)	(b) (4)	0.008
Tyramine				2.851	(b) (4)	(b) (4)	(b) (4)	3.351	(b) (4)	(b) (4)	(b) (4)	3.654

(b) (4)

D. LIST OF ATTACHMENTS

Attachment 1	Determination of Antibiotic Minimal Inhibitory Concentration (MIC) of Corynebacterium glutamicum KCCM 80240, 9 pages
Attachment 2	Determination of viable cells of the production strain in Dried L-Valine Fermentation Product, 16 pages
Attachment 3	Genetic stability of Corynebacterium glutamicum KCCM 80240, 7 pages
Attachment 4	Whole genome sequence analysis of <i>Corynebacterium glutamicum</i> KCCM 80240, 59 pages
Attachment 5	Metabolic flux analysis of Corynebacterium glutamicum KCCM 80240, 15 pages

E. LIST OF REFERENCES

			(b) (4)
			(b) (4)
_			
		_	_
		-	-
			=

			(b) (4)
			(b) (4)
		(b) (4)	
			(b) (4)
	(b) (4)		
			(b) (4)
			(b) (4)

			(b) (4)
			_
			(b) (4)
			(b) (4)
		(0) (4)	
			(b) (4)
			(b) (4)
			(b) (4)
			(b) (4)
	(b) (4)		
			(b) (4)

		(b) (4)
		(b) (4)
 _		
		(b) (4)
		(b) (4)
		(b) (4)
		(b) (4)
		(b) (4)
		(b) (4)
		(b) (4)
		(b) (4)
		(b) (4)
		(0)(4)
		(b) (4)
		(b) (4)

	(b) (4)
	(b) (4)
	(b) (4)
	(0) (4)
	1
_	(b) (4)
	(0) (4)
	(b) (4)
	(b) (4)
	(b) (4)
	(b) (4)

										(b) (4)
										(b) (4)
										(b) (4)
	_	_	_	_		 _	 	 _		(0)(4)
										(b) (4)
										(b) (4)
										(b) (4)

APPENDIX 3 - Manufacturing Process (CONFIDENTIAL)

1. Raw materials

	(b) (4)
1	
1	
1	
10.00	

Table 1 provides the list of each raw materials to produce Dried L-Valine Fermentation Product.

Item	Regulatory Citation			
Magnesium Sulfate	FDA 21 CFR 582.5443 AAFCO 57.88	IFN 6-26-134		
Potassium Phosphate	FDA 21 CFR 582.6285	IFN 6-18-673		
Ammonium Sulfate	FDA 21 CFR 582.1143 AAFCO 57.27	IFN 6-09-339		
Sulfuric Acid	FDA 21 CFR 582.1095	IFN 6-29-778		
Manganese Sulfate	nese Sulfate FDA 21 CFR 582.80 IFN 6-2			
Iron Sulfate	FDA 21 CFR 582.80	IFN 6-20-734		
Antifoam: Polyoxyethylene Polyoxypropylene Block Copolymer (CAS No. 9003-11-6)	FDA 21 CFR 173.340 FDA 21 CFR 172.808(b)(3)	FDA-ETA Letter, 2003		
Beet Molasses	AAFCO 63.1	IFN 4-30-289		
Biotin	FDA 21 CFR 582.5159	IFN 7-00-723		
Copper Sulfate	AAFCO 57.69	IFN 6-01-717		
Phosphoric Acid	FDA 21 CFR 582.1073	IFN 6-03-707		
Anhydrous ammonia	AAFCO 87.11	IFN 5-14-511		
Nicotinamide (Niacinamide)	FDA 21 CFR 582.5535	IFN 7-03-215		
Zinc Sulfate	AAFCO 57.118	IFN 6-05-555		
Corn Steep Liquor	AAFCO 48.24			
Calcium Pantothenate	FDA 21 CFR 582.5212	IFN 7-07-079		
Potassium Hydroxide	AAFCO 57.124	IFN 6-20-870		
Thiamine Hydrochloride	FDA 21 CFR 582.5875	IFN 7-04-828		

Table 1. Raw materials for Dried L-Valine Fermentation Product with regulatory status

Table 2 provides a summary of the purchasing specifications. All starting materials have been determined to be suitable for animal feed.

Item	Specifications	
Magnesium Sulfate		(b) (4)
Potassium Phosphate		
Ammonium Sulfate		
Sulfuric Acid		
Manganese Sulfate		
Iron Sulfate		
Antifoam: Polyoxyethylene Polyoxypropylene Block Copolymer(CAS No. 9003-11-6)		(b) (4)
Beet Molasses		
Biotin		
Copper Sulfate		
Phosphoric Acid		
Anhydrous ammonia		
Nicotinamide (Niacinamide)		
Zinc Sulfate		
Corn Steep Liquor		
Calcium Pantothenate		
Potassium Hydroxide		
Thiamine Hydrochloride		

rabit 2. Specifications of raw materials of Difed L-v anne i crimentation i rodate	Table 2.	Specifications	of raw materials	of Dried L-Valine	Fermentation Product
--	----------	----------------	------------------	-------------------	----------------------

2. Fermentation

(b) (4)

3. Cell inactivation

4. Concentration

		(b) (4)

5. Granulation and drying

(b) (4)

(b) (4)

(b) (4)

6. Mesh separation and packaging

(b) (4)

CONFIDENTIAL REPORT

Interim report of stability test

: Dried L-Valine Fermentation Product (VAL Pro)

Version 1.0

TITLE

Interim report of stability test: Dried L-Valine Fermentation Product (VAL pro)

OBJECTIVE OF THE STUDY

This study was conducted to establish a shelf life for the Dried L-Valine Fermentation Product (VAL pro) under recommended storage conditions.

SCHEDULE OF THE STUDY

Initiation of experiment: June 26, 2020 Termination of experiment: Submission of report: December 31, 2020

TESTING FACILITY

Institute of Biotechnology) Scientific and Regulatory Affairs, CJ CheilJedang 55, Gwanggyo-ro 42beon-gil, Yeongtong-gu, Suwon-si, Gyeonggi-do 16495, Korea

RESPONSIBLE STAFFS

Analyst and Author

Ran Young Yoon

Report approved by

Yang Hee Kim

Georfee

CONTENTS

MATERIALS AND METHODS	4
Information of test sample	4
Storage condition	Л
Storage condition	-
Analysis method	4
RESULTS	5
REFERENCES	6
[APPENDIX 1] Certificate of Analysis	7

MATERIALS AND METHODS

The stability test of Dried L-Valine Fermentation Product (VAL pro) was conducted in accordance with the ICH HARMONISED TRIPARTITE GUIDELINE [1].

Information of test sample

- 1) Sample: Dried L-Valine Fermentation Product (VAL pro)
- L-Valine (dry base): not less than 72%
- Moisture: not more than 5.0%
- 2) Batch number: NGVAL191221, NGVAL191222, NGVAL191223

Storage condition

- 1) Packaging: Polypropylene woven bag and 1 ply polyethylene inner
- 2) Weight of storage sample: 50 g / bag
- 3) Temperature and humidity of storage
- General condition: 25 $^\circ\text{C}$ ± 2 $^\circ\text{C}$ and 60% RH ± 5% RH
- Accelerated condition: $40^{\circ}C \pm 2^{\circ}C$ and 75% RH $\pm 5\%$ RH
- 4) Testing frequency: Initial, 1, 3, 4, 6 months

Analysis method

1) Content of L-valine: HPLC-FLD

Parameter	Condition
System	HPLC
Detector	Fluorescence detector
Detector	(Excitation λ : 338 nm Emission λ : 425 nm)
Column	ODS C18, 150 x 4.6 mm, particle size 3 µm
Column temperature	40 °C
Mahila phasa	16.7 mM-KH ₂ PO ₄ + 5 mM OSA in 12% CH ₃ CN,
Mobile phase	pH 2.5 (by H₃PO₄)
Flow rate of mobile phage	1.0 ml/min
Poortion reagent	201.91 mM-KOH + 241.39 mM-H ₃ BO ₃ + 2.53 mM-OPA +
Reaction reagent	C ₂ H ₆ OS 1 mL + CH ₃ OH 5 mL + 3.5 %-Brij 1.25 mL
Flow rate of reaction reagent	0.5 ml/min
Sample temperature	15 °C
Injection volume	5 μl

2) Moisture: Loss on drying (AOAC 934.01)

RESULTS

Specification	Batch No.	Initial	1 month	3 month	4 month	6 month
	NGVAL191221					(b) (
≥ 72.0	NGVAL191222					
	NGVAL191223					
	NGVAL191221					
<mark>≤ 5.0</mark>	NGVAL191222					
	NGVAL191223					
	Specification ≥ 72.0 ≤ 5.0	SpecificationBatch No.≥ 72.0NGVAL191221≥ 72.0NGVAL191222NGVAL191223NGVAL191223≤ 5.0NGVAL191222NGVAL191223NGVAL191223	SpecificationBatch No.Initial≥ 72.0NGVAL191221NGVAL191222NGVAL191223≤ 5.0NGVAL191221NGVAL191222NGVAL191223NGVAL191223NGVAL191223	SpecificationBatch No.Initial1 month≥ 72.0NGVAL191221NGVAL191222NGVAL191223S5.0NGVAL191221NGVAL191223NGVAL191223NGVAL191223NGVAL191223NGVAL191223NGVAL191223	SpecificationBatch No.Initial1 month3 month≥ 72.0NGVAL191221NGVAL191223NGVAL191223S5.0NGVAL191222NGVAL191223NGVAL191223NGVAL191223	SpecificationBatch No.Initial1 month3 month4 month≥ 72.0NGVAL191221NGVAL191223NGVAL191221S5.0NGVAL191222NGVAL191223NGVAL191223

Table 1. General condition (25°C/60% RH)

Table 2. Accelerated condition (40°C/75% RH)

Test items	Specification	Batch No.	Initial	1 month	3 month	4 month	6 month
L Veline		NGVAL191221					(b) (4
(% dry base)	≥ 72.0	NGVAL191222					
		NGVAL191223					
		NGVAL191221					
Moisture (%)	≤ 5.0	NGVAL191222					
		NGVAL191223					

REFERENCES

[1] ICH Harmonised Tripartite Guideline. Q1A(R2) Stability Testing of New Drug Substances and Products. 6 February 2003.

[APPENDIX 1] Certificate of Analysis

Α.	CJ	L-Valine	Fermentation	Product	Lot number:	NGVAL191221)
			. or moneation		Lot manna on	

55, Gwanggyo-ro Gyeonggi-do, 164 TEL : 031	42beo 195, Koi <u>ww</u>) 8099-24	n-gil, Yeongt rea <u>w.cj.co.kr</u> 450 FAX : 031)	tong-gu, Suwo 8099-2918	n-si,	CHEILJEDANG		
121.71		Certifi	cate of an	alysis			
Certificate No.	202	0-PR-129	Receipt I	No.	2020-AN-103		
Client	100	-	Date of Re	ceipt	2020.11.25.		
Client Name		4	Date of 1	est	2020.12.11		
Client Tel		-	Use of Re	port	Reference test		
Client Address				-			
Test Sample	e	L-Valine(Val	pro)				
Manuf. Dat	e	2019.12.21					
Lot. No		NGVAL191221					
Quantity (kg	3)	ě.					
Test Item(s)	Specification		Test Result	Test method used		
L-Valine(dry b	ase)	Not less than 72 %		(b) (4) HPLC		
Moisture(Loss on drying)		Not more than 5 %			AOAC 934.01		
* Information							
* Temperature : (20 * The results show The Test Report Tested by Approved by Teo)~28) ℃, n in this cannot b hnical M	Relative Hum test report ref e reproduced (%) anager	idity : (30~60) 9 er only to the s except in full.	6 ample tested unle (6)(4)	ss otherwise stated. Dec, 22, 202		
					000, 22, 202		

CJ BIO-AD form 100-01 REV.01

55, Gwanggyo-r Gyeonggi-do, 16 TEL : 03	o 42beo 5495, Kor <u>ww</u> 1) 8099-24	n-gil, Yeongt rea <u>w.cj.co.kr</u> 150 FAX : 031)	tong-gu, Si 8099-2918	uwon-si,		CHEILJEDANG
		Certifi	cate of	analysis		
Certificate No.	202	0-PR-130	Recei	pt No.	20	20-AN-104
Client			Date of	Receipt	2	020.11.25.
Client Name			Date	of Test	2	2020.12.11
Client Tel		•	Use of	Report	Re	ference test
Client Address				-		
Test Samp	le	L-Valine(Val	pro)			
Manuf. Date 2019.12.22						
Lot. No	NGVAL1912	NGVAL191222				
Quantity ((g)	-				
Test Item(s)	Specification		Test Result		Test method used
L-Valine(dry base)		Not less than 72 %		(b)		HPLC
Moisture(Loss or	n drying)	Not more than 5 %				AOAC 934.01
* Information		1 <u></u>				
* Temperature : (2 * The results show The Test Report Tested by Approved by Te	20~28) °C, vn in this cannot b echnical M	Relative Hum test report ref e reproduced (%) anager	idity : (30~6 er only to th except in fu	0) % e sample test III. (6) (ed unless 4)	otherwise stated. Dec, 22, 2020

B. CJ L-Valine Fermentation Product (Lot number: NGVAL191222)

C. CJ L-Valine Fermentation Product (Lot number: NGVAL191223)

TEL : 031	495, Kor <u>ww</u>) 8099-24	rea <u>w.cj.co.kr</u> 450 FAX : 031)	8099-2918	0	CJ	CHEILJEDANG	
		Certifi	cate of	analysis			
Certificate No.	202	0-PR-131	Recei	pt No.	2	020-AN-105	
Client		-	Date of	Receipt		2020.11.25.	
Client Name		4	Date	of Test		2020.12.11	
Client Tel			Use of	Report	R	eference test	
Client Address							
Test Sampl	e	L-Valine(Val	pro)				
Manuf. Dat	2019.12.23	2019.12.23					
Lot. No NGVAL191223							
Quantity (k	g)	-					
Test Item(s)	Specification		Test Result (b)(Test method used	
L-Valine(dry b	ase)	Not less than 72 % Not more than 5 %				HPLC	
Moisture(Loss on	drying)					AOAC 934.01	
Information		1					
Temperature : (20 The results show The Test Report Tested by Approved by Teo	0∼28) ℃, n in this cannot b chnical M	Relative Hum test report refe e reproduced (%) anager	idity : (30~6) er only to th except in fu	0) % e sample test II. (6) (4)	ed unles	s otherwise stated. Dec, 22, 202	
					1.		

CONFIDENTIAL REPORT

Stability of Dried L-Valine Fermentation Product (VAL Pro) in mash feed Version 1.0

TITLE

Stability of Dried L-Valine Fermentation Product (VAL Pro) in mash feed

OBJECTIVE OF THE STUDY

This study was conducted to examine the stability of Dried L-Valine Fermentation Product (VAL Pro) in mash feed.

SCHEDULE OF THE STUDY

Initiation of experiment: November 24, 2020 Termination of experiment: February 26, 2021 Submission of report: February 26, 2021

TESTING FACILITY

Institute of Biotechnology) Scientific and Regulatory Affairs, CJ CheilJedang 55, Gwanggyo-ro 42beon-gil, Yeongtong-gu, Suwon-si, Gyeonggi-do 16495, Korea

RESPONSIBLE STAFFS

Analyst and Author

Ran Young Yoon

Report approved by

Yang Hee Kim

Romfree

CONTENTS

MATERIALS AND METHODS
Information of product4
Information of mash feed4
Sample preparation4
Homogeneity test5
Storage condition5
Analysis of sample5
RESULTS
[APPENDIX 1] Certificate of Analysis – Test Sample7
[APPENDIX 2] Certificate of Analysis – Homogeneity and Stability

MATERIALS AND METHODS

Information of product

- 1) Name: Dried L-Valine Fermentation Product (VAL pro)
- 2) L-Valine (dry basis): not less than 72%
- 3) Batch number: GVAL200910, GVAL200911, GVAL200912

Information of mash feed

1) Target animals: broiler, swine

2) Information of ingredients

Ingredient	Product name	Supplier
Corn	PNW corn	(6) (4,
Soybean meal (44% CP)	Soybean meal	CJ cheiljedang

2) Formulation of the mash feed

Composition	Percentage (%)			
Corn	78.8			
Soybean meal (44% CP)	19.8			
Soybean oil	1.0			
Analytical components	Percentage (%)			
Crude protein	14.56			
Crude fat	2.88			
Crude fiber	2.39			
Crude ash	2.04			
Calcium	0.02			
Phosphorous	0.20			
Metabolisable energy	3.54 Mkcal/kg			

Sample preparation

- 1) Added amount of Dried L-Valine Fermentation Product (VAL Pro): 0.4%
- 2) Preparation of mash feed with VAL pro

	Amount (g, batch)
Mash feed	48,000
Dried L-Valine Fermentation Product (VAL Pro)	200
(Total) Mash feed with VAL pro	50,000

Homogeneity test

Before the storage, homogeneity of Dried L-Valine Fermentation Product in mash feed was confirmed by analyzing L-valine in the randomly collected samples (Table 1).

Storage condition

- 1) Packaging: Polypropylene woven bag and 1 ply polyethylene inner
- 2) Weight of storage samples: 100 g/bag
- 3) Temperature and humidity of storage: 25°C \pm 2°C and 60% RH \pm 5% RH
- 4) Storage period: 3 months

Analysis of sample

1) Pretreatment of sample

: 2.5 g of the sample was weighed, put into 100 mL of volumetric flask and add approximately 70 ml ultra-purified water. In addition, sonicate for 30 min, reduce the temperature of solution and then adjusted the final volume to 100 mL with ultra-purified water. Filter a suitable amount of the test solution through membrane filter unit, into autosampler vials and inject into analyzer.

Parameter	Condition				
System	HPLC				
Detector	Fluorescence detector (Excitation λ : 338 nm Emission λ : 425 nm)				
Column	ODS C18, 150 x 4.6 mm, particle size 3 µm				
Column temperature	40 °C				
Mobile phase	16.7 mM-KH ₂ PO ₄ + 5 mM OSA in 12% CH ₃ CN, pH 2.5 (by H ₃ PO ₄)				
Flow rate of mobile phage	1.0 ml/min				
Reaction reagent	201.91 mM-KOH + 241.39 mM-H ₃ BO ₃ + 2.53 mM-OPA + C_2H_6OS 1 mL + CH ₃ OH 5 mL + 3.5 %-Brij 1.25 mL				
Flow rate of reaction reagent	0.5 ml/min				
Sample temperature	15 °C				
Injection volume	5 μl				

2) Contents of L-valine: HPLC-FLD

RESULTS

Dried L-Valine Fermentation Product (VAL Pro) was mixed into the mash feed with an addition rate of 0.40 %. Taking into account the L-valine content of 72.17–72.22%, the nominal content in the mash feed is approximately 0.28 %.

The homogeneity of Dried L-Valine Fermentation Product in mash feed was observed first. As shown in Table 1, analyzed sample showed good homogeneity. The result indicated that Dried L-Valine Fermentation Product is mixed well in mash feed with good homogeneity.

Sample	L-Valine (%, dry basis)
	Added amount 0.40 %, resulting nominal value approx. 0.28 %
Blank value of mash feed	
mash feed with VAL pro	
GVAL200910 - 1	
mash feed with VAL pro	
GVAL200910 - 2	
mash feed with VAL pro	
GVAL200910 - 3	
mash feed with VAL pro	
GVAL200911-1	
mash feed with VAL pro	
GVAL200911- 2	
mash feed with VAL pro	
GVAL200911-3	
mash feed with VAL pro	
GVAL200912 - 1	
mash feed with VAL pro	
GVAL200912 - 2	
mash feed with VAL pro	
GVAL200912 - 3	
Mean value and standard deviation	0.30 ± 0.010

Table 1. Homogeneity of Dried L-Valine Fermentation Product in mash feed

The stability data of Dried L-Valine Fermentation Product in mash feed are summarized in Table 2. The contents of L-valine in mash feed was not changed for 3 months.

Table 2. St	ability of Dried	L-Valine Ferment	tation Product in	mash feed

Sample	Unit	Initial	1 month	2 month	3 month
Mash feed with VAL pro					(b) (4)
GVAL200910					
Mash feed with VAL pro	0/				
GVAL200911	70				
Mash feed with VAL pro					
GVAL200912					

[APPENDIX 1] Certificate of Analysis – Test Sample

A. CJ Dried L-Valine Fermentation Product (Lot number: GVAL200910)

55, Gwanggyo-ro Gyeonggi-do, 16 TEL : 031	42beo 495, Kor <u>ww</u> 1) 8099-24	n-gil, Yeongtoi ea <u>w.cj.co.kr</u> ISO FAX : 031) 8	ng-gu, Su 1099-2918	won-si,	.,	CHEILJEDANG	
		Certific	ate of	analysis			
Certificate No.	202	0-PR-132	Receip	ot No.	20	020-AN-106	
Client		+	Date of	Receipt	4	2020.11.19.	
Client Name		G	Date o	of Test	1	2020.11.23.	
Client Tel		14	Use of	Report	Re	eference test	
Client Address				-			
Test Sampl	e	L-Valine (Val p	oro)				
Manuf. Da	te	2020.09.10.					
Lot. No		GVAL200910					
Quantity (k	g)	24					
Test Item(s	s)	Specification Test		Test Resu	lt	Test method used	
L-Valine(dry b	ase)	Not less than 72 %			(b) (4)	HPLC	
Moisture (Loss or	drying)	Not more than 5 %			-	AOAC 934.01	
* Information		1			-		
* Temperature : (2 * The results show The Test Report Tested by Approved by Te	0~28) ℃, m in this cannot b chnical M	Relative Humid test report refer e reproduced, e o anager	ity : (30~60 only to the xcept in ful or (4))) % e sample teste I. (6)	ed unless (4)	otherwise stated.	
					_	Dec, 23, 2020	
	CJ Re	esearch Ins	titute o	f Biotechi	nology	/	

55, Gwanggyo-ro Gyeonggi-do, 16 TEL : 031	42beo 495, Kor <u>ww</u> 1) 8099-24	n-gil, Yeongt ea <mark>w.cj.co.kr</mark> 450 FAX : 031)	tong-gu, S 8099-2918	uwon-si,		CHEILJEDANG
		Certifi	cate of	analysis		
Certificate No.	202	0-PR-133	Recei	pt No.	2	020-AN-107
Client		-	Date of	Receipt	1	2020.11.19.
Client Name			Date	of Test		2020.11.23.
Client Tel			Use of	Report	R	eference test
Client Address						
Test Samp	le	L-Valine (Va	l pro)			
Manuf. Da	te	2020.09.11.				
Lot. No		GVAL200911				
Quantity (k	g)	-				
Test Item(s	s)	Specification Test F		Test Res	ult	Test method used
L-Valine(dry b	oase)	Not less than 72 %			(b) (4)	HPLC
Moisture (Loss or	n drying)	Not more than 5 %				AOAC 934.01
* Information				2	L	
* Temperature : (2 * The results show The Test Report Tested by Approved by Te	0~28) ℃, m in this t cannot b chnical M	Relative Hum test report ref e reproduced (6) anager	idity : (30~6 er only to th except in fu	0) % le sample test ill. @	ed unles:	s otherwise stated. Dec, 23, 2020
	CJ Re	esearch In	stitute o	of Biotech	nolog	у

B. CJ Dried L-Valine Fermentation Product (Lot number: GVAL200911)

. CJ Dried L-Valine Fermentation Prod	luct (Lot number: GVAL200912)
---------------------------------------	-------------------------------

CJ Researci 55, Gwanggyo-ro Gyeonggi-do, 164 TEL : 031	42beo 495, Kor <u>ww</u>) 8099-24	tute of Bio n-gil, Yeongt rea w.cj.co.kr 150 FAX : 031)	8099-2918	ogy Iwon-si,		CHEILJEDANG	
		Certifi	cate of	analysis	5 m		
Certificate No.	202	0-PR-134	Recei	pt No.	2	020-AN-108	
Client			Date of	Receipt		2020.11.19.	
Client Name			Date	of Test		2020.11.23.	
Client Tel		÷	Use of	Report	R	eference test	
Client Address							
Test Sample	e	L-Valine (Val	pro)				
Manuf. Dat	e	2020.09.12.					
Lot. No		GVAL200912					
Quantity (kg	g)	-					
Test Item(s)	Specific	ecification Test Result		ult	Test method used	
L-Valine(dry b	ase)	Not less th	lot less than 72 %		(b) (4)	HPLC	
Moisture (Loss on	drying)	Not more	than 5 %	1		AOAC 934.01	
* Information		1					
* Temperature : (20 * The results show The Test Report Tested by Approved by Teo	0~28) °C, n in this t cannot b chnical M	Relative Hum test report refe e reproduced anager	idity : (30~6 er only to th except in fu	0) % e sample test II. (6) (ed unles	s otherwise stated. Dec, 23, 2020	
	CJ Re	esearch In	stitute o	f Biotech	nolog	У	

[APPENDIX 2] Certificate of Analysis – Homogeneity and Stability

. Homogeneity_	mash feed	with VAL p	ro GVAL200910-1

55, Gwanggyo-ro Gyeonggi-do, 164 TEL : 031	42beon-gil, Yi 195, Korea <u>www.cj.co.k</u>) 8099-2450 FAX :	eongtong-gu, Suwon-si, (031) 8099-2918	CHEILJEDANG			
	Cer	tificate of analysis				
Certificate No.	2021-PR-037	Receipt No.	2020-AN-126			
Client		Date of Receipt	2020.11.24.			
Client Name		Date of Test	2020.12.05.			
Client Tel		Use of Report	Reference test			
Client Address		-				
Test Sample	e mash f	eed with VAL pro GVAL200910-	1			
Manuf, Dati	e 2020.1	2020.11.23.				
Quantity (kg) -						
Test Item(s)	Test Result Test method used				
L-valine			HPLC			
* Information	-		-			
^t Temperature : (20 ^t The results show The Test Report Tested by Approved by Tec	0~28) °C, Relative n in this test repo cannot be reorod hnical Manager CJ Researc	Humidity : (30~60) % rt refer only to the sample test uced except in full. (6)(4) (6)(4) (6)(4) (6)(4)	ed unless otherwise stated. Feb, 26, 202 nology			
	ar noscare	in institute of protocoli				

. Homogeneity_mash feed with VAL pro GVAL200910-2

55, Gwanggyo-ro Gyeonggi-do, 164 TEL : 031	42beon-gil, Yeo 495, Korea <u>www.cj.co.kr</u>) 8099-2450 FAX : 0	ngtong-gu, Suwon-si, 31) 8099-2918	сј	CHEILJEDANG		
	Cert	ificate of analysi	s			
Certificate No.	2021-PR-038	Receipt No.	202	20-AN-127		
Client		Date of Receipt	20	020.11.24.		
Client Name		Date of Test	20	020.12.05.		
Client Tel	14	Use of Report	Ref	erence test		
Client Address		-				
Test Sampl	e mash fee	ed with VAL pro GVAL20091	0-2			
Manuf. Dat	e 2020.11.	2020.11.23.				
Quantity (kg	g) -					
Test Item(s)	Test Result Test method us				
L-valine			0.0	HPLC		
* Information	5					
* Temperature : (20 * The results show The Test Report Tested by Approved by Teo	0~28) ℃, Relative H n in this test report cannot be reproduc chnical Manager CJ Research	umidity : (30~60) % refer only to the sample te ed except in full.	sted unless ()(4) hnology	otherwise stated. Feb, 26, 2021		

55, Gwanggyo-ro Gyeonggi-do, 16 TEL : 031	42beo 495, Koi <u>wv</u>) 8099-24	n-gil, Yeongt rea <mark>w.cj.co.kr</mark> 450 FAX : 031)	ong-gu, Suwon-si, 8099-2918	cJ	CHEILJEDANG	
		Certifi	cate of analysis			
Certificate No.	202	1-PR-039	Receipt No.	2	020-AN-128	
Client			Date of Receipt		2020.11.24.	
Client Name		Э.	Date of Test		2020.12.05.	
Client Tel		3	Use of Report	R	eference test	
Client Address						
Test Sampl	e	mash feed v	with VAL pro GVAL200910	-3		
Manuf. Date		2020.11.23.				
Quantity (kg) -		-				
Test Item(s)	Test Result			Test method used	
L-valine				(b) (4)	HPLC	
* Information						
* Temperature : (20 * The results show The Test Report Tested by Approved by Teo	0~28) °C, n in this cannot b chnical M CJ R	Relative Hum test report refi e reproduced, anager esearch In	idity : (30~60) % er only to the sample test except in full. (4) (*) (*) (*) (*)	ed unless	s otherwise stated. Feb, 26, 2021 y	

. Homogeneity_mash feed with VAL pro GVAL200910-3

55, Gwanggyo-ro Gyeonggi-do, 16 TEL : 031	42beon-gil, Yeon 495, Korea <u>www.cj.co.kr</u>) 8099-2450 FAX : 03	gtong-gu, Suwon-si,	CHEILJEDANG			
	Certit	ficate of analysis				
Certificate No.	2021-PR-040	Receipt No.	2020-AN-129			
Client	÷	Date of Receipt	2020.11.24.			
Client Name	÷.	Date of Test	2020.12.05.			
Client Tel	4	Use of Report	Reference test			
Client Address						
Test Sampl	e mash feed	with VAL pro GVAL200911-	1			
Manuf. Dat	e 2020.11.2	2020.11.23.				
Quantity (kg	g) -					
Test Item(s)	Test Result Test method u				
L-valine			HPLC			
* Information	10-					
* Temperature : (20 * The results show The Test Report Tested by Approved by Teo	0~28) ℃, Relative Hu n in this test report r cannot be reproduce thnical Manager	midity : (30~60) % efer only to the sample test d, except in full. (6) (4) (6)	ed unless otherwise stated. (4) Feb, 26, 2021 nology			

. Homogeneity_mash feed with VAL pro GVAL200911-1

. Homogeneity_mash feed with VAL pro GVAL200911-2

55, Gwanggyo-ro Gyeonggi-do, 16 TEL : 031	42beon-gil, Yeo 495, Korea <u>www.cj.co.kr</u>) 8099-2450 FAX : (031) 8099-2918	CHEILJEDANG		
	Cert	ificate of analysis			
Certificate No.	2021-PR-041	Receipt No.	2020-AN-130		
Client	.2	Date of Receipt	2020.11.24.		
Client Name	- A	Date of Test	2020.12.05.		
Client Tel	÷	Use of Report	Reference test		
Client Address		1.0			
Test Sampl	e mash fe	ed with VAL pro GVAL200911-2	2		
Manuf. Dat	e 2020.11.	2020.11.23.			
Quantity (k	g) -				
Test Item(s)	Test Result	Test method used		
L-valine			HPLC		
* Information					
* Temperature : (20 * The results show The Test Report Tested by Approved by Teo	0~28) °C, Relative F n in this test report cannot be reprodu chnical Manager	Humidity : (30~60) % t refer only to the sample tester ced, except in full. (0)(4) (0)(4)	d unless otherwise stated.		

CJ BIO-AD form 100-01 REV.01

. Homogeneity_mash feed with VAL pro GVAL200911-3

CJ Research 55, Gwanggyo-ro Gyeonggi-do, 164 TEL : 031	42beon-gil, Yeong 495, Korea www.cj.co.kr) 8099-2450 FAX : 031	otechnology tong-gu, Suwon-si,) 8099-2918	CHEILJEDANG			
	Certifi	cate of analysis				
Certificate No.	2021-PR-042	Receipt No.	2020-AN-131			
Client	2	Date of Receipt	2020.11.24.			
Client Name		Date of Test	2020.12.05.			
Client Tel		Use of Report	Reference test			
Client Address						
Test Sample	e mash feed	with VAL pro GVAL200911-	3			
Manuf. Date	e 2020.11.23.	2020.11.23.				
Quantity (kg	g) -					
Test Item(s))	Test Result	Test method used			
L-valine			HPLC			
* Information						
* Temperature : (20 * The results shown The Test Report of Tested by Approved by Teo	0~28) °C, Relative Hum n in this test report ref cannot be reproduced hnical Manager CJ Research Ir	nidity : (30~60) % fer only to the sample test except in full. (®)(4) (®)(4) (®)(4) (®)(4) (®)(4) (®)(4) (®)(4)	ed unless otherwise stated. Feb, 26, 2021 nology			

CJ BIO-AD form 100-01 REV.01

Gyeonggi-do, 10 TEL : 03	ro 42bec 6495, Ko <u>w</u> 81) 8099-2	on-gil, Yeongt orea <u>ww.cj.co.kr</u> 2450 FAX : 031)	tong-gu, Suwon-si, 8099-2918	CHEILJEDANG		
		Certifi	cate of analysis			
Certificate No.	200	21-PR-043	Receipt No.	2020-AN-132		
Client		-	Date of Receipt	2020.11.24.		
Client Name		-	Date of Test	2020.12.05.		
Client Tel		-kin i	Use of Report	Reference test		
Client Address			-			
Test Samp	ple	mash feed v	with VAL pro GVAL200912-	1		
Manuf. Date		2020.11.23.				
Quantity (kg)		-				
Test Item	(S)		Test Result	Test method used		
L-valine				HPLC		
* Information						
* Temperature : (2 * The results show The Test Repor	20∼28) ℃ wn in this t cannot l	, Relative Hum test report ref be reproduced.	idity : (30~60) % er only to the sample test except in full. (0)(4)	ed unless otherwise stated.		

. Homogeneity_mash feed with VAL pro GVAL200912-1

CJ BIO-AD form 100-01 REV.01

55, Gwanggyo-ro Gyeonggi-do, 164 TEL : 031	42beon-gil, 495, Korea <u>www.cj.c</u>) 8099-2450 FA	Yeongtong-gu, Suwon-si, o.kr AX : 031) 8099-2918	CJ CHEILJEDANG			
	C	ertificate of analys	is			
Certificate No.	2021-PR-	044 Receipt No.	2020-AN-133			
Client		Date of Receipt	2020.11.24.			
Client Name		Date of Test	2020.12.05.			
Client Tel		Use of Report	Reference test			
Client Address						
Test Sampl	e mas	sh feed with VAL pro GVAL2009	912-2			
Manuf. Dat	e 202	2020.11.23.				
Quantity (kg)		÷.				
Test Item(s)	Test Result	Test method used			
L-valine			HPLC			
* Information	2					
* Temperature : (20 * The results show The Test Report Tested by Approved by Teo	0~28) ℃, Relat n in this test re cannot be repr chnical Manage	ive Humidity : (30~60) % eport refer only to the sample f roduced, except in full. ອັເອ	(6) (4) Feb, 26, 202			

. Homogeneity_mash feed with VAL pro GVAL200912-2

IO-AD form 100-01 REV.01

55, Gwanggyo-ro Gyeonggi-do, 164 TEL : 031	42beon-gil, 495, Korea <u>www.cj</u> .) 8099-2450 F	Yeongtong co.kr AX : 031) 809	-gu, Suwon-si, 19-2918	сј	CHEILJEDANG
	(ertificat	e of analysis	5	
Certificate No.	2021-PR	-045	Receipt No. 20		020-AN-134
Client			Date of Receipt	4	2020.11.24.
Client Name			Date of Test	1	2020.12.05.
Client Tel			Use of Report	Re	ference test
Client Address			-		
Test Sample	e ma	sh feed with	VAL pro GVAL20091	2-3	
Manuf. Dat	e 20	2020.11.23.			
Quantity (kg)		-			
Test Item(s)	Test Result Test method us			Test method used
L-valine					HPLC
* Information				_	
* Temperature : (20 * The results show The Test Report Tested by Approved by Teo	0~28) °C, Rela n in this test r cannot be rep chnical Manag	tive Humidity report refer of produced, exc (0)(4) er er	: (30~60) % nly to the sample tes ept in full. (% tute of Biotecl	ated unless (4)	otherwise stated. Feb, 26, 202

. Homogeneity_mash feed with VAL pro GVAL200912-3

55, Gwanggyo-ro Gyeonggi-do, 16 TEL : 031	42beon-gil, Yeo 495, Korea <u>www.cj.co.kr</u>) 8099-2450 FAX : 0	ngtong-gu, Suwon-si, ()31) 8099-2918	CHEILJEDANG			
	Cert	ificate of analysis				
Certificate No.	2021-PR-046	Receipt No.	2020-AN-135			
Client	4	Date of Receipt	2020.11.24.			
Client Name	- 14	Date of Test	2020.12.05.			
Client Tel		Use of Report	Reference test			
Client Address		-				
Test Sampl	e mash fee	mash feed with VAL pro GVAL200910				
Manuf. Dat	e 2020.11.	2020.11.23.				
Quantity (kg	g) -	-				
Test Item(s)	Test Result Test method use				
L-valine			HPLC			
* Information	_					
* Temperature : (20 * The results show The Test Report Approved by Teo	0~28) ℃, Relative H n in this test report cannot be reproduc chnical Manager	umidity : (30~60) % refer only to the sample teste red, except in full.	ed unless otherwise stated. #) Feb, 26, 2021			

. Stability initial_mash feed with VAL pro GVAL200910

CJ BIO-AD form 100-01 REV.01

. Stability initial_mash feed with VAL pro GVAL200911

55, Gwanggyo-ro Gyeonggi-do, 164 TEL : 031	42beon-gil, Yeon 195, Korea <u>www.cj.co.kr</u>) 8099-2450 FAX : 03	ngtong-gu, Suwon-si, (0) (31) 8099-2918	CHEILJEDANG			
	Certi	ficate of analysis				
Certificate No.	2021-PR-047	Receipt No.	2020-AN-136			
Client	2	Date of Receipt	2020.11.24.			
Client Name	1.¥.	Date of Test	2020.12.05.			
Client Tel	÷	Use of Report	Reference test			
Client Address		-				
Test Sample	e mash feed	d with VAL pro GVAL200911				
Manuf. Dat	e 2020.11.2	2020.11.23.				
Quantity (kg	g) -	-				
Test Item(s)	Test Result Test m				
L-valine			HPLC			
* Information	-		_			
* Temperature : (20 * The results show The Test Report Tested by Approved by Teo	0~28) ℃, Relative Hu n in this test report r cannot be reproduce thnical Manager CJ Research	Imidity : (30~60) % refer only to the sample teste ed_except in full. (6) (4) (6) (4) (6) (4) (6) (4)	d unless otherwise stated. Feb, 26, 2021 hology			

CJ BIO-AD form 100-01 REV.01

. Stability initial_mash feed with VAL pro GVAL200912

55, Gwanggyo-ro 42beon-gil, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16495, Korea <u>www.cj.co.kr</u> TEL : 031) 8099-2450 FAX : 031) 8099-2918					CHEILJEDANG	
		Certifi	cate of analysis			
Certificate No.	202	1-PR-048	Receipt No.	2	020-AN-137	
Client		-	Date of Receipt	2020.11.24.		
Client Name	_		Date of Test		2020.12.05.	
Client Tel		3	Use of Report	Re	eference test	
Client Address						
Test Sampl	e	mash feed with VAL pro GVAL200912				
Manuf. Date		2020.11.23.				
Quantity (kg)		-				
Test Item(s)	Test Result Test method use				
L-valine					HPLC	
* Information						
* Temperature : (20 * The results show The Test Report Tested by Approved by Teo	0~28) °C n in this cannot b chnical M CJ R	, Relative Hum test report ref e reproduced, lanager esearch In	idity : (30~60) % er only to the sample test except in full. w	ed unless (4) nology	otherwise stated. Feb, 26, 202	

. Stability 1 month_mash feed with VAL pro GVAL200910

55, Gwanggyo-ro Gyeonggi-do, 16 TEL : 031;	42beor 495, Ko ww 8099-24	n-gil, Yeongt rea <mark>w.cj.co.kr</mark> ISO FAX : 031)	ong-gu, Suwon-si, 8099-2918	СЪСН	EILTEDANG	
		Certifie	cate of analysis	5-		
Certificate No.	202	1-PR-049	Receipt No.	2020-AN-138		
Client		-	Date of Receipt	2020.12.22.		
Client Name			Date of Test	2020.12.22.		
Client Tel	-		Use of Report	Reference test		
Client Address						
Test Sampl	e	mash feed	with VAL pro GVAL200910	0		
Manuf. Date		2020.11.23				
Quantity (kg)		-				
Test Item(s)	Test Result Test method			st method used	
L-valine					HPLC	
* Information						
* Temperature : (2) * The results show The Test Report Tested by Approved by Teo	0~28) ℃ n in this cannot b chnical M	, Relative Hun test report re be reproduced lanager	nidity : (30~60) % fer only to the sample tes L except in full.	sted unless c চ)ঞ্	therwise stated. Feb, 26, 2021	

55, Gwanggyo-ro Gyeonggi-do, 16 TEL : 031	42beor 495, Ko <u>ww</u>) 8099-24	n-gil, Yeongt rea <mark>w.cj.co.kr</mark> 150 FAX : 031)	8099-2918	CHEILJEDANG		
		Certific	ate of analysis			
Certificate No.	202	1-PR-050	Receipt No.	2020-AN-139		
Client		-	Date of Receipt	2020.12.22.		
Client Name	-		Date of Test	2020.12.22.		
Client Tel		- Use of Report		Reference test		
Client Address						
Test Sampl	e	mash feed with VAL pro GVAL200911				
Manuf. Date		2020.11.23				
Quantity (kg)		-				
Test Item(s	5)	Test Result Test meth				
L-valine			ŭ	HPLC		
* Information						
* Temperature : (2 * The results show The Test Report Tested by Approved by Te	0~28) ℃ on in this cannot b chnical M	, Relative Hum test report rel reproduced lanager	nidity : (30~60) % fer only to the sample tested except in full. (6)(4)	unless otherwise stated. Feb, 26, 202		

. Stability 1 month_mash feed with VAL pro GVAL200911
55, Gwanggyo-ro Gyeonggi-do, 16 TEL : 031)	42beon-gil, Yeo 495, Korea <u>www.cj.co.kr</u> 8099-2450 FAX : (ongtong-gu, Suwon-si, 031) 8099-2918	CJ CHEILJEDANG
	Cert	ificate of analysis	5
Certificate No.	2021-PR-051	Receipt No.	2020-AN-140
Client	-	Date of Receipt	2020.12.22
Client Name	+	Date of Test	2020.12.22.
Client Tel	-	Use of Report	Reference test
Client Address			
Test Sample	e mash fe	ed with VAL pro GVAL20091	2
Manuf. Dat	e 2020.11	.23	
Quantity (kg	g) -		
Test Item(s)	Test Result	Test method used
L-valine			HPLC
* Information			
* Temperature : (20 * The results show The Test Report Tested by Approved by Teo	0~28) °C, Relative I n in this test repor cannot be reprodu chnical Manager	Humidity : (30~60) % t refer only to the sample to iced, except in full.	ested unless otherwise stated. (4) Feb, 26, 202

. Stability 1 month_mash feed with VAL pro GVAL200912

CJ BIO-AD form 100-01 REV.01

. Stability 2 month_mash feed with VAL pro GVAL200910

55, Gwanggyo-ro Gyeonggi-do, 16 TEL : 031	42beon-9 495, Korea <u>www.</u>) 8099-2450	gil, Yeongt a c <u>j.co.kr</u>) FAX : 031	ong-gu, Suwon-si,) 8099-2918	CJ CHEILJEDANG
		Certifi	cate of analysis	
Certificate No.	2021-	PR-052	Receipt No.	2021-AN-025
Client		-/	Date of Receipt	2021.01.23.
Client Name	le le		Date of Test	2021.01.28.
Client Tel		-	Use of Report	Reference test
Client Address				
Test Sampl	e	mash feed	with VAL pro GVAL20091	0
Manuf. Dat	te	2020.11.23		
Quantity (k	g)	-		
Test Item(s	i)		Test Result	Test method used
L-valine				HPLC
* Information	-			-
* Temperature : (2 * The results show The Test Report Tested by Approved by Te	0~28) ℃, R /n in this te .cannot be chnical Mar	elative Hur st report re reproduced	nidity : (30~60) % fer only to the sample te (₄₉ except in full.	ested unless otherwise stated. 60(4) Feb, 26, 2021

55, Gwanggyo-ro Gyeonggi-do, 164 TEL : 031)	42beon-gil, Yeong 195, Korea <u>www.cj.co.kr</u> 8099-2450 FAX : 03	1) 8099-2918	CHEILJEDANG
	Certif	icate of analysis	b.
Certificate No.	2021-PR-053	Receipt No.	2021-AN-026
Client		Date of Receipt	2021.01.23.
Client Name		Date of Test	2021.01.28.
Client Tel		Use of Report	Reference test
Client Address		-	
Test Sample	mash feed	with VAL pro GVAL200911	50
Manuf, Date	2020.11.23	3	
Quantity (kg			
Test Item(s)	(Test Result	Test method used
L-valine			HPLC
* Information			
* Temperature : (20 * The results showr The Test Report of Tested by Approved by Tec	~28) ℃, Relative Hu n in this test report r cannot be reproduce mical Manager	imidity : (30~60) % refer only to the sample tes d except in full. (0)	ted unless otherwise stated (4) Feb, 26, 202

. Stability 2 month_mash feed with VAL pro GVAL200911

CJ BIO-AD form 100-01 REV.01

Stability 2 month_	mash feed	with VAL pr	o GVAL200912

.

55, Gwanggyo-ro Gyeonggi-do, 16 TEL : 031)	42beon-gil, 495, Korea <u>www.cj.co</u> 8099-2450 FA	Yeongtong-gu, <u>o.kr</u> X : 031) 8099-2	Suwon-si, 918	cJ	CHEILJEDANG
	Ce	ertificate	of analysis		
Certificate No.	2021-PR-	054 R	eceipt No.	20	21-AN-027
Client	-	Dat	te of Receipt	20	021.01.23.
Client Name	-	D	ate of Test	20	021.01.28.
Client Tel	-	Us	e of Report	Ref	erence test
Client Address			-		
Test Sampl	e mas	sh feed with VAI	L pro GVAL20091	2	
Manuf. Dat	e 202	0.11.23			
Quantity (kg	g) -			-	
Test Item(s)	Tes	t Result	(h) (4)	Test method used
L-valine					HPLC
* Information				_	
* Temperature : (20 * The results show The Test Report Tested by Approved by Teo	0~28) °C, Relat in in this test n cannot be rep chnical Manag CJ Resear	tive Humidity : (eport refer only roduced, except (%) er er	30~60) % to the sample te in full. e of Biotech	sted unles ®@ mology	s otherwise stated. Feb, 26, 2021

CJ BIO-AD form 100-01 REV.01

. Stability 3 mon	th_mash feed	with VAL pro	GVAL200910
-------------------	--------------	--------------	------------

55, Gwanggyo-ro Gyeonggi-do, 16- TEL : 031)	42beon-gil, 495, Korea <u>www.cj.co.</u> 8099-2450 FAX	(eongtong-gu, Suwon-si, kr : 031) 8099-2918	CHEILJEDANG
	Ce	rtificate of analysis	
Certificate No.	2021-PR-0	5 Receipt No.	2021-AN-028
Client		Date of Receipt	2021.02.23.
Client Name		Date of Test	2021.02.24.
Client Tel	÷ .	Use of Report	Reference test
Client Address			
Test Sample	e mast	feed with VAL pro GVAL200910	
Manuf. Dat	e 2020	11.23	
Quantity (kg	g) -		
Test Item(s)	Test Result	Test method used
L-valine			HPLC
* Information			
* Temperature : (20 * The results show The Test Report Tested by Approved by Teo	0~28) ℃, Relation n in this test rej cannot be reord chnical Manager	ve Humidity : (30~60) % bort refer only to the sample test oduced, except in full. (0)(4) (0)	ed unless otherwise stated. ⑷ Feb, 26, 202 ⁻

CJ BIO-AD form 100-01 REV.01

. Stability 3 month_mash feed with VAL pro GVAL200911

55, Gwanggyo-ro Gyeonggi-do, 16 TEL : 031)	42beon-gi 495, Korea <u>www.c</u> 8099-2450	il, Yeongt i.co.kr FAX : 031)	ong-gu, Suwon-si, 8099-2918	CICHEILJEDANG
	(Certifi	cate of analysis	95 () () () () () () () () () (
Certificate No.	2021-P	R-056	Receipt No.	2021-AN-029
Client	-		Date of Receipt	2021.02.23.
Client Name			Date of Test	2021.02.24.
Client Tel			Use of Report	Reference test
Client Address				
Test Sample	e n	hash feed	with VAL pro GVAL20091	1.
Manuf. Dat	e 2	020.11.23		
Quantity (kg	g) -		1.11	
Test Item(s)		Test Result	Test method used
L-valine				(b) (4) HPLC
* Information				
* Temperature : (20 * The results show The Test Report Tested by Approved by Teo	0~28) °C, Re n in this test cannot be n chnical Mana	lative Hun t report re enroduced	hidity : (30~60) % fer only to the sample ter except in full.	sted unless otherwise stated.

CJ BIO-AD form 100-01 REV.01

i stability s month mash leed with the pro othereosite	. Stability	3 month	mash feed	with VAL	pro GVAL200912
--	-------------	---------	-----------	----------	----------------

55, Gwanggyo-ro Gyeonggi-do, 16 TEL : 031)	42beon-gil, Yeor 495, Korea <u>www.cj.co.kr</u> 8099-2450 FAX : 03	ngtong-gu, Suwon-si, C 31) 8099-2918	CHEILJEDANG
	Certi	ficate of analysis	(
Certificate No.	2021-PR-057	Receipt No.	2021-AN-030
Client	-	Date of Receipt	2021.02.23.
Client Name	2	Date of Test	2021.02.24.
Client Tel	5	Use of Report	Reference test
Client Address			
Test Sample	e mash fee	d with VAL pro GVAL200912	
Manuf, Dat	e 2020.11.2	23	
Quantity (kg	g) -		
Test Item(s))	Test Result	Test method used
L-valine			HPLC
* Information			
* Temperature : (20 * The results show The Test Report Tested by Approved by Teo	0~28) ℃, Relative H n in this test report cannot be reproduc chnical Manager	lumidity : (30~60) % refer only to the sample test ලේ ආදරයා in full. (ted unless otherwise stated 6)(4) Feb, 26, 202

CJ BIO-AD form 100-01 REV.01

AOAC Official Method 2015.01 Heavy Metals in Food

Inductively Coupled Plasma–Mass Spectrometry First Action 2015

Note: The following is not intended to be used as a comprehensive training manual. Analytical procedures are written based on the assumption that they will be performed by technicians who are formally trained in at least the basic principles of chemical analysis and in the use of the subject technology.

{Applicable for the determination of heavy metals [arsenic (As), CAS No. 7440-38-2; cadmium (Cd), CAS No. 7440-43-9; lead (Pb), CAS No. 7439-92-1; and mercury (Hg), CAS No. 7439-97-6] at trace levels in food and beverage samples, including solid chocolate, fruit juice, fish, infant formula, and rice, using microwave digestion and inductively coupled plasma–mass spectrometry (ICP-MS).}

Caution: Nitric acid and hydrochloric acid are corrosive. When working with these acids, wear adequate protective gear, including eye protection, gloves with the appropriate resistance, and a laboratory coat. Use an adequate fume hood for all acids.

Hydrogen peroxide is a strong oxidizer and can react violently with organic material to give off oxygen gas and heat. Adequate protective gear should be worn.

Many of the chemicals have toxicities that are not well established and must be handled with care. For all known chemicals used, consult the Material Safety Data Sheet (MSDS) in advance.

The inductively coupled plasma-mass spectrometer emits UV light when the plasma is on. UV resistant goggles should be worn if working near the plasma.

The instrument generates high levels of radio frequency (RF) energy and is very hot when the plasma is on. In the case of an instrument failure, be aware of these potential dangers.

Safely store interference reduction technology (IRT) gases, such as oxygen, in a closed, ventilated cabinet. Use adequate caution with pressurized gases. Prior training or experience is necessary to change any gas cylinders. Oxygen gas can cause many materials to ignite easily.

Following microwave digestion, samples are hot to the touch. Allow the samples to cool to room temperature before opening the digestion vessels to avoid unexpected depressurization and potential release of toxic fumes.

A. Principle

Food samples are thoroughly homogenized and then prepared by microwave digestion and the addition of dilute solutions of gold (Au) and lutetium (Lu). The Au is used to stabilize the Hg in the preparation, and the Lu is used to assess the potential loss of analyte during the microwave digestion process.

A prepared, diluted, aqueous sample digestate is pumped through a nebulizer, where the liquid forms an aerosol as it enters a spray chamber. The aerosol separates into a fine aerosol mist and larger aerosol droplets. The larger droplets exit the spray chamber while the fine mist is transported into the ICP torch.

Inside the ICP torch, the aerosol mist is transported into a high-temperature plasma, where it becomes atomized and ionized as it passes through an RF load coil. The ion stream is then focused by a single ion

lens through a cylinder with a carefully controlled electrical field. For instruments equipped with dynamic reaction cell (DRC) or collision cell IRT, the focused ion stream is directed into the reaction/collision cell where, when operating with a pressurized cell, the ion beam will undergo chemical modifications and/or collisions to reduce elemental interferences. When not operating with a pressurized cell, the ion stream will remain focused as it passes through the cell with no chemical modification taking place.

The ion stream is then transported to the quadrupole mass filter, where only ions having a desired mass-to-charge ratio (m/z) are passed through at any moment in time. The ions exiting the mass filter are detected by a solid-state detector and the signal is processed by the data handling system.

B. Equipment

Perform routine preventative maintenance for the equipment used in this procedure.

An ultra-clean laboratory environment is critical for the successful production of quality data at ultralow levels. All sample preparation must take place in a clean hood (Class 100). Metallic materials should be kept to a minimum in the laboratory and coated with an acrylic polymer gel where possible. Adhesive floor mats should be used at entrances to the laboratory and changed regularly to prevent the introduction of dust and dirt from the outside environment. Wear clean-room gloves and change whenever contact is made with anything non-ultra-clean. The laboratory floor should be wiped regularly to remove any particles without stirring up dust. *Note:* "Ultra-clean" (tested to be low in the analytes of interest) reagents, laboratory supplies, facilities, and sample handling techniques are required to minimize contamination in order to achieve the trace-level detection limits described herein.

(a) Instrumentation.--ICP-MS instrument, equipped with IRT with a free-running 40 MHz RF generator; and controllers for nebulizer, plasma, auxiliary, and reaction/collision flow control. The quadrupole mass spectrometer has a mass range of 5 to 270 atomic mass units (amu). The turbo molecular vacuum system achieves 10⁻⁶ torr or better. Recommended ICP-MS components include an RF coil, platinum skimmer and sampler cones, Peltier-cooled quartz cyclonic spray chamber, quartz or sapphire injector, micronebulizer, variable speed peristaltic pump, and various types of tubing (for gases, waste, and peristaltic pump). *Note*: The procedure is written specifically for use with a PerkinElmer ELAN DRC II ICP-MS (www.perkinelmer.com). Equivalent procedures may be performed on any type of ICP-MS instrument with equivalent IRT if the analyst is fully trained in the interpretation of spectral and matrix interferences and procedures for their correction, including the optimization of IRT. For example, collision cell IRT can be used for arsenic determination using helium gas.

(**b**) *Gases*.--High-purity grade liquid argon (>99.996%). Additional gases are required for IRT (such as ultra-x grade, 99.9999% minimum purity oxygen, used for determination of As in DRC mode with some PerkinElmer ICP-MS instruments).

(c) Analytical balance.--Standard laboratory balance suitable for sample preparation and capable of measuring to 0.1 mg.

(d) Clean-room gloves.--Tested and certified to be low in the metals of interest.

(e) *Microwave digestion system*.--Laboratory microwave digestion system with temperature control and an adequate supply of chemically inert digestion vessels. The microwave should be appropriately vented and corrosion resistant.

(1) The microwave digestion system must sense the temperature to within ± 2.5 °C and automatically adjust the microwave field output power within 2 s of sensing. Temperature sensors should be accurate

to $\pm 2^{\circ}$ C (including the final reaction temperature of 190°C). Temperature feedback control provides the primary control performance mechanism for the method.

(2) The use of microwave equipment with temperature feedback control is required to control the unfamiliar reactions of unique or untested food or beverage samples. These tests may require additional vessel requirements, such as increased pressure capabilities.

(f) Autosampler cups.--15 and 50 mL; vials are precleaned by soaking in 2-5% (v/v) HNO_3 overnight, rinsed three times with reagent water/deionized water (DIW), and dried in a laminar flow clean hood. For the 50 mL vials, as these are used to prepare standards and bring sample preparations to final volume, the bias and precision of the vials must be assessed and documented prior to use. The recommended procedure for this is as follows:

(1) For every case of vials from the same lot, remove 10 vials.

(2) Tare each vial on an analytical balance, and then add reagent water up to the 20 mL mark. Repeat procedure by adding reagent water up to the 50 mL mark.

(3) Measure and record the mass of reagent water added, and then calculate the mean and RSD of the 10 replicates at each volume.

(4) To evaluate bias, the mean of the measurements must be with $\pm 3\%$ of the nominal volume. To evaluate precision, the RSD of the measurements must be $\leq 3\%$ using the stated value (20 or 50 mL) in place of the mean.

(g) Spatulas.--To weigh out samples; should be acid-cleaned plastic (ideally Teflon) and cleaned by soaking in 2% (v/v) HNO₃ prior to use.

C. Reagents and Standards

Reagents may contain elemental impurities that could negatively affect data quality. High-purity reagents should always be used. Each reagent lot should be tested and certified to be low in the elements of interest before use.

(a) *DIW*.--ASTM Type I; demonstrated to be free from the metals of interest and potentially interfering substances.

(b) Nitric acid (HNO₃).—Concentrated; tested and certified to be low in the metals of interest.

(c) Hydrogen peroxide (H_2O_2) .-Optima grade or equivalent, 30-32% assay.

(d) *Stock standard solutions.--*Obtained from a reputable and professional commercial source.

(1) *Single-element standards*.--Obtained for each determined metal, as well as for any metals used as internal standards and interference checks.

(2) Second source standard.--Independent from the single-element standard; obtained for each determined metal.

(3) *Multi-element stock standard solution*.--Elements must be compatible and stable in solutions together. Stability is determined by the vendor; concentrations are then verified before use of the standard.

(e) Internal standard solution.--For analysis of As, Cd, Pb, and Hg in food matrices, an internal standard solution of 40 μ g/L rhodium (Rh), indium (In), and thulium (Tm) is recommended. Rh is analyzed in DRC

mode for correction of the As signal. In addition, the presence of high levels of elements, such as carbon and chlorine, in samples can increase the effective ionization of the plasma and cause a higher response factor for arsenic in specific samples. This potential interference is addressed by the on-line addition of acetic acid (or another carbon source, such as methanol), which greatly increases the effective ionization of incompletely ionized analytes, and decreases the potential increase caused by sample characteristics. The internal standard solution should be prepared in 20% acetic acid.

(f) Calibration standards.--Fresh calibration standards should be prepared every day, or as needed.

(1) Dilute the multi-element stock standard solutions into 50 mL precleaned autosampler vials with 5% HNO_3 in such a manner as to create a calibration curve. The lowest calibration standard (STD 1) should be equal to or less than the limit of quantitation (LOQ) when recalculated in units specific to the reported sample results.

Table 2015.01A. Recommended concentrations for the calibration curve Standard Cd, μ g/L Pb, μg/L As, $\mu g/L$ Hg, μ g/L 0.00 0.00 0.000 0.00 0 0.01 0.01 0.005 1 0.01 2 0.02 0.02 0.010 0.05 3 0.050 0.10 0.10 0.10 0.250 4 0.50 0.50 0.50 5 5.00 5.00 2.500 2.00 6 20.00 20.00 10.000 5.00

(2) See Table 2015.01A for recommended concentrations for the calibration curve.

(g) *Initial calibration verification (ICV) solution.--*Made up from second source standards in order to verify the validity of the calibration curve.

(h) *Calibration solutions*.--Daily optimization, tuning, and dual detector calibration solutions, as needed, should be prepared and analyzed per the instrument manufacturer's suggestions.

(i) *Certified Reference Materials (CRMs).*--CRMs should preferably match the food matrix type being analyzed and contain the elements of interest at certified concentrations above the LOQ. Recommended reference materials include NIST SRM 1568a (Rice Flour), NIST SRM 1548a (Typical Diet), NRCC CRM DORM-3 (Dogfish Muscle), and NIST SRM 2976 (Mussel Tissue).

(j) Spiking solution.--50 mg/L Au and Lu in 5% (v/v) HNO₃. Prepared from single-element standards.

D. Contamination and Interferences

(a) Well-homogenized samples and small reproducible aliquots help minimize interferences.

(b) *Contamination.*—(1) Contamination of the samples during sample handling is a great risk. Extreme care should be taken to avoid this. Potential sources of contamination during sample handling include using metallic or metal-containing homogenization equipment, laboratory ware, containers, and sampling equipment.

(2) Contamination of samples by airborne particulate matter is a concern. Sample containers must remain closed as much as possible. Container lids should only be removed briefly and in a clean environment during sample preservation and processing, so that exposure to an uncontrolled environment is minimized.

(c) *Laboratory.--(1)* All laboratory ware (including pipet tips, ICP-MS autosampler vials, sample containers, extraction apparatus, and reagent bottles) should be tested for the presence of the metals of interest. If necessary, the laboratory ware should be acid-cleaned, rinsed with DIW, and dried in a Class 100 laminar flow clean hood.

(2) All autosampler vials should be cleaned by storing them in 2% (v/v) HNO₃ overnight and then rinsed three times with DIW. Then dry vials in a clean hood before use. Glass volumetric flasks should be soaked in about 5% HNO₃ overnight prior to use.

(3) All reagents used for analysis and sample preparation should be tested for the presence of the metals of interest prior to use in the laboratory. Due to the ultra-low detection limits of the method, it is imperative that all the reagents and gases be as low as possible in the metals of interest. It is often required to test several different sources of reagents until an acceptable source has been found. Metals contamination can vary greatly from lot to lot, even when ordering from the same manufacturer.

(4) Keep the facility free from all sources of contamination for the metals of interest. Replace laminar flow clean hood HEPA filters with new filters on a regular basis, typically once a year, to reduce airborne contaminants. Metal corrosion of any part of the facility should be addressed and replaced. Every piece of apparatus that is directly or indirectly used in the processing of samples should be free from contamination for the metals of interest.

(d) *Elemental interferences*.--Interference sources that may inhibit the accurate collection of ICP-MS data for trace elements are addressed below.

(1) *Isobaric elemental interferences.*--Isotopes of different elements that form singly or doubly charged ions of the same m/z and cannot be resolved by the mass spectrometer. Data obtained with isobaric overlap must be corrected for that interference.

(2) Abundance sensitivity.--Occurs when part of an elemental peak overlaps an adjacent peak. This often occurs when measuring a small m/z peak next to a large m/z peak. The abundance sensitivity is affected by ion energy and quadrupole operating pressure. Proper optimization of the resolution during tuning will minimize the potential for abundance sensitivity interferences.

(3) Isobaric polyatomic interferences.--Caused by ions, composed of multiple atoms, which have the same *m/z* as the isotope of interest, and which cannot be resolved by the mass spectrometer. These ions are commonly formed in the plasma or the interface system from the support gases or sample components. The objective of IRT is to remove these interferences, making the use of correction factors unnecessary when analyzing an element in DRC mode. Elements not determined in DRC mode can be corrected by using correction equations in the ICP-MS software.

(e) *Physical interferences.--(1)* Physical interferences occur when there are differences in the response of the instrument from the calibration standards and the samples. Physical interferences are associated with the physical processes that govern the transport of sample into the plasma, sample conversion processes in the plasma, and the transmission of ions through the plasma-mass spectrometer interface.

(2) Physical interferences can be associated with the transfer of solution to the nebulizer at the point of nebulization, transport of aerosol to the plasma, or during excitation and ionization processes in the plasma. High levels of dissolved solids in a sample can result in physical interferences. Proper internal

standardization (choosing internal standards that have analytical behavior similar to the associating elements) can compensate for many physical interferences.

(f) Resolution of interferences. -(1) For elements that are subject to isobaric or polyatomic interferences (such as As), it is advantageous to use the DRC mode of the instrument. This section specifically describes a method of using IRT for interference removal for As using a PerkinElmer DRC II and oxygen as the reaction gas. Other forms of IRT may also be appropriate.

(*a*) Arsenic, which is monoisotopic, has an m/z of 75 and is prone to interferences from many sources, most notably from chloride (Cl), which is common in many foods (e.g., salt). Argon (Ar), used in the ICP-MS plasma, forms a polyatomic interference with Cl at m/z 75 [³⁵Cl + ⁴⁰Ar = ⁷⁵(ArCl)].

(*b*) When arsenic reacts with the oxygen in the DRC cell, ⁷⁵As¹⁶O is formed and measured at m/z 91, which is free of most interferences. The potential ⁹¹Zr interference is monitored for in the following ways: ⁹⁰Zr and ⁹⁴Zr are monitored for in each analytical run, and if a significant Zr presence is detected, then ⁷⁵As¹⁶O measured at m/z 91 is evaluated against the ⁷⁵As result. If a significant discrepancy is present, then samples may require analysis using alternative IRT, such as collision cell technology (helium mode).

(c) Instrument settings used (for PerkinElmer DRC II): DRC settings for ⁹¹(AsO) and ¹⁰³Rh include an RPq value of 0.7 and a cell gas flow rate of 0.6 L/min. Cell conditions, especially cell gas flow rates, may be optimized for specific analyte/matrix combinations, as needed. In such cases, the optimized methods will often have slightly different RPq and cell gas flow values.

(2) For multi-isotopic elements, more than one isotope should be measured to monitor for potential interferences. For reporting purposes, the most appropriate isotope should be selected based on review of data for matrix interferences and based on the sensitivity (or relative abundance) of each isotope. The table below lists the recommended isotopes to measure. Low abundance isotopes are not recommended for this method as it is specifically applicable for ultra-low level concentrations (8-10 ppb LOQs). *See* Table **2015.01B**.

Table 2015.01B. Recommended isotopes for analysis					
		Isotopic abundance,	Potential		
Element	Isotope, amu	%	interferences		
Cd	111	13	MoO⁺		
Ca	114	29	MoO⁺, Sn⁺		
Ца	200	23	WO⁺		
пg	202	30	WO⁺		
Pb ^a	Sum of 206, 207,	00	$\Omega_{c}\Omega^{+}$		
	and 208	55	050		
^a Allowance for i	sotopic variability of	lead isotopes.			

(g) *Memory effects.*—Minimize carryover of elements in a previous sample in the sample tubing, cones, torch, spray chamber, connections, and autosampler probe by rinsing the instrument with a reagent blank after samples high in metals concentrations are analyzed. Memory effects for Hg can be minimized through the addition of Au to all standard, samples, and quality control (QC) samples.

E. Sample Handling and Storage

(a) Food and beverage samples should be stored in their typical commercial storage conditions (either frozen, refrigerated, or at room temperature) until analysis. Samples should be analyzed within 6 months of preparation.

(b) If food or beverage samples are subsampled from their original storage containers, ensure that containers are free from contamination for the elements of concern.

F. Sample Preparation

(a) Weigh out sample aliquots (typically 0.25 g of as-received or wet sample) into microwave digestion vessels.

(b) Add 4 mL of concentrated HNO₃ and 1 mL of 30% hydrogen peroxide (H₂O₂) to each digestion vessel.

(c) Add 0.1 mL of the 50 mg/L Au + Lu solution to each digestion vessel.

(d) Cap the vessels securely (and insert into pressure jackets, if applicable). Place the vessels into the microwave system according to the manufacturer's instructions, and connect the appropriate temperature and/or pressure sensors.

(e) Samples are digested at a minimum temperature of 190°C for a minimum time of 10 min. Appropriate ramp times and cool down times should be included in the microwave program, depending on the sample type and model of microwave digestion system. Microwave digestion is achieved using temperature feedback control. Microwave digestion programs will vary depending on the type of microwave digestion system used. When using this mechanism for achieving performance-based digestion targets, the number of samples that may be simultaneously digested may vary. The number will depend on the power of the unit, the number of vessels, and the heat loss characteristics of the vessels. It is essential to ensure that all vessels reach at least 190°C and be held at this temperature for at least 10 min. The monitoring of one vessel as a control for the batch/carousel may not accurately reflect the temperature in the other vessels, especially if the samples vary in composition and/or sample mass. Temperature measurement and control will depend on the particular microwave digestion system.

(1) Note: a predigestion scheme for samples that react vigorously to the addition of the acid may be required.

(2) The method performance data presented in this method was produced using a Berghof Speedwave 4 microwave digestion system, with the program listed in Table **2015.01C** (steps 1 and 2 are a predigestion step).

Table 2015.01C. Digestion program for Berghof						
Speedwave 4 microwave						
Step	Temp., °C	Ramp, min	Hold, min			
1	145	1	1			
2	50	1	1			
3	145	1	1			
4	170	1	10			
5	190	1	10			

(3) Equivalent results were achieved using the program listed in Table **2015.01D** on a CEM MARS 6 microwave digestion system using the 40-position carousel and 55 mL Xpress digestion vessels.

Table 2015.01D. Digestion program for CEM						
MARS 6 microwave						
Step	Temp., °C	Ramp, min	Hold, min			
1	190	20	10			
2	Cool down	NA	10			

(4) For infant formula samples, the program described in Table **2015.01E** has been shown to work effectively.

Table 2015.01E. Digestion program for infant							
formula							
Step	Temp., °C	Ramp, min	Hold, min				
1	180	20	20				
2	Cool down	NA	20				
3	200	20	20				
4	Cool down	NA	20				

(f) Allow vessels to cool to room temperature and slowly open. Open the vessels carefully, as residual pressure may remain and digestate spray is possible. Pour the contents of each vessel into an acidcleaned 50 mL HDPE centrifuge tube and dilute with DIW to a final volume of 20 mL.

(g) Digestates are diluted at least 4x prior to analysis with the 1% (v/v) HNO_3 diluent. When the metals concentration of a sample is unknown, the samples may be further diluted or analyzed using a total quantification method prior to being analyzed with a comprehensive quantitative method. This protects the instrument and the sample introduction system from potential contamination and damage.

(**h**) Food samples high in calcium carbonate (CaCO₃) will not fully digest. In such cases, the CRM can be used as a gauge for an appropriate digestion time.

(i) QC samples to be prepared with the batch (a group of samples and QC samples that are prepared together) include a minimum of three method blanks, duplicate for every 10 samples, matrix spike/matrix spike duplicate (MS/MSD) for every 10 samples, blank spike, and any matrix-relevant CRMs that are available.

G. Procedure

(a) *Instrument startup*.--(1) Instrument startup routine and initial checks should be performed per manufacturer recommendations.

(2) Ignite the plasma and start the peristaltic pump. Allow plasma and system to stabilize for at least 30 min.

(**b**) *Optimizations.--(1)* Perform an optimization of the sample introduction system (e.g., X-Y and Z optimizations) to ensure maximum sensitivity.

(2) Perform an instrument tuning or mass calibration routine whenever there is a need to modify the resolution for elements, or monthly (at a minimum), to ensure the instrument's quadrupole mass filtering performance is adequate. Measured masses should be ± 0.1 amu of the actual mass value, and the resolution (measured peak width) should conform to manufacturer specifications.

(3) Optimize the nebulizer gas flow for best sensitivity while maintaining acceptable oxide and doublecharged element formation ratios.

(4) Perform a daily check for instrument sensitivity, oxide formation ratios, double-charged element formation ratios, and background. If the performance check is not satisfactory, additional optimizations (a "full optimization") may be necessary.

(c) Internal standardization and calibration.--(1) Following precalibration optimizations, prepare and analyze the calibration standards prepared as described in **C**(e).

(2) Use internal standardization in all analyses to correct for instrument drift and physical interferences. Refer to D(e)(2). Internal standards must be present in all samples, standards, and blanks at identical concentrations. Internal standards can be added using a second channel of the peristaltic pump to produce a responses that is clear of the pulse-to-analog detector interface.

(3) Multiple isotopes for some analytes may be measured, with only the most appropriate isotope (as determined by the analyst) being reported.

(4) Use IRT for the quantification of As using the Rh internal standard.

(d) Sample analysis.--(1) Create a method file for the ICP-MS.

(2) Enter sample and calibration curve information into the ICP-MS software.

(3) Calibrate the instrument and ensure the resulting standard recoveries and correlation coefficients meet specifications (H).

(4) Start the analysis of the samples.

(5) Immediately following the calibration, an initial calibration blank (ICB) should be analyzed. This demonstrates that there is no carryover of the analytes of interest and that the analytical system is free from contamination.

(6) Immediately following the ICB, an ICV should be analyzed. This standard must be prepared from a different source than the calibration standards.

(7) A minimum of three reagent/instrument blanks should be analyzed following the ICV. These instrument blanks can be used to assess the background and variability of the system.

(8) A continuing calibration verification (CCV) standard should be analyzed after every 10 injections and at the end of the run. The CCV standard should be a mid-range calibration standard.

(9) An instrument blank should be analyzed after each CCV (called a continuing calibration blank, or CCB) to demonstrate that there is no carryover and that the analytical system is free from contamination.

(10) Method of Standard Additions (MSA) calibration curves may be used any time matrix interferences are suspected.

(11) Post-preparation spikes (PS) should be prepared and analyzed whenever there is an issue with the MS recoveries.

(e) Export and process instrument data.

H. Quality Control

(a) The correlation coefficients of the weighted-linear calibration curves for each element must be ≥ 0.995 to proceed with sample analysis.

(b) The percent recovery of the ICV standard should be 90-110% for each element being determined.

(c) Perform instrument rinses after any samples suspected to be high in metals, and before any method blanks, to ensure baseline sensitivity has been achieved. Run these rinses between all samples in the batch to ensure a consistent sampling method.

(d) Each analytical or digestion batch must have at least three preparation (or method) blanks associated with it if method blank correction is to be performed. The blanks are treated the same as the samples and must go through all of the preparative steps. If method blank correction is being used, all of the samples in the batch should be corrected using the mean concentration of these blanks. The estimated method detection limit (EMDL) for the batch is equal to 3 times the standard deviation (SD) of these blanks.

(e) For every 10 samples (not including quality control samples), a matrix duplicate (MD) sample should be analyzed. This is a duplicate of a sample that is subject to all of the same preparation and analysis steps as the original sample. Generally, the relative percent difference (RPD) for the replicate should be ≤30% for all food samples if the sample concentrations are greater than 5 times the LOQ. RPD is calculated as shown below. An MSD may be substituted for the MD, with the same control limits.

$$RPD = 200 \ x \ \frac{|S1 - S2|}{S1 + S2}$$

where S1 = concentration in the first sample and S2 = concentration in the duplicate.

(f) For every 10 samples (not including quality control samples), an MS and MSD should be performed. The percent recovery of the spikes should be 70-130% with an RPD \leq 30% for all food samples.

(1) If the spike recovery is outside of the control limits, an MSA curve that has been prepared and analyzed may be used to correct for the matrix effect. Samples may be corrected by the slope of the MSA curve if the correlation coefficient of the MSA curve is ≥ 0.995 .

(*a*) The MSA technique involves adding known amounts of standard to one or more aliquots of the processed sample solution. This technique attempts to compensate for a sample constituent that enhances or depresses the analyte signal, thus producing a different slope from that of the calibration standards. It will not correct for additive interferences which cause a baseline shift.

(*b*) The best MSA results can be obtained by using a series of standard additions. To equal volumes of the sample are added a series of standard solutions containing different known quantities of the analyte(s), and all solutions are diluted to the same final volume. For example, addition 1 should be prepared so that the resulting concentration is approximately 50% of the expected concentration of the native sample. Additions 2 and 3 should be prepared so that the concentrations are approximately 100% and 150%, respectively, of the expected native sample concentration. Determine the concentration of each solution and then plot on the vertical axis of a graph, with the concentrations of the known standards plotted on the horizontal axis. When the resulting line is extrapolated to zero absorbance, the point of interception of the abscissa is calculated MSA-corrected concentration of the analyte in the sample. A linear regression program may be used to obtain the intercept concentration.

(c) For results of the MSA technique to be valid, take into consideration the following limitations:

(*i*) The apparent concentrations from the calibration curve must be linear (0.995 or greater) over the concentration range of concern.

(*ii*) The effect of the interference should not vary as the ratio of analyte concentration to sample matrix changes, and the MSA curve should respond in a similar manner as the analyte.

(2) If the sample concentration levels are sufficiently high, the sample may be diluted to reduce the matrix effect. Samples should be diluted with the 1% (v/v) HNO₃ diluent. For example, to dilute a sample by a 10x dilution factor, pipette 1 mL of the digested sample into an autosampler vial, and add 9 mL of the 1% (v/v) HNO₃ diluent. MS/MSD sets should be performed at the same dilution factor as the native sample.

(3) Spike at 1-10 times the level of a historical sample of the same matrix type, or, if unknown, spike at 1-5 times a typical value for the matrix. Spiking levels should be no lower than 10 times the LOQ.

(g) Percent recoveries of the CRMs should be 75-125% of their certified value.

(h) Percent recoveries of the CCV standards should be within 85-115%. Sample results may be CCV-corrected using the mean recovery of the bracketing CCVs. This should only be done after careful evaluation of the data. The instrument should show a trending drift of CCV recoveries and not just a few anomalous outliers.

(i) CCBs should be monitored for the effects of carryover and for possible system contamination. If carryover of the analyte at levels greater than 10 times the MDL is observed, the sample results may not be reportable.

(j) Absolute response of any one internal standard should not vary from the original response in the calibration blank by more than 60-125%. Some analytical samples, such as those containing concentrations of the internal standard and tissue digestates, can have a serious effect on the internal standard intensities, but this does not necessarily mean that the analytical system is out of control. In some situations, it is appropriate to reprocess the samples using a different internal standard monitored in the analysis. The data should be carefully evaluated before doing this.

(k) The recovery of the Lu that was spiked into the sample preparation prior to digestion should be evaluated to assess any potential loss of analyte during the process. The concentration of Lu in the sample preparation is 0.25 mg/L, and for samples diluted 4x at the instrument, this is equivalent to 62.5 μ g/L at the instrument (if samples are diluted more than 4x, this must be taken into account). The Lu recovery should be no less than 75% of the original spiked concentration.

(I) Refer to Table **2015.01F** for a summary of all recommended quality control samples, minimum frequency at which they are to be analyzed, acceptance criteria for each, and appropriate corrective action if the acceptance criteria are not met.

Table 2015.01F. Summary of quality control samples

QC sample	Measure	Minimum frequency	Acceptance criteria	Corrective action
Calibration standards	Linearity of the calibration curve	Analyzed once per analytical day	Correlation coefficient ≥0.995, 1st standard ≤MRL, low standard recovery = 75- 125%, all other standard recoveries = 80- 120%	Reanalyze suspect calibration standard. If criteria still not met, then re-prepare standards and recalibrate the instrument.
Internal standards	Variation in sample properties between samples and standards	Each standard, blank, and sample is spiked with internal standard	60-125% recovery compared to calibration blank	If the responses of the internal standards in the following CCB are within the limit, rerun the sample at an additional 2x dilution. If not, then samples must be reanalyzed with a new calibration.
Lu digestion check spike	Assessment of potential loss during digestion	Added to every digested samples	Recovery ≥75%	Re-prepare the sample
Initial calibration verification (ICV)	Independent check of system performance	One following instrument calibration	Recovery = 90- 110%	Correct problem prior to continuing analysis. Recalibrate if necessary.
Continuing calibration verification (CCV)	Accuracy	At beginning and end of analysis and one per 10 injections	Recovery = 85- 115%	Halt analysis, correct problem, recalibrate, and reanalyze affected samples
Method blanks (MB)	Contamination from reagents, lab ware, etc.	Minimum of three per batch	Mean ≤ MRL; SD ≤ MDL or MBs <1/10th sample result	Determine and eliminate cause of contamination. Affected samples must be re-prepared and reanalyzed.
Method duplicates (MD)	Method precision within a given matrix	Minimum of one per 10 samples	RPD ≤ 30% or ±2x LOQ if results ≤5x LOQ	If RPD criteria not met, then sample may be re-prepared and reanalyzed, but this is not required. Sample matrix may be inhomogeneous. A post-digestion duplicate (PDD) can be analyzed to evaluate instrument precision.

Matrix spikes/matrix spike duplicates (MS/MSD)	Method accuracy and precision within a given matrix	Minimum of one per 10 samples	Recovery = 70- 130% and RPD ≤ 30%	If RPD > 30%, results must be qualified
Post- preparation spike (PS)	Check for matrix interference	When required (samples spiked too low/high, dilution test fails, etc.)	Recovery = 75- 125%	Analyze samples using MSA or results flagged accordingly
Laboratory fortified blank (LFB) or blank spike (BS)	Method accuracy	Minimum of one per batch	Recovery = 75- 125%	If LFB recovery is outside of the control limit, then batch must be re-prepared and reanalyzed
Certified Reference Material (CRM)	Method accuracy	Must be matrix- matched to samples; minimum of one per batch	Recovery = 75- 125% unless limits set by CRM manufacturer are greater or element/CRM specific limits have been established	If CRM true value is ≥5x the LOQ and recovery is outside of the control limit, then batch must be re-prepared and reanalyzed

I. Method Performance

(a) Limit of detection (LOD) and LOQ were determined through the analysis of 23 method blanks (see Table 2015.01G). LOD was calculated as 3 times the SD of the results of the blanks, and LOQ was calculated as 2 times the value of the LOD, except where the resulting LOQ would be less than the lowest calibration point, in which case LOQ was elevated and set at the lowest calibration point and LOD was calculated as 1/3 of the LOQ. All LOQs achieved are $\leq 10 \ \mu g/kg$ for all food matrices and $\leq 8 \ \mu g/kg$ for liquid matrices, such as infant formula.

Method blanks	⁹¹ (AsO)	¹¹¹ Cd	¹¹⁴ Cd	Pb	²⁰⁰ Hg	²⁰² Hg
MB-01	2.83	0.229	0.270	1.90	1.61	0.95
MB-02	1.48	-0.088	0.270	0.14	1.48	1.13
MB-03	1.80	0.007	0.115	0.13	0.76	0.25
MB-04	1.03	0.154	0.288	0.12	1.46	0.33
MB-05	1.43	0.010	0.259	1.84	1.28	0.27
MB-06	1.07	0.105	0.096	3.02	0.87	0.76
MB-07	2.31	-0.002	0.297	2.67	0.89	0.44
MB-08	1.20	0.285	0.200	4.24	0.55	0.28
MB-09	1.05	0.002	0.182	0.09	0.96	0.25
MB-10	2.12	0.047	0.150	0.19	0.71	0.02
MB-11	2.09	-0.145	0.226	0.12	0.64	0.57
MB-12	1.44	0.037	0.165	0.18	0.45	0.50
MB-13	0.70	-0.122	0.160	0.17	0.81	0.19
MB-14	1.12	-0.001	0.074	0.14	0.85	0.21
MB-15	2.33	0.097	0.207	0.11	0.18	0.17
MB-16	1.53	-0.117	0.146	0.16	1.33	1.09
MB-17	1.79	-0.070	0.180	0.03	3.46	2.19
MB-18	1.90	0.049	0.115	0.06	3.30	2.36
MB-19	1.18	0.043	0.224	0.39	4.01	2.78
MB-20	1.24	-0.060	0.199	0.07	0.99	0.56
MB-21	0.92	0.165	0.120	0.03	0.73	0.33
MB-22	1.69	0.005	0.186	0.09	0.60	0.25
MB-23	2.13	0.171	0.152	0.08	0.41	-0.23
SI	0.54	0.113	0.063	1.18	1.01	0.77
LOI	D 1.6	0.50 ^{<i>a</i>}	0.50 ^{<i>a</i>}	3.5	3.0	2.3
LOG	J 3.3	1.60^{a}	1.60 ^{<i>a</i>}	7.1	6.0	4.6

Table 2015.01G. Method blank results and LOD/LOQ, $\mu g/kg$

^{*a*} Adjusted to conform to lowest calibration point.

(b) Sample-specific LOQs for several matrices, based on LOQs determined by the default method, and adjusted for changes in sample mass for particular samples, are shown in Table **2015.01H**. Values have been rounded up to the nearest part-per-billion.

Table 2015.010. Sample-specific LOQS

Samala		LOQ, μg/kg (as received)			
Sample	As	Cd	Pb	Hg	
Infant formula	2	1	4	3	
Chocolate	4	2	8	6	
Rice flour	4	2	8	6	
Fruit juice	1	1	2	2	

(c) Numerous relevant CRMs were analyzed to establish method accuracy. Example percent recoveries are provided in Table **2015.01I** (recoveries have been omitted for CRMs that do not provide a certified value or if the certified value is less than the LOQ).

Certified Reference Material	As, %	Cd, %	Pb, %	Hg, %
DOLT-4 Dogfish Liver	104	97	87	114
DORM-3 Fish Protein	105	109	94	114
DORM-4 Fish Protein	105	91	91	81
NIST 1548a Typical Diet	103	95	113	NA
NIST 1568a Rice Flour	98	99	NA	NA
NIST 1946 Lake Superior Fish Tissue	119	NA	NA	101
TORT-2 Lobster Hepatopancreas	109	104	95	116
TORT-3 Lobster Hepatopancreas	113	89	86	86

Table 2015.01I. Recoveries for numerous relevant CRMs

(d) Standard Method Performance RequirementsSM (AOAC SMPR 2012.007) for repeatability, reproducibility, and recovery for the method are shown in the Table **2015.01J**. See Appendix A (J. AOAC Int., future issue) for detailed method performance information supporting acceptance of the method.

Concentration	Repeatability,	Reproducibility,	Recovery,
range, μg/kg	%	%	%
LOQ-100	15	32	60-115
100-1000	11	16	80-115
>1000	7.3	8	80-115

Table 2015.01J. AOAC SMPR 2012.007

(e) Detailed method performance information supporting acceptance of the method is on file with AOAC and the method author and is available upon request. Method validation samples were prepared and analyzed for all applicable matrices. In general, all SMPR criteria were met for As, Cd, Hg, and Pb in the matrices apple juice, infant formula, cocoa powder, and rice flour.

J. AOAC Int. (future issue)

AOAC SMPR 2012.007 J. AOAC Int. **96**, 704(2013) DOI: 10.5740/jaoac.int.2012.007

Posted: May 28, 2015

(b) (4)

FINAL REPORT

Acute Oral Dose Toxicity Study of L-Valine (VAL Pro) in Sprague-Dawley Rats (Fixed Dose Procedure)

Study No.: B20742

GLP COMPLIANCE STATEMENT

Study Title :Acute Oral Dose Toxicity Study of L-Valine (VAL Pro)in Sprague-Dawley Rats (Fixed Dose Procedure)

Study No. : B20742

This study was conducted in accordance with the following Good Laboratory Practice Regulations:

- "Good Laboratory Practice Regulation for Nonclinical Laboratory Studies" Notification No. 2018-93, Ministry of Food and Drug Safety, Republic of Korea (Nov. 21, 2018)
- "OECD Principles of Good Laboratory Practice"
 Organisation for Economic Co-operation and Development, ENV/MC/CHEM(98)17 (as revised in 1997)

QUALITY ASSURANCE STATEMENT

Study Title : Acute Oral Dose Toxicity Study of L-Valine (VAL Pro) in Sprague-Dawley Rats (Fixed Dose Procedure)

Study No. : B20742

This study was audited by the Quality Assurance Unit of (b)(4) as indicated below. Audits were based on the GLPs, protocol and SOPs (b)(4) The results of all quality assurance inspections and audits were reported to the study director and test facility management.

Audit phases and dates as described below were reported to the study director and test facility management.

Audit Phase	Audit Date	To Study Director and Test Facility Management
Protocol	Sep. 21, 2020	Sep. 21, 2020
Animal receipt*	Aug. 25, 2020	Aug. 25, 2020
Storage of the test substance	Oct. 6, 2020	Oct. 6, 2020
Preparation of the dosing formulations	Oct. 6, 2020	Oct. 6, 2020
Administration	Oct. 6, 2020	Oct. 6, 2020
Clinical signs	Oct. 6, 2020	Oct. 6, 2020
Preparation of the dosing formulations	Oct. 8, 2020	Oct. 8, 2020
Necropsy	Oct. 20, 2020	Oct. 20, 2020
Raw data	Nov. 13, 2020	Nov. 13, 2020
Draft Report	Nov. 13, 2020	Nov. 13, 2020
Final Report	Nov. 17, 2020	Nov. 17, 2020

*Process-based inspections: The performance of process-based inspections covering phases which occur with a very high frequency may result in some studies not being inspected on an individual basis during their experimental phase.

This statement confirms that described methods were established, and results reflected raw data accurately in the final report.

(b) (4)	(b) (4)	
Quality Assurance Management		Nov. 17, 2020
		Date

CONTENTS

			Page
Gl	LP CO	MPLIANCE STATEMENT	2
QI	UALIT	Y ASSURANCE STATEMENT	3
SU	JMMA	RY	6
1.	EXPE	CRIMENTAL OUTLINE	7
	1.1	Purpose	7
	1.2	Good Laboratory Practice Regulations	
	1.3	Regulatory Guidelines	7
	1.4	Animal Ethics	7
	1.5	Veterinary Care	··· 7
	1.6	Sponsor ·····	8
	1.7	Test Facility	8
	1.8	Study Director	8
	1.9	Study Schedule	8
	1.10	Key Personnel	8
	1.11	Retention of Raw Data	9
2.	MAT	ERIALS AND METHODS	10
	21	Test Substance	10
	$\frac{2.1}{2.2}$	Preparation and Analysis of the Dosing Formulations	10
	2.2	Test System	·· 11
	2.3	Animal Husbandry	12
	2.1	Feed	12
	2.5	Drinking Water	. 13
	2.0	Dosing water	13
	2.7	Group Designation and Dose Levels	13
	2.0	Parameters Evaluated	14
	2.9	Statistical Analysis	14
	2.10	Classification of CHS Catagory musuum musuum musuum	15
	2.11	Classification of Oris Category	15
3.	RESU	ILTS AND DISCUSSION	16
	3.1	Mortality	16
	3.2	Clinical Signs	16
	3.3	Body Weights	16
	3.4	Necropsy and Histopathological Findings	16
4.	CON	CLUSION	17
	FICU	DES	10
	FIGU	Figure 1 Body Weights (Step 1: 200 mg/kg (Sighting study))	10
		Figure 2 Body Weights (Step 2: 2 000 mg/kg (Sighting study))	19
		Figure 2. Body Weights (Step 2: 2,000 mg/kg (Mgin study))	19 20
		Tigure 5. Douy weights (Step 5. 2,000 hig/kg (Main Study))	20
	SUM	MARY TABLE	21
	~ ~ 1141	Table 1. Summary of Mortality	22

INDIVIDUAL ANIMAL DATA		23
Table 2. Individual Clinical Signs		24
Table 3. Individual Body Weights		25
APPENDICES		26
Appendix I. Protocol		27
Appendix II. Protocol Amendments	••••••	40
Appendix III. Protocol Deviations		41
Appendix IV. Pathology Report	••••••	42
Appendix V. Certificate of Analysis		49
<attachment 1=""></attachment>		50
<attachment 2=""></attachment>		51

SUMMARY

This study was conducted to assess the potential toxicity and to classify the test substance, L-Valine (VAL Pro), under the category of GHS classification following a single oral administration to 8 - 9-week-old female Sprague-Dawley rats.

Two dose groups with one female each for the sighting study and one dose group with four females for the main study were utilized as follows:

Group 1 (Step 1): 300 mg/kg of the test substance

Groups 2 and 3 (Steps 2 and 3): 2,000 mg/kg of the test substance

Sighting study (Steps 1 and 2): A dose of 300 mg/kg was administered and no mortality was observed (Step 1). A second dose of 2,000 mg/kg was administered and no mortality was observed (Step 2).

Main study (Step 3): A dose of 2,000 mg/kg was administered and no mortality was observed (Step 3). The study was finished at that point.

All animals were monitored for clinical signs and body weight changes during the 14-day observation period after administration. They were subjected to a gross necropsy at the end of the observation period.

There were no deaths of animals at 300 and 2,000 mg/kg. No test substance-related effects were observed in clinical signs, body weight data or necropsy findings in the animals at 300 and 2,000 mg/kg.

Based on the result of the acute oral toxicity study in Sprague-Dawley rats, the test substance, L-Valine (VAL Pro), was classified to be 'Category 5 or Unclassified' according to the GHS classification.

1. EXPERIMENTAL OUTLINE

1.1 Purpose

The purpose of this study was to assess the potential toxicity and to classify the test substance, L-Valine (VAL Pro), under the category of GHS classification following a single oral administration to female Sprague-Dawley rats.

1.2 Good Laboratory Practice Regulations

This study was conducted in accordance with the following Good Laboratory Practice Regulations:

- "Good Laboratory Practice Regulation for Nonclinical Laboratory Studies" Notification No. 2018-93, Ministry of Food and Drug Safety, Republic of Korea (Nov. 21, 2018)
- "OECD Principles of Good Laboratory Practice"
 Organisation for Economic Co-operation and Development, ENV/MC/CHEM(98)17 (as revised in 1997)

1.3 Regulatory Guidelines

This study was conducted in accordance with the following test guideline:

- "OECD Guidelines for the Testing of Chemicals, 420, Acute Oral Toxicity-Fixed Dose Procedure"

Organisation for Economic Co-operation and Development (Adopted: 17th December 2001)

1.4 Animal Ethics

^{(b)(4)} received full accreditation from the Association for Assessment and Accreditation of Laboratory Animal Care International (AAALAC International) in 2010. This study was reviewed and approved by the ^{(b)(4)}

based on Animal Protection Act of Republic of Korea (Enactment May 31, 1991, No. 4379, Revision Aug. 27, 2019, No. 16544) (Approval No.: 200492).

1.5 Veterinary Care

All procedures in this study were in compliance with the Animal Protection Act of Republic of Korea, the Guide for the Care and Use of Laboratory Animals.

1.6 Sponsor

Name	CJ CheilJedang
Address	55, Gwanggyo-ro 42beon-gil, Yeongtong-gu, Suwon, Gyeonggi, Republic of Korea
TEL	+ 82-31-8099-1515

1.7 Test Facility

Name	(b) (4)			
Address			(b)) (4)
TEL	(b) (4)	FAX	(b) (4)	

1.8 Study Director

Name (b) (4)

1.9 Study Schedule

Study initiation	Sep. 17, 2020
Experimental start	Sep. 29, 2020
Animal receipt	Sep. 29, 2020
Group assignment	Oct. 5, 2020
Administration	Oct. 6, 8 and 13, 2020
Necropsy	Oct. 20, 22 and 27, 2020
Experimental completion	Nov. 3, 2020
Study completion	Nov. 17, 2020

1.10 Key Personnel

Evaluation of animal's health condition	(b) (4)
Test substance storage and handling	(b) (4)
Pathology	(b) (4)

1.11 Retention of Raw Data

- 1.11.1 Duration Three years from the approval date (Notification No. 2018-93, Ministry of Food and Drug Safety, Republic of Korea)
- 1.11.2 Storage facility

Name	(b) (4)
Location	(b) (4)

1.11.3 Type of records and data

Protocol, final report, all raw data, documents related to the study and communications

2. MATERIALS AND METHODS

2.1 Test Substance

2.1.1	Name	L-Valine (VAL Pro)				
2.1.2	Lot No./Batch No.	GVAL191121				
2.1.3	Appearance	Light brown granules				
2.1.4	Component Content	Valine 72.57%				
2.1.5	Date of manufacture	Nov. 21, 2019				
2.1.6	Expiration date	Dec. 23, 2021				
2.1.7	Storage condition	Room temperature $(15 - 25^{\circ}C)$				
2.1.8	Handling instructions	Not specific				
2.1.9	Supplier					
	Name	CJ CheilJedang				
	Address	55, Gwanggyo-ro 42beon-gil, Yeongtong-gu, Suwon, Gyeonggi, Republic of Korea				
2.1.10	Disposition of test substance	Any remaining test substance is returned to the Sponsor.				

2.2 Preparation and Analysis of the Dosing Formulations

2.2.1 Vehicle	
2.2.1.1 Name	Water for injection
2.2.1.2 Lot No.	(b) (4)
2.2.1.3 Storage condition	Room temperature $(1 - 30^{\circ}C)$
2.2.1.4 Manufacturer	(b) (4) Republic of Korea

2.2.2 Preparation of the dosing formulations

The required amount of test substance was weighed and placed in a mortar. The vehicle was added and suspended using a pestle, and the vehicle was gradually added to yield the desired concentration. Dosing formulations were prepared just prior to use on the day of administration.

2.2.3 Analysis of the dosing formulations

Analysis for stability, homogeneity and concentration of dosing formulations was not performed.

2.3 Test System

- 2.3.1 Species, strain Rat, Sprague-Dawley (Crl:CD(SD)), SPF
- 2.3.2 Producer & supplier (b) (4) Republic of Korea

2.3.3 Justification for species selection

Sprague-Dawley rats are extensively used in toxicity studies and are selected because of the abundance of historical control data to be compared.

- 2.3.4 Sex, number, age and body weight range of animals at receipt Female, 11 rats, 7 weeks old, 167.9 – 185.3 g
- 2.3.5 Sex, number, age and body weight range of animals at administration

Female, 6 rats, 8 – 9 weeks old, 187.5 – 210.6 g

2.3.6 Quarantine and acclimation

Upon receipt, all animals were subjected to clinical examination and recorded for body weight. Clinical signs were observed once daily during the quarantine-acclimation period. However, animals were quarantined for 3 days in a quarantine room and then, moved to an animal room.

On the last day of the quarantine-acclimation period, the body weight was recorded, and then general health examination based on clinical signs and body weight changes was conducted by responsible personnel of quarantine.

2.3.7 Animal and cage identification

During the acclimation period, a temporary identification number was marked on the tail of each animal and a temporary identification card (quarantine-acclimation period) was attached to each cage.

Following group assignment, an individual identification number was marked uniquely on the tail of each animal and a color-coded cage card was attached to each cage describing the group and dose level.

2.3.8 Group assignment

On the last day of acclimation (group assignment day), ten healthy animals with body weights close to the mean body weight were allocated to the groups using the random method. The study groups were consisted of four groups, and one animal each was assigned to two groups for the sighting study and four animals each were assigned to two groups for the main study. Animals of each group were given an animal ID number (G1: 2101, G2: 2201, G3: 2301 – 2304 and G4: 2401 – 2404).

2.3.9 Disposition of remaining animals

The remaining animal not selected for the study was discarded following group assignment. Disused animals in Step 4 were excluded from the test system after dosing in Step 3.

2.4 Animal Husbandry

2.4.1	Quarantine room No.	A315
2.4.2	Animal room No.	A322
2.4.3	Type & size of cage	Stainless wire mesh cage, 260W×350D×210H (mm)
2.4.4	Number of animals per cage	One animal/cage (during the quarantine-acclimation and observation periods)
2.4.5	Temperature	Measurement value: 20.2 – 23.7°C, permissible range: 19.0 – 25.0°C
2.4.6	Relative humidity	Measurement value: $50.0 - 60.2\%$, permissible range: $30.0 - 70.0\%$
2.4.7	Air changes	10 - 15 clean, fresh, filtered air changes per hour
2.4.8	Lighting	12 hour light/dark cycle (7 AM – 7 PM via automated timer)
2.4.9	Intensity of illumination	150 – 300 Lux

2.4.10 Replacement and washing of breeding materials

Cages and feeders were replaced once every two weeks.

Breeding materials were washed using an automatic washing machine and sterilized by an autoclave.

(b) (4)

2.5 Feed

2.5.1 Type

Pelleted rodent chow

- 2.5.2 Lot No. (b) (4)
- 2.5.3 Manufacturer ^{(b) (4)}

2.5.4 Method of feeding

The feed was placed in feeders and provided ad libitum.

2.5.5 Analysis and confirmation of feed

The certificate of feed analysis was provided by the manufacturer, (b) (4) The results of feed analysis met the allowable standard of this facility.

2.6 Drinking Water

2.6.1 Type and method of water supply

Public tap water in ______ (b) (4) was filtered and irradiated by ultraviolet light and provided *ad libitum*.

2.6.2 Analysis of drinking water

Samples of drinking water are analyzed for specified microorganisms once a month and all environmental contaminants once a year by the (b) (4)

according to the Regulation of Quality Criteria for Potable Water and Test (Ministry of Environment Ordinance No. 833, Revision Dec. 20, 2019). The results of water analysis met the allowable standard of this facility.

2.7 Dosing

2.7.1 Route

Oral via gastric intubation

2.7.2 Justification for the route of administration

The oral route was chosen because it is the intended route of administration in animals.

2.7.3 Method of administration

Individual doses were calculated based on the animals' body weights recorded just prior to dosing at a dose volume of 10 mL/kg body weight. Animals were dosed via gastric intubation with a disposable syringe fitted with an intubation tube. Animals were fasted overnight, approximately 16 hours prior to dosing. Drinking water was provided *ad libitum*. Feed was provided approximately 4 hours after dosing.

2.8 Group Designation and Dose Levels

2.8.1 Sighting study

The starting dose level for this study is selected at 300 mg/kg because there is no available toxicity information on the test substance. Therefore, a starting dose of 300 mg/kg body weight of the test substance was administered to one animal as the dose level for the sighting study (Step 1).

The following steps were based on the results of mortality and clinical signs of animals obtained from the observations for 2 days after the administration at the previous dose level in accordance with '<Attachment 1> ANNEX 2: FLOW CHART FOR THE SIGHTING STUDY'.

2.8.2 Main study

SAFETY?	The group designation is shown as follows:						
	Group		Step	Dose (mg/kg)	Dose volume (mL/kg)	No. of animals (Animal ID No.)	Deaths
	Sighting study	G1	Step 1	300	<mark>10</mark>	1 (2101)	None
	Sighting study	G2	Step 2	2,000	<mark>10</mark>	1 (2201)	None
	Main study	G3	Step 3	2,000	<mark>10</mark>	4 (2301 - 2304)	None

2.9 Parameters Evaluated

2.9.1 Clinical signs

All animals were observed for clinical signs (type, severity, time of onset and recovery, etc.) and mortality at 30 minutes and 1, 2, 4 and 6 hours after dosing on the day of dosing (Day 1), and once daily thereafter for 14 days (Day 2 to Day 15).

2.9.2 Body weights

The body weight was recorded once on the day of dosing (prior to dosing), and on Days 2, 4, 8 and 15 (the day of necropsy).

2.9.3 Necropsy

On the day of necropsy, all animals were anesthetized with CO_2 gas inhalation and exsanguinated from the abdominal aorta. Complete gross postmortem examinations were performed on all animals in the study.

2.9.4 Histopathology

Since no gross findings were observed at necropsy, histopathological examination was not performed.

2.10 Statistical Analysis

Statistical analysis was not performed. Mean scores and values were determined.
2.11 Classification of GHS Category

The classification of Globally Harmonized Classification System for Chemical Substances and Mixtures (GHS) Category was estimated based on the mortality in each step (Attachment 2).

3. RESULTS AND DISCUSSION

3.1 Mortality

(Table 1)

There were no deaths of animals at 300 and 2,000 mg/kg throughout the study.

3.2 Clinical Signs

(Table 2)

No abnormalities of clinical signs were observed in any animal at 300 and 2,000 mg/kg throughout the study.

3.3 Body Weights

(Figure 1, Figure 2, Figure 3, Table 3)

Normal body weight gain was observed in all animals at 300 and 2,000 mg/kg throughout the study.

3.4 Necropsy and Histopathological Findings

(Appendix IV)

No abnormal gross findings were observed in any animal at 300 and 2,000 mg/kg.

4. CONCLUSION

Based on the result of the acute oral toxicity study in Sprague-Dawley rats, the test substance, L-Valine (VAL Pro), was classified to be 'Category 5 or Unclassified' according to the GHS classification.

FIGURES

Figure 1. Body Weights (Step 1: 300 mg/kg (Sighting study))

Figure 2. Body Weights (Step 2: 2,000 mg/kg (Sighting study))

Figure 3. Body Weights (Step 3: 2,000 mg/kg (Main study))

SUMMARY TABLE

Table 1	. Summary	of Mortality
---------	-----------	--------------

Step /	No. of								D	ay							
Dose (mg/kg)	animals	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	Mortality
Step 1 300	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0/1
Step 2 2,000	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0/1
Step 3 2,000	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0/4

Steps 1 & 2: Sighting study

Step 3: Main study

INDIVIDUAL ANIMAL DATA

Step /	Animal	Clinical sign									
Dose (mg/kg)	ID		0.5	1	2	4	6				
Step 1 300	2101						(b) (4	4)			
Step 2 2,000	2201										
Step 3	2301										
2,000	2302										
	2303										
	2304										
Step / Dose (mg/kg)	Animal	Clinical sign		4 5	(7	Day	10 11	10	12	14	15
Step / Dose (mg/kg)	Animal ID	Clinical sign	2 3	4 5	67	Day 89	10 11	12	13	14	15 (b) (4
Step / Dose (mg/kg) Step 1 300	Animal ID 2101	Clinical sign	2 3	4 5	6 7	Day 89	10 11	12	13	14	15 (b) (4
Step / Dose (mg/kg) Step 1 300 Step 2 2,000	Animal ID 2101 2201	Clinical sign	2 3	4 5	6 7	Day 89	10 11	12	13	14	15 (b) (4
Step / Dose (mg/kg) Step 1 300 Step 2 2,000 Step 3	Animal ID 2101 2201 2301	Clinical sign	2 3	4 5	6 7	Day 8 9	10 11	12	13	14	15 (b) (4
Step / Dose (mg/kg) Step 1 300 Step 2 2,000 Step 3 2,000	Animal ID 2101 2201 2301 2302	Clinical sign	2 3	4 5	6 7	Day 8 9	10 11	12	13	14	15 (b) (4
Step / Dose (mg/kg) Step 1 300 Step 2 2,000 Step 3 2,000	Animal ID 2101 2201 2301 2302 2303	Clinical sign	2 3	4 5	6 7	Day 8 9	10 11	12	13	14	15 (b) (4
Step / Dose (mg/kg) Step 1 300 Step 2 2,000 Step 3 2,000	Animal ID 2101 2201 2301 2302 2303 2304	Clinical sign	2 3	4 5	6 7	Day 8 9	10 11	12	13	14	15 (b) (4

Table 2. Individual Clinical Signs

Steps 1 & 2: Sighting study

-: No observable abnormality

Step 3: Main study

							(g)
Step /	Animal			Day			Gain
Dose (mg/kg)	ID	1	2	4	8	15	$1 \sim 15$
Step 1 300	2101						(b) (4)
Step 2 2,000	2201						
Step 3	2301						
2,000	2302						
	2303						
	2304						
	Mean	200.4	216.9	221.3	230.0	243.1	42.7
	S.D.	9.6	8.2	7.4	4.7	6.7	9.6
	Ν	4	4	4	4	4	4

Table 3. Individual Body Weights

Steps 1 & 2: Sighting study Step 3: Main study

APPENDICES

Appendix I. Protocol

(b) (4)

PROTOCOL

Acute Oral Dose Toxicity Study of L-Valine (VAL Pro) in Sprague-Dawley Rats (Fixed Dose Procedure)

Study No.: B20742

(b) (4)

- 1/13 -

PROTOCOL REVIEWED AND ACCEPTED BY

- 2/13 -

CONTENTS

Page

PRO	отос	OL REVIEWED AND ACCEPTED BY 2
1.	EXPI	ERIMENTAL OUTLINE4
	1.1	Purpose 4
	1.2	Good Laboratory Practice Regulations
	1.3	Regulatory Guidelines 4
	1.4	Animal Ethics 4
	1.5	Veterinary Care 4
	1.6	Sponsor 5
	1.7	Test Facility
	1.8	Study Director
	1.9	Study Schedule
	1.10	Protocol Amendments
	1.11	Final Report
	1.12	Retention of Raw Data
2.	MAT	ERIALS AND METHODS7
	2.1	Test Substance ····· 7
	2.2	Preparation and Analysis of the Dosing Formulations
	2.3	Test System ······ 8
	2.4	Animal Husbandry
	2.5	Feed ······9
	2.6	Drinking Water ····· 10
	2.7	Dosing
	2.8	Group Designation and Dose Levels
	2.9	Parameters Evaluated
	2.10	Statistical Analysis ······11
	2.11	Classification of GHS Category
		1
	<atta< td=""><td>icnment 1>·····12</td></atta<>	icnment 1>·····12
	<atta< td=""><td>13 inchment 2></td></atta<>	13 inchment 2>

- 3/13 -

1. EXPERIMENTAL OUTLINE

1.1 Purpose

The purpose of this study is to assess the potential toxicity and to classify the test substance, L-Valine (VAL Pro), under the category of GHS classification following a single oral administration to female Sprague-Dawley rats.

1.2 Good Laboratory Practice Regulations

This study will be conducted in accordance with the following Good Laboratory Practice Regulations:

- "Good Laboratory Practice Regulation for Nonclinical Laboratory Studies" Notification No. 2018-93, Ministry of Food and Drug Safety, Republic of Korea (Nov. 21, 2018)
- "OECD Principles of Good Laboratory Practice"
 Organisation for Economic Co-operation and Development, ENV/MC/CHEM(98)17 (as revised in 1997)

1.3 Regulatory Guidelines

This study will be conducted in accordance with the following test guideline:

- "OECD Guidelines for the Testing of Chemicals, 420, Acute Oral Toxicity-Fixed Dose Procedure"

Organisation for Economic Co-operation and Development (Adopted: 17th December 2001)

1.4 Animal Ethics (SOP/GER/020)

^{(b) (4)} received full accreditation from the Association for Assessment and Accreditation of Laboratory Animal Care International (AAALAC International) in 2010. This study was reviewed and approved by the ^{(b) (4)}

^{(b) (4)} based on Animal Protection Act of Republic of Korea (Enactment May 31, 1991, No. 4379, Revision Aug. 27, 2019, No. 16544) (Approval No.: 200492).

1.5 Veterinary Care (SOP/GER/020)

In accordance with the Animal Protection Act of Republic of Korea, the Guide for the Care and Use of Laboratory Animals, medical treatment necessary to prevent unacceptable pain and suffering, including euthanasia, is the sole responsibility of the attending laboratory animal veterinarian. Veterinary treatment may be conducted based upon consensus agreement with the study director, attending laboratory animal veterinarian and the Sponsor.

- 4/13 -

1.6 Sponsor

Name	CJ CheilJedang
Address	55, Gwanggyo-ro 42beon-gil, Yeongtong-gu, Suwon, Gyeonggi, Republic of Korea
TEL	+ 82-31-8099-1515

1.7 Test Facility

Name Address				(b) (4)
TEL	(b) (4)	FAX	(b) (4	4)

1.8 Study Director

Name	(b) (4)

1.9 Study Schedule

Study initiation	Sep. 17, 2020
Experimental start	Sep. 29, 2020
Animal receipt	Sep. 29, 2020
Group assignment	Oct. 5, 2020
Administration	Oct. 6, 8, 13 and 16, 2020
Necropsy	Oct. 20, 22, 27 and 30, 2020
Experimental completion	Nov. 6, 2020
Draft report issue	Nov. 20, 2020

1.10 Protocol Amendments

After the approval of the protocol, protocol amendments including the reason for the changes, the contents of change and date of amendment will be documented and signed by the study director. And then, they will be submitted to the Sponsor.

1.11 Final Report

The final report will be written including figures, tables, and appendices. The original document will be retained in the archives of ^{(b) (4)}

- 5/13 -

1.12 Retention of Raw Data

- 1.12.1 Duration Three years from the approval date (Notification No. 2018-93, Ministry of Food and Drug Safety, Republic of Korea)
- 1.12.2 Storage facility

Name	Archives of	(b) (4)	
Location		(b) (4	1)

(Raw data will be retained for the first five years after completion of the study in the archives of ^{(b) (4)} Further storage will be determined in agreement with the Sponsor.)

1.12.3 Type of records and data

Protocol, final report, all raw data, documents related to the study, specimens (as long as quality permits evaluation), communications, etc.

- 6/13 -

2. MATERIALS AND METHODS

2.1 Test Substance

2.1.1	Name	L-Valine (VAL Pro)
2.1.2	Lot No./Batch No.	GVAL191121
2.1.3	Appearance	Light brown granules
2.1.4	Component · Content	Valine 72.57%
2.1.5	Date of manufacture	Nov. 21, 2019
2.1.6	Expiration date	Dec. 23, 2021
2.1.7	Storage condition	Room temperature $(15 - 25^{\circ}C)$
2.1.8	Handling instructions	Not specific
2.1.9	Supplier	
	Name	CJ CheilJedang
	Address	55, Gwanggyo-ro 42beon-gil, Yeongtong-gu, Suwon, Gyeonggi, Republic of Korea
2.1.10	Disposition of test substance	Any remaining test substance is returned to the Sponsor.

2.2 Preparation and Analysis of the Dosing Formulations

2.2.1 Vehicle

2.2.1.1	Name	Water for injection
2.2.1.2	Storage condition	Room temperature $(1 - 30^{\circ}C)$
2.2.1.3	Manufacturer	^{(b) (4)} Republic of Korea

2.2.2 Preparation of the dosing formulations (SOP/FOT/140)

The required amount of test substance will be weighed and placed in a mortar. The vehicle will be added and suspended using a pestle, and the vehicle will be gradually added to yield the desired concentration. Dosing formulations will be prepared just prior to use on the day of administration.

2.2.3 Analysis of the dosing formulations

Analysis for stability, homogeneity and concentration of dosing formulations will not be performed.

- 7/13 -

2.3 Test System

- 2.3.1 Species, strain
 Rat, Sprague-Dawley
 (b) (4)

 2.3.2 Producer & supplier
 (b) (4)
 Republic of Korea
- 2.3.3 Justification for species selection

Sprague-Dawley rats are extensively used in toxicity studies and are selected because of the abundance of historical control data to be compared.

2.3.4 Sex, number and age of animals at receipt

Female, 11 rats, 7 weeks old

2.3.5 Quarantine and acclimation (SOP/GER/011)

Upon receipt, all animals will be subjected to clinical examination and recorded for body weight. Clinical signs will be observed once daily during the quarantine-acclimation period. However, animals will be quarantined for 3 days in a quarantine room, then and moved to an animal room.

On the last day of the quarantine-acclimation period, body weight will be recorded, and then general health examination based on clinical signs and body weight changes will be conducted by responsible personnel of quarantine. Abnormal animals will be euthanized by CO_2 gas inhalation.

2.3.6 Animal and cage identification (SOP/SGE/140, 142)

During the acclimation period, a temporary identification number will be marked on the tail of each animal and a temporary identification card (quarantine-acclimation period) will be attached to each cage.

Following group assignment, an individual identification number will be marked uniquely on the tail of each animal and a color-coded cage card will be attached to each cage describing the group and dose level.

2.3.7 Group assignment (SOP/SGE/130)

On the last day of acclimation (group assignment day), ten healthy animals with body weights close to the mean body weight will be allocated to the groups using the random method. The study groups will consist of four groups, and one animal each will be assigned to two groups for the sighting study and four animals each will be assigned to two groups for the main study. Animals of each group will be given an animal ID number (G1: 2101, G2: 2201, G3: 2301 – 2304 and G4: 2401 – 2404).

2.3.8 Disposition of remaining animals (SOP/SGE/340)

The remaining animal not selected for the study will be discarded following group assignment. All animals including unused animals will be discarded after the completion of the final dosing.

- 8/13 -

(b) (4)

2.6 Drinking Water (SOP/GER/011)

2.6.1 Type and method of water supply

Public tap water in ^{(b) (4)} will be filtered and irradiated by ultraviolet light and provided *ad libitum*.

2.6.2 Analysis of drinking water

Samples of drinking water are analyzed for specified microorganisms once a month and all environmental contaminants once a year by the (b) (4) (b) (4)

(b) (4) according to

the Regulation of Quality Criteria for Potable Water and Test (Ministry of Environment Ordinance No. 833, Revision Dec. 20, 2019). The results of water analysis will be confirmed to meet the allowable standard of this facility.

2.7 Dosing (SOP/SGE/260)

2.7.1 Route

Oral via gastric intubation

2.7.2 Justification for the route of administration

The oral route is chosen because it is the intended route of administration in animals.

2.7.3 Method of administration

Individual doses will be calculated based on the animals' body weights recorded just prior to dosing at a dose volume of 10 mL/kg body weight. Animals will be dosed via gastric intubation with a disposable syringe fitted with an intubation tube. Animals will be fasted overnight, approximately 16 hours prior to dosing. Drinking water will be provided *ad libitum*. Feed will be provided approximately 4 hours after dosing.

2.8 Group Designation and Dose Levels

2.8.1 Sighting study

The starting dose level for this study is selected at 300 mg/kg because there is no available toxicity information on the test substance. Therefore, a starting dose of 300 mg/kg body weight of the test substance will be administered to one animal as the dose level for the sighting study (Step 1).

The following steps will be based on the results of mortality and clinical signs of animals obtained from the observations for more than 24 hours after the administration at the previous dose level in accordance with '<Attachment 1> ANNEX 2: FLOW CHART FOR THE SIGHTING STUDY'.

- 10/13 -

2.8.2 Main study

The progress of main study will be based on the mortality and clinical observations for more than 24 hours after the administration in the sighting study. In the main study, the test substance will be dosed to four female rats. The main study will be performed in accordance with '<Attachment 2> ANNEX 3: FLOW CHART FOR THE MAIN STUDY'

2.9 Parameters Evaluated

2.9.1 Clinical signs (SOP/SGE/160)

All animals will be observed for clinical signs (type, severity, time of onset and recovery, etc.) and mortality at least once for 30 minutes after dosing and at 1, 2, 4 and 6 hours after dosing on the day of dosing (Day 1), and once daily thereafter for 14 days (Day 2 to Day 15).

2.9.2 Disposition of dead animals (SOP/SGE/240)

A necropsy will be conducted as soon as possible after body weight measurement of the animals found dead during the observation period. If necropsy is not feasible immediately, the dead animals will be necropsied within 24 hours after storage under refrigeration.

2.9.3 Body weights (SOP/SGE/300)

The body weight will be recorded once on the day of dosing (prior to dosing), and on Days 2, 4, 8 and 15 (the day of necropsy).

2.9.4 Necropsy (SOP/PAT/115, 130)

On the day of necropsy, all surviving animals will be anesthetized by CO_2 gas inhalation and exsanguinated from the abdominal aorta. Complete gross postmortem examinations will be performed on all animals in the study.

2.9.5 Histopathology (SOP/PAT/190, 230, 250, 280, 300, 320)

The histopathological examination will be performed on organs and/or tissues showing morphological abnormalities or any gross lesions at necropsy, if the detailed examination is deemed necessary.

2.10 Statistical Analysis

Statistical analysis will not be performed. Mean scores and values will be determined.

2.11 Classification of GHS Category

The classification of Globally Harmonized Classification System for Chemical Substances and Mixtures (GHS) Category will be estimated based on the mortality in each step (Attachment 2).

- 11/13 -

(b) (4)

^{(b) (4)} Study No.: B20742 Protocol

<Attachment 1>

.

ANNEX 2: FLOW CHART FOR THE SIGHTING STUDY

- 12/13 -

<Attachment 2>

ANNEX 3: FLOW CHART FOR THE MAIN STUDY

(b) (4)

(b) (4)

- 13/13 -

Appendix II. Protocol Amendments

Procedure

Protocol Amendments

No amendments were noted on the study.

Appendix III. Protocol Deviations

Procedure

Protocol Deviations

No deviations were noted on the study.

Appendix IV. Pathology Report

(b) (4)

PATHOLOGY REPORT

 Study Title :
 Acute Oral Dose Toxicity Study of L-Valine (VAL Pro) in Sprague-Dawley Rats (Fixed Dose Procedure)

 Study No. :
 B20742

 Test Facility :
 (b) (4)

	/ (b) (0)
Study Dethelegist	
Study Pathologist:	NOV, 5, 2020
	Date

-1/7-

^{(b) (4)}Study No.: B20742 Pathology Report

1. Materials and Methods

1.1 Dose Levels

- 1.1.1 Sighting study -Step 1: 300 mg/kg -Step 2: 2,000 mg/kg
- 1.1.2 Main study - Step 3: 2,000 mg/kg

1.2 Necropsy

On Day 15, all animals were anesthetized with CO_2 gas inhalation and exsanguinated from the abdominal aorta. Complete gross postmortem examination was performed on all animals in the study.

2. Results and Discussion

2.1 Necropsy

At necropsy, no remarkable findings were noted in all animals.

-2/7-

(b) (4) Study No.: B20742 Final Report

^{(b) (4)} Study No.: B20742 Pathology Report

APPENDICES

- 3 / 7 -

^{(b) (4)}Study No.: B20742 Pathology Report

Individual Gross Findings

 Study No. : B20742

 Sex : Female

 Step 1 :
 (b) (4)

 Step 2 :
 Step 3 :

-4/7-

^{(b) (4)} Study No.: B20742 Pathology Report

Individual Gross Findings

STUDY NO. : B20742 DOSE STEP : 1

*ANIMAL ID : 2101

SEX : Female

STUDY DAY : 15

NECROPSY FINDINGS No Finding Noted STATUS AT NECROPSY : Scheduled

-5/7-

^{(b) (4)}Study No.: B20742 Pathology Report

Individual Gross Findings

STUDY NO. : B20742 DOSE STEP : 2

*ANIMAL ID : 2201

SEX : Female

STUDY DAY : 15

NECROPSY FINDINGS No Finding Noted STATUS AT NECROPSY : Scheduled

-6/7-

^{(b) (4)}Study No.: B20742 Pathology Report

Individual Gross Findings

STUDY NO. : B20742 DOSE STEP : 3

*ANIMAL ID: 2301

STUDY DAY:15

NECROPSY FINDINGS No Finding Noted

*ANIMAL ID : 2302

STUDY DAY: 15

NECROPSY FINDINGS No Finding Noted

*ANIMAL ID : 2303

STUDY DAY: 15

NECROPSY FINDINGS No Finding Noted

*ANIMAL ID : 2304

STUDY DAY : 15

NECROPSY FINDINGS No Finding Noted SEX : Female STATUS AT NECROPSY : Scheduled

SEX : Female STATUS AT NECROPSY : Scheduled

SEX : Female STATUS AT NECROPSY : Scheduled

SEX : Female

STATUS AT NECROPSY : Scheduled

-7/7-

Appendix V. Certificate of Analysis

Gyeonggi-do, 164 TEL : 031)	42beon-gii, Yeongi 95, Korea <u>www.cj.co.kr</u> 8099-2450 FAX : 031)	ong-gu, Suwon-si,) 8099-2918	CHEILJEDANG	
1	Certifi	cate of analysis		
Certificate No.	2019-PR-205	Receipt No.	2019-AN-130	
Client	*	Date of Receipt	2019.11.25	
Client Name	Name - Date of Test	Date of Test	2019.11.26	
Client Tel		Use of Report	Reference test	
Client Address		-		
Test Sample	L-Valine Feed	L-Valine Feed Grade		
Manuf. Date 2019.11.21		9.11.21.		
Lot. No GVAL191121				
Quantity (kg)	1.1			
Test Item(s)		Test Result Test method used		
Valine			(b) (4) HPLC	
Loss on drying			AOAC 934.01	
* Information				
* Temperature : (22 * N.D : not detected * The results shown The Test Report of Tested by Approved by Tech	~28) °C, Relative Hur d (not quantifiable) n in this test report re cannot be reproduced (b nnical Manager	nidity : (30~60) % fer only to the sample tes d, except in full.	sted unless otherwise stated. ⁽⁴⁾ Nov, 29, 2019	

CJ BIO-AD form 100-01 REV.01

(b) (4)

<Attachment 1>

ANNEX 2: FLOW CHART FOR THE SIGHTING STUDY
(b) (4)

(b) (4)

<Attachment 2>

ANNEX 3: FLOW CHART FOR THE MAIN STUDY

FINAL REPORT

Bacterial Reverse Mutation Test of L-Valine (VAL Pro)

Study No.: B20743

(b) (4)

GLP COMPLIANCE STATEMENT

Study Title: Bacterial Reverse Mutation Test of L-Valine (VAL Pro)

Study No.: B20743

This study was conducted in accordance with the following Good Laboratory Practice Regulations:

- "Good Laboratory Practice Regulation for Nonclinical Laboratory Studies"
 Notification No. 2018-93, Ministry of Food and Drug Safety, Republic of Korea (Nov. 21, 2018)
- "OECD Principles of Good Laboratory Practice"

Organisation for Economic Co-operation and Development, ENV/MC/CHEM(98) 17 (as revised in 1997)

(b) (4)	(b) (4)	
Study Director		Dec. 11, 2020
		Date
(b) (4)		
Test Facility Management		Dec. 11, 2020
		Date

QUALITY ASSURANCE STATEMENT

Study Title : Bacterial Reverse Mutation Test of L-Valine (VAL Pro)

Study No. : B20743

This study was audited by the Quality Assurance Unit of _______ (b)(4) as indicated below. Audits were based on the GLPs, protocol and SOPs _______ (b)(4) The results of all quality assurance inspections and audits were reported to the study director and test facility management.

Audit phases and dates as described below were reported to the study director and test facility management.

Audit Phase	Audit Date	To Study Director and Test Facility Management
Protocol	Oct. 12, 2020	Oct. 12, 2020
Storage of the test substance	Oct. 14, 2020	Oct. 14, 2020
[Dose range finding study]		
Preparation of the dosing formulations	Oct. 14, 2020	Oct. 14, 2020
Treatment with dosing formulations	Oct. 14, 2020	Oct. 14, 2020
[Main study]		
Inoculation of strains [*]	Oct. 5, 2020	Oct. 6, 2020
Preparation of the dosing formulations	Oct. 27, 2020	Oct. 27, 2020
Treatment with dosing formulations	Oct. 27, 2020	Oct. 27, 2020
Colony counting [*]	Oct. 8, 2020	Oct. 8, 2020
Raw data	Nov. 23, 2020	Nov. 23, 2020
Draft Report	Nov. 23, 2020	Nov. 23, 2020
Final Report	Dec. 17, 2020	Dec. 17, 2020

*Process-based inspections: The performance of process-based inspections covering phases which occur with a very high frequency may result in some studies not being inspected on an individual basis during their experimental phase.

This statement confirms that described methods were established, and results reflected raw data accurately in the final report.

(b) (4)	(b) (4)
Quality Assurance Management	Dec. 19, 2020
	Date

CONTENTS

GLP (COMF	PLIANCE STATEMENT	Р	age 2
QUAL	JTY	ASSURANCE STATEMENT		3
SUMN	/IARY	7		6
1.	EXP	ERIMENTAL OUTLINE		7
	11	Purpose		7
	1.1	Good Laboratory Practice Regulations		7
	13	Regulatory Guidelines		7
	1.5	Sponsor		7
	1.5	Test Facility		8
	1.6	Study Director		8
	1.7	Study Schedule		8
	1.8	Key Personnel		8
	1.9	Retention of Raw Data		9
2.	МАТ	ERIALS AND METHODS		10
	2.1	Test Substance		10
	2.2	Negative Control		· 10
	2.3	Preparation and Analysis of the Dosing Formulations		11
	2.4	Positive Controls		· 11
	2.5	Medium		12
	2.6	Preparation of S9 Mix		13
	2.7	Bacterial Strains		14
	2.8	Dose Range Finding Study		15
	2.9	Main Study		16
	2.10	Acceptance Criteria		17
	2.11	Evaluation Criteria		18
	2.12	Statistical Analysis		18
3.	RES	ULTS AND DISCUSSION		19
	3.1	Dose Range Finding Study		19
	3.2	Main Study		19
	3.3	Acceptance of Study		19
4.	CON	CLUSION		20

FIGURES			21
Figure 1. Dose-response Curv (TA98, TA100, TA1	e in the Absence of Met 535, TA1537 and WP2 <i>i</i>	abolic Activation <i>wrA</i> (pKM101),	
Dose Range Finding	g Study)		22
Figure 2. Dose-response Curv (TA98, TA100, TA1	te in the Presence of Me 535, TA1537 and WP2 ι	tabolic Activation <i>wrA</i> (pKM101),	
Dose Range Finding	g Study)	abalia Astivation	22
(TA98, TA100, TA1 (st Main Study)	535, TA1537 and WP2 <i>i</i>	<i>uvrA</i> (pKM101),	23
Figure 4. Dose-response Curv	e in the Presence of Me	tabolic Activation	
(TA98, TA100, TA1 1 st Main Study)	535, TA1537 and WP2 <i>i</i>	<i>uvrA</i> (pKM101), 2	23
Figure 5. Dose-response Curv	e in the Absence of Met	abolic Activation	
(TA98, TA100, TA1	535, TA1537 and WP2 <i>i</i>	<i>wrA</i> (pKM101),	
2 nd Main Study)	a in the Presence of Ma	tabalia Activation	24
(TA98, TA100, TA1	535. TA1537 and WP2 μ	wrA(pKM101).	
2^{nd} Main Study)			24
TABLES	•••••		25
Table 1. The Number of Reve	rtant Colonies per Plate	in the Absence	
of Metabolic Activat	ion (Dose Range Findin	g Study) 2	26
Table 2. The Number of Reve	rtant Colonies per Plate	in the Presence	
of Metabolic Activati	ion (Dose Range Findin	g Study) 2	27
1able 3. The Number of Reve	rtant Colonies per Plate	in the Absence	,0
Table 4 The Number of Reve	rtant Colonies per Plate	in the Presence	20
of Metabolic Activat	ion (1 st and 2 nd Main Str	idies)	9
Table 5. Historical Control Da	ita ·····		30
APPENDICES			\$1
Appendix I. Protocol			32
Appendix II. Protocol Amend	ments	4	17
Appendix III. Protocol Deviat	ions	4	18
Appendix IV. Certificate of A	nalysis of Test Substanc	e 4	19
Appendix V. Certificate of An	alysis of S9 mix) ()

SUMMARY

This study was designed to evaluate the mutagenic potential of the test substance, L-Valine (VAL Pro), using histidine requiring *Salmonella typhimurium* (TA98, TA100, TA1535 and TA1537) strains and tryptophan requiring *Escherichia coli* (WP2*uvrA*(pKM101)) strain in the absence and presence of metabolic activation.

In order to determine the high dose level of the main study, a dose range finding study was conducted. The high dose was set at 5,000 μ g/plate and it was sequentially diluted by applying a geometric ratio of 4 to produce 5 lower dose levels (1,250, 313, 78.1, 19.5 and 4.88 μ g/plate). As a result, the growth inhibition by the test substance and precipitation of the test substance were not evident at any dose level of the test substance in all strains in the absence and presence of metabolic activation.

Therefore, the dose levels of the main study were selected as follows. In addition, the negative and positive control groups were set.

Strain	S9 mix	Dose levels of the main study (μg /plate)
TA98, TA100, TA1535, TA1537, WP2 <i>uvrA</i> (pKM101)	-/+	5,000, 2,500, 1,250, 625, 313

Based on the result of the main study, the mean number of revertant colonies was less than twice when compared to the negative control group at all dose levels of the test substance in the absence and presence of metabolic activation.

In the positive control group, the mean number of revertant colonies for each strain was markedly increased more than twice when compared to the negative control group.

Based on the results of this study, the test substance, L-Valine (VAL Pro), did not show any indication of mutagenic potential under the conditions of this study.

1. EXPERIMENTAL OUTLINE

1.1 Purpose

The purpose of this study was to evaluate the mutagenic potential of the test substance, L-Valine (VAL Pro), using histidine requiring *Salmonella typhimurium* strains and tryptophan requiring *Escherichia coli* strain.

1.2 Good Laboratory Practice Regulations

This study was conducted in accordance with the following Good Laboratory Practice Regulations:

- "Good Laboratory Practice Regulation for Nonclinical Laboratory Studies"

Notification No. 2018-93, Ministry of Food and Drug Safety, Republic of Korea (Nov. 21, 2018)

- "OECD Principles of Good Laboratory Practice"

Organisation for Economic Co-operation and Development, ENV/MC/CHEM(98) 17 (as revised in 1997)

1.3 Regulatory Guidelines

This study was conducted in accordance with the following guideline:

- "OECD Guidelines for the Testing of Chemicals, 471, Bacterial Reverse Mutation Test"

Organisation for Economic Co-operation and Development (Adopted: 26 June 2020)

1.4 Sponsor

Name	CJ CheilJedang
Address	55, Gwanggyo-ro 42beon-gil, Yeongtong-gu, Suwon-si, Gyeonggi-do,
	16495, Republic of Korea
TEL	+ 82-31-8099-1515

1.5 Test Facility

1.8 Key Personnel

Test substance storage and handling

(b) (4)

1.9 Retention of Raw Data

- 1.9.1 Duration Three years from the approval date(Notification No. 2018-93, Ministry of Food and Drug Safety, Republic of Korea)
- 1.9.2 Storage facility

Name	(b) (4)	
Address		(b) (4)

1.9.3 Type of records and data

Protocol, final report, all raw data, documents related to the study, communications

2. MATERIALS AND METHODS

2.1 Test Substance

2.1.1	Name	L-Valine (VAL Pro)
2.1.2	Lot No./Batch No.	GVAL191121
2.1.3	Appearance	Light brown granules
2.1.4	Component · Content	Valine 72.57%
2.1.5	Date of manufacture	Nov. 21, 2019
2.1.6	Date of expiration	Dec. 23, 2021
2.1.7	Storage condition	Room temperature $(15 \sim 25^{\circ}C)$
2.1.8	Handling instructions	Not specific
2.1.9	Supplier	
	Name	CJ CheilJedang
	Address	55, Gwanggyo-ro 42beon-gil, Yeongtong-gu, Suwon-si,
		Gyeonggi-do, 16495, Republic of Korea
2.1.10	Disposition of test substance	Any remaining test substance is returned to the Sponsor.

2.2 Negative Control

2.2.1	Name	Water for injection
2.2.2	Lot No.	(b) (4)
2.2.3	Storage condition	Room temperature $(1 \sim 30^{\circ}C)$
2.2.4	Manufacturer	(b) (4) (b) (4)
2.2.5	Justification for selection	Water for injection, the vehicle of the test substance, was used as the negative control.

2.3 Preparation and Analysis of the Dosing Formulations

- 2.3.1.1 Name Water for injection
- 2.3.1.2 Lot No. (b) (4)

2.3.1.3 Justification for selection

In order to produce a dose of $5,000 \ \mu g/plate$, which is the high dose level of the dose range finding study, a preliminary solubility test was conducted. As a result, the test substance was suspended uniformly in water for injection. Therefore, water for injection was selected as the vehicle for this study.

2.3.2 Preparation method

All preparations were conducted on the day of treatment of dosing formulations.

The required amount of the test substance was weighed and placed in a mortar. A small amount of vehicle, water for injection, was added and the both materials were mixed using a pestle until suspended uniformly. Then, the mixture was transferred in a measuring tube and vehicle was added to yield the desired dose level. The high dose formulation was serially diluted to produce lower dose levels.

2.3.3 Analysis of the dosing formulations

Analysis for stability, homogeneity and concentration of the dosing formulations was not performed.

2.4 Positive Controls

2.4.1 Name

Name	Lot No. ([#] : Batch No.)	Storage condition	Manufacturer (b) (4)
Sodium azide (SA)	[#] MKBX7529V	Room temperature	
2-Nitrofluorene (2-NF)	[#] S43858V	Room temperature	
2-Aminoanthracene (2-AA)	[#] STBD3302V	Room temperature	
9-Aminoacridine (9-AA)	BCCB4167	Room temperature	
4-Nitroquinoline N-oxide (4-NQO)	[#] WXBC3635V	Room temperature	

Name	Lot No.	Storage condition	Manufacturer
Water for injection (SA)	19017	Room temperature	- (b) (4)
Dimethyl sulfoxide (2-NF, 2-AA, 9-AA, 4-NQO)	K51447331, K51637131	Room temperature	

2.4.2 Vehicle of the positive controls

2.4.3 Preparation of the positive controls

The required amount of the positive controls was weighed. The positive controls were prepared in vehicle. The prepared positive controls were stored in a deep freezer (-80 \sim -60°C, __________) and that prior to use.

<The type and dose of the positive controls for the respective strains>

S9 mix	Strain	Name	Dose (µg/plate)
	TA98	2-NF	5.0
	TA100	SA	1.5
-	TA1535	SA	1.5
	TA1537	9-AA	80.0
	WP2uvrA(pKM101)	4-NQO	0.1
	TA98	2-AA	1.0
	TA100	2-AA	2.0
+	TA1535	2-AA	3.0
	TA1537	2-AA	3.0
	WP2uvrA(pKM101)	2-AA	2.0

2.5 Medium

2.5.1 Nutrient broth medium

Nutrient broth **(b)**⁽⁴⁾ was weighed and mixed with a small amount of ultra pure water using a stirrer until dissolved. Ultra pure water was added to yield a concentration of 0.8% and then autoclaved.

2.5.2 Minimal glucose agar plate

- 2.5.2.1 Storage condition Room
- 2.5.2.2 Producer and supplier

Room temperature

(b) (4)

Component	Amount of each component
Bacto agar	15 g
10-fold VB salts	100 mL
20% Glucose	100 mL
Ultra pure water	800 mL
Total volume	1 L

<Composition of the minimal glucose agar plate>

<Composition of the 10-fold VB salts>

Component	Used amount	Supplier
MgSO ₄ ·7H ₂ O	0.2 g	(b) (4)
Citric acid	1.829 g	(b) (4)
K ₂ HPO ₄	10 g	(b) (4)
NaNH4HPO4·4H2O	3.58 g	(b) (4) (b) (4)
Ultra pure water	100 mL	-

2.5.3 Top agar

NaCl and bacto agar (b)(4) were weighed and ultra pure water was added to yield the concentrations of 0.5% and 0.6%, respectively, and then autoclaved. These mixtures were mixed with the 0.5 mM L-Histidine/D-Biotin ((b)(4) (b)(4)) solution at a ratio of 10 to 1 for *Salmonella typhimurium* and with the 0.5 mM L-Tryptophan (b)(4) solution at a ratio of 10 to 1 for *Salmonella typhimurium* and with the 0.5 mM L-Tryptophan (b)(4) solution at a ratio of 10 to 1 for *Salmonella typhimurium* and with the 0.5 mM L-Tryptophan (b)(4) solution at a ratio of 10 to 1 for *Escherichia coli*.

2.6 Preparation of S9 Mix

2.6.1	Name	S9 and Cofactor A	
2.6.2	Storage condition	Deep freezer (- $80 \sim -60^{\circ}$ C)	
2.6.3	Producer		(b) (4)
2.6.4	Supplier		(b) (4)

2.6.5 Characteristics of S9

Species and strain	Sprague-Dawley rat [Crl:CD(SD)]	
Sex and age	Male, 7 weeks old	
Organ	Liver	
Inducing agent	Phenobarbital (PB) and 5,6-benzoflavone (BF)	
Dose and frequency	 PB: 30 mg/kg, once (Day 1) 60 mg/kg, once daily for 3 consecutive days (Days 2–4) BF: 80 mg/kg, once (Day 3) 	
Route of administration	Intraperitoneal injection	

2.6.6 Composition of S9 mix

Component		Amount of each component
S9		0.1 mL
	0.4 mol/L MgCl ₂	0.02 mL (8 μmol)
	1.65 mol/L KCl	0.02 mL (33 µmol)
	1.0 mol/L Glucose-6-phosphate	0.005 mL (5 μmol)
Cofactor A	0.1 mol/L NADPH	0.04 mL (4 μmol)
	0.1mol/L NADH	0.04 mL (4 μmol)
	0.2 mol/L Sodium phosphate buffer, pH 7.4	0.5 mL (100 μmol)
	Purified water	0.275 mL
Total volum	e	1 mL

2.6.7 Preparation method of S9 mix

The preparation of S9 mix was conducted immediately prior to use. The frozen S9 (Lot No.: 20080705) and Cofactor A (Lot No.: A20080405) were thawed and mixed at a ratio of 1 to 9.

2.7 Bacterial Strains

2.7.1 Species and strains

Salmonella typhimurium TA98

Salmonella typhimurium TA100

Salmonella typhimurium TA1535

Salmonella typhimurium TA1537

Escherichia coli WP2*uvrA*(pKM101)

2.7.2	Storage condition	Deep freezer $(-80 \sim -60^{\circ}C)$	
2.7.3	Producer	(b) (4) (b) (4) (4)	
2.7.4	Supplier	(b) (4)	

2.7.5 Justification for strain selection

These strains are highly sensitive to mutagens, commonly used in mutagenicity studies and recommended in the test guidelines.

2.7.6 Genotypes of each strain

Species	Strain	Genotype
	TA98	(b) (4)
Salmonella	TA100	
typhimurium	TA1535	
	TA1537	
Escherichia coli	WP2uvrA(pKM101)	

2.7.7 Pre-incubation

After confirming strain characteristics, each frozen bacterial suspension was thawed. And then, it was inoculated into the nutrient broth medium and incubated in a shaking water bath (37°C, 130 rpm, ^{(b) (4)}). Following pre-incubation, the turbidity of the cultures was measured with a UV/VIS spectrophotometer ^{(b) (4)}). Cultures with a density greater than 1×10^9 cells/mL were used in this study.

2.8 Dose Range Finding Study

A dose range finding study was conducted to determine the high dose for the main study.

2.8.1 Dose levels

The high dose of the test substance was set at 5,000 μ g/plate, which is required in the test guidelines. The high dose was sequentially diluted by applying a geometric ratio of 4 to produce 5 lower dose levels (1,250, 313, 78.1, 19.5 and 4.88 μ g/plate). In addition, the negative and positive control groups were set.

2.8.2 Study method

The dose range finding study was conducted using the same method and conditions as the main study. Two plates per dose were used in the dose range finding study.

2.8.3 Justification for selection of the dose levels in the main study

As a result of the dose range finding study, the growth inhibition by the test substance and precipitation of the test substance were not evident at any dose level of the test substance in all strains in the absence and presence of metabolic activation.

Therefore, the high dose in the main study was selected at 5,000 μ g/plate in all strains in the absence and presence of metabolic activation and it was sequentially diluted by applying a geometric ratio of 2 to produce 4 lower dose levels (2,500, 1,250, 625 and 313 μ g/plate). In addition, the negative and positive control groups were set.

Strain	S9 mix	Dose levels of the main study (μg /plate)
TA98, TA100, TA1535, TA1537, WP2 <i>uvrA</i> (pKM101)	-/+	5,000, 2,500, 1,250, 625, 313

2.9 Main Study

2.9.1 Study method

The main study was conducted according to the pre-incubation method. All treatments were divided into absence and presence of metabolic activation.

Three plates per dose were used in the main study and the treatment was conducted in duplicate.

Each plate was labeled with an identification number which indicates the bacterial strain, dose, the negative and positive controls and the absence or presence of S9 mix.

2.9.2 Treatment method

2.9.3 Incubation method and period

After the top agar was solidified, the plates were inverted and cultured in an incubator (^{(b) (4)}) at 37°C for 48 hours.

2.9.4 Observation of precipitation

The precipitation of the test substance was observed with the naked eye and recorded at the time of treatment of the test substance and colony counting.

2.9.5 Revertant colony counting

Following cultivation, the number of revertant colonies was automatically counted by a colony counter (b)(4) or by visual counting. When automatic counting was considered to be inaccurate, the number of revertant colonies was counted by visual counting.

2.9.6 Observation of background lawn

To confirm the absence or presence of growth inhibition by the test substance, the background lawn was observed using a stereoscopic microscope (45-fold magnification, (b)(4)). Growth inhibition was detected by reduction in the number of revertant colonies, or by diminution or clearing of background lawn compared to the negative control group.

2.10 Acceptance Criteria

Evaluation of the validity of the study results was conducted based on the following criteria:

•	The results of gene mutagenic potential in the main studies are reproducible.
•	There are more than 4 dose levels at which growth inhibition is not observed.
•	The mean number of revertant colonies for the negative and positive control groups is within the range of the historical control data or the mean number of revertant colonies in the positive control group is increased at least twice as compared to the negative control group.
•	No plate shows any evidence of contamination.

2.11 Evaluation Criteria

The results of the study were judged to be positive when the following conditions were met (others were considered as negative). A confirmatory study was not conducted.

• The number of revertant colonies in any strain at one or more doses is increased at least two times when compared to the negative control group. There should be dose dependency or reproducibility as dose increases.

2.12 Statistical Analysis

Individual plate was counted for revertant colonies. The average and standard deviation of the number of revertant colonies were calculated. Statistical analysis was not performed.

3. RESULTS AND DISCUSSION

3.1 Dose Range Finding Study

(Figure 1, Figure 2, Table 1, Table 2)

As a result of the dose range finding study according to the 2.8 method, the dose levels of the main study were selected as follows. In addition, the negative and positive control groups were set.

Strain	S9 mix	Dose levels of the main study (μg /plate)
TA98, TA100, TA1535, TA1537, WP2 <i>uvrA</i> (pKM101)	_/+	5,000, 2,500, 1,250, 625, 313

3.2 Main Study

(Figure 3, Figure 4, Figure 5, Figure 6, Table 3, Table 4)

3.2.1 Revertant colony counting

As a result of the main study, the mean number of revertant colonies was less than twice when compared to the negative control group at all dose levels of the test substance in all strains in the absence and presence of metabolic activation.

In the positive control group, the mean number of revertant colonies for each strain was markedly increased more than twice when compared to the negative control group.

3.2.2 Growth inhibition and precipitation of the test substance

Growth inhibition by the test substance and precipitation of the test substance were not evident at any dose level of the test substance in all strains in the absence and presence of metabolic activation.

3.3 Acceptance of Study

There were more than 4 dose levels at which growth inhibition was not observed. The results of gene mutagenic potential in the main studies were reproducible. The mean number of revertant colonies in the negative and positive group was within the range of the historical control data (Table 5) and the number of revertant colonies in each strain in the positive control groups was markedly increased at least twice when compared to the negative control group. In addition, there was no contamination. Therefore, these results indicated that this study was conducted under the suitable conditions.

4. CONCLUSION

Based on the results of this study, the test substance, L-Valine (VAL Pro), did not show any indication of mutagenic potential under the conditions of this study.

FIGURES

Figure 1. Dose-response Curve in the Absence of Metabolic Activation (TA98, TA100, TA1535, TA1537 and WP2*uvrA*(pKM101), Dose Range Finding Study)

Figure 2. Dose-response Curve in the Presence of Metabolic Activation (TA98, TA100, TA1535, TA1537 and WP2*uvrA*(pKM101), Dose Range Finding Study)

Figure 3. Dose-response Curve in the Absence of Metabolic Activation (TA98, TA100, TA1535, TA1537 and WP2*uvrA*(pKM101), 1st Main Study)

Figure 4. Dose-response Curve in the Presence of Metabolic Activation (TA98, TA100, TA1535, TA1537 and WP2*uvrA*(pKM101), 1st Main Study)

Figure 5. Dose-response Curve in the Absence of Metabolic Activation (TA98, TA100, TA1535, TA1537 and WP2*uvrA*(pKM101), 2nd Main Study)

Figure 6. Dose-response Curve in the Presence of Metabolic Activation (TA98, TA100, TA1535, TA1537 and WP2*uvrA*(pKM101), 2nd Main Study)

TABLES

Strain	Test substance	Dose	Individual	Mean
		(µg/plate)	revertant (b) (4)	
	Water for injection	0		22
		4.88		24
		19.5		23
TA 98	L-Valine (VAL Pro)	78.1		20
		313		21
		1,250		20
		5,000		24
	2-Nitrofluorene (2-NF)	5.0		708
	Water for injection	0	(b) (4)	108
T. 100		4.88		105
		19.5		109
		78.1		99
TA100	L-Valine (VAL Pro)	313		104
		1,250		103
		5,000		112
	Sodium azide (SA)	1.5		749
	Water for injection	0	(b) (4)	12
		4.88		9
		19.5		10
	L-Valine (VAL Pro)	78.1		11
TA1535		313		9
		1.250		11
		5.000		10
	Sodium azide (SA)	1.5		597
	Water for injection	0	(b) (4)	9
		4 88		
		19.5		7
		78.1		
TA1537	L-Valine (VAL Pro)	313		0
		1 250		9 9
		5 000		10
		3,000		10
	9-Animoachdine (9-AA)	0.0	(b) (4)	044
	water for injection	0		/1
		4.88		/4
		19.5		70
WP2uvrA (pKM101)	L-Valine (VAL Pro)	78.1		
~ /		313		67
		1,250		65
		5,000		62
	4-Nitroquinoline N-oxide (4-NQO)	0.1		382

Table 1. The Number of Revertant Colonies per Plate in the Absence of Metabolic Activation(Dose Range Finding Study)

Strain	Test substance	Dose	Individual	Mean
	Water for injection	(µg/plate)	revertant (b) (4)	32
		4 88		32
		10.5		35
		78.1		32
TA98	L-Valine (VAL Pro)	313		20
		1 250		45
		5,000		54
	2-A minoanthracene (2-A A)	1.0		443
	Water for injection	0	(b) (4	118
		4.88		112
		19.5		113
		78.1		111
TA100	L-Valine (VAL Pro)	313		120
		1.250		116
		5.000		121
	2-A minoanthracene (2-A A)	2.0		949
	Water for injection	0	(b) (4)	12
		4.88		11
		19.5		14
	L-Valine (VAL Pro)	78.1		13
TA1535		313		11
		1,250		12
		5,000		14
	2-Aminoanthracene (2-AA)	3.0		165
	Water for injection	0	(b) (4)	21
		4.88		22
		19.5		18
		78.1		19
TA1537	L-Valine (VAL Pro)	313		18
		1,250		22
		5,000		24
	2-Aminoanthracene (2-AA)	3.0		249
	Water for injection	0	(b) (4	102
		4.88		96
		19.5		100
		78.1		94
w P2uvrA (pKM101)	L-Valine (VAL Pro)	313		100
		1,250		99
		5,000		106
	2-Aminoanthracene (2-AA)	2.0		350

Table 2. The Number of Revertant Colonies per Plate in the Presence of Metabolic Activation(Dose Range Finding Study)

		Dose	1 st Main stud	1 st Main study 2 nd Main s		2 nd Main stu	ıdy	
Strain	Test substance	(µg/plate)	Individual revertant colony counts	Mean	S D	Individual revertant colony counts	Mean	S D
	Water for injection	0	(b) (4)	20	2	(b) (4)	19	2
		313		23	2		20	2
		625		24	3		21	2
TA98	L-Valine (VAL Pro)	1,250		24	2		21	2
		2,500		22	2		22	2
		5,000		24	3		20	2
	2-Nitrofluorene (2-NF)	50		701	31		683	24
	Water for injection	0	(b) (4)	109	5	(b) (4)	104	4
		313	~	111	3		107	4
		625		115	4		111	3
TA100	L-Valine (VAL Pro)	1,250		122	4		117	4
		2,500		117	3		109	5
		5,000		120	4		114	3
	Sodium azide (SA)	15		715	31		713	23
	Water for injection	0	(b) (4)	9	1	(b) (4)	9	1
		313		10	1		9	1
		625		9	1		10	1
TA1535	L-Valine (VAL Pro)	1,250		10	2		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1
		2,500		9	2		9	2
		5,000	_	11	1		10	2
	Sodium azide (SA)	15		593	7		579	29
	Water for injection	0	(b) (4)	9	1	(b) (4)	10	1
		313		9	1		9	1
		625		8	2		9	1
TA1537	L-Valine (VAL Pro)	1,250		8	1		8	1
		2,500		7	1		8	1
		5,000		10	1		11	1
	9-Aminoacridine (9-AA)	80 0		623	11		556	27
	Water for injection	0	(b) (4)	77	4	(b) (4)	73	4
		313		82	4		77	3
WP2uvr4		625		88	4		81	3
(pKM101)	L-Valine (VAL Pro)	1,250		90	5		87	4
- /		2,500		82	3		79	4
		5,000		86	4		82	3
	4-Nitroquinoline N-oxide (4-NQO)	0 1		401	16		405	27

Table 3. The Number of Revertant Colonies per Plate in the Absence of Metabolic Activation (1st and 2nd Main Studies)

S D : Standard Deviation

		Dose	1 st Main stu	dy		2 nd Main stu	ıdy	
Strain	lest substance	(µg/plate)	Individual revertant colony counts	Mean	S D	Individual revertant colony counts	Mean	S D
	Water for injection	0	(b) (4)	35	2	(b) (4)	31	1
		313		34	3		30	2
		625		42	3		41	2
TA98	L-Valine (VAL Pro)	1,250		50	3		48	2
		2,500		53	3		49	2
		5,000		57	3		54	2
	2-Aminoanthracene (2-AA)	10		400	9		451	22
	Water for injection	0	(b) (4)	115	4	(b) (4)	109	4
		313		122	4		116	4
		625		121	4		114	4
TA100	L-Valine (VAL Pro)	1,250		118	3		108	3
		2,500		119	5		113	4
		5,000		123	4		118	4
	2-Aminoanthracene (2-AA)	2 0		982	23		961	21
	Water for injection	0	(b) (4)	11	1	(b) (4)	10	2
	313		11	1		11	1	
		625		10	2		11	1
TA1535	L-Valine (VAL Pro)	1,250		12	1		12	1
		2,500		10	1		11	1
		5,000		13	2		12	1
	2-Aminoanthracene (2-AA)	30		174	11		161	25
	Water for injection	0	(b) (4)	22	2	(b) (4)	21	2
		313		22	2		19	3
		625		21	3		20	3
TA1537	L-Valine (VAL Pro)	1,250		23	2		23	2
		2,500		23	3		22	2
		5,000		25	2		24	2
	2-Aminoanthracene (2-AA)	30		186	6	. <u></u>	203	16
	Water for injection	0	(b) (4)	105	4	(b) (4) 102	4
		313		111	3		108	4
WD2		625		103	5		101	4
(pKM101)	L-Valine (VAL Pro)	1,250		96	4		95	5
~ /		2,500		95	4		93	5
		5,000		101	4		99	5
	2-Aminoanthracene (2-AA)	20		338	20		362	15

Table 4. The Number of Revertant Colonies per Plate in the Presence of Metabolic Activation (1st and 2nd Main Studies)

S D : Standard Deviation

	Histo	rical negative control	values of revertant colonies		
Strain	<u> </u>	Nī	Maar S.D.	Range	
	59 mix	N Mean \pm S.D.	Mean \pm S.D.	Lower	Upper
ΤΑ 100	-	70	85.7 ± 9.5		(b) (4)
1 A 100	+	70	$95.9 \hspace{0.2cm} \pm \hspace{0.2cm} 10.3$		
ΤΑ 1525	-	69	11.6 ± 2.1		
TA1535	+	69	11.0 ± 1.6		
WD2uwr4 (mVM101)	-	69	113.3 ± 20.4		
w P2uvrA (pKM101)	+	69	$138.9 \hspace{0.2cm} \pm \hspace{0.2cm} 18.6$		
Τ Δ Ο Θ	-	70	18.8 ± 2.9		
1A98	+	70	30.2 ± 4.9		
ΤΑ 1527	-	69	8.4 ± 1.0		
IA155/	+	69	16.1 ± 2.8		

Table 5. Historical Control Data

	-	Historical p	ositive contro	ol value	es of revertant colonies		
Stup in	co .	Positive	Dose	N	Maan SD	Range	
Suam	59 IIIX	control	(µg/plate)	IN	Mean \pm S.D.	Lower	Upper
T A 100	-	SA	1.5	70	$662.1 \hspace{0.2cm} \pm \hspace{0.2cm} 59.9$		(b) (4)
1 A 100	+	2-AA	2.0	67	808.1 ± 127.6		
ΤΑ 1525	-	SA	1.5	70	$522.1 \hspace{0.2cm} \pm \hspace{0.2cm} 52.8$		
1A1555	+	2-AA	3.0	69	$153.2 \hspace{0.2cm} \pm \hspace{0.2cm} 21.8$		
	-	4-NQO	0.1	66	606.9 ± 124.8		
W P2uvrA (pKM101)	+	2-AA	2.0	69	$482.7 \hspace{0.2cm} \pm \hspace{0.2cm} 76.1$		
T A 00	-	2-NF	5.0	70	$622.9 \hspace{0.2cm} \pm \hspace{0.2cm} 92.6$		
1A98	+	2-AA	1.0	67	$392.0 \hspace{0.1 in} \pm \hspace{0.1 in} 52.4$		
TA 1527	-	9-AA	80.0	70	519.1 ± 92.4		
TA1537	+	2-AA	3.0	66	204.1 ± 31.1		

Negative control: Water for injection, Dimethyl sulfoxide, Acetone, Tetrahydrofuran, etc.

SA: Sodium azide

2-AA: 2-Aminoanthracene

4-NQO: 4-Nitroquinoline N-oxide

2-NF: 2-Nitrofluorene

9-AA: 9-Aminoacridine

N: The total number of bacterial reverse mutation test

S.D.: Standard Deviation

The above historical control values were obtained from the data pooled from Sep. 29, 2016 to Nov. 14, 2019. The range was calculated by the control limit of X derived from \overline{X} - \overline{R} - \overline{R} s value.

APPENDICES

Appendix I. Protocol

PROTOCOL

Bacterial Reverse Mutation Test of L-Valine (VAL Pro)

Study No.: B20743

(b) (4) Study No.: B20743 Protocol

PROTOCOL REVIEWED AND ACCEPTED BY

(b) (4) Study No.: B20743 Protocol

CONTENTS

Ŧ	λ_{β}	ic	ż,	Ħ	
2		5	9	۲	

1	EVP	FRIMENTAL OUTLINE
••	A.C.S.	
	1.1	Purpose
	1.2	Good Laboratory Practice Regulations
	1.3	Regulatory Guidelines
	1.4	Sponsor
	1.5	Test Facility
	1.6	Study Director
	1.7	Study Schedule
	1.8	Protocol Amendments
	1.9	Final Report
	1.19	Retention of Raw Data
2.	MAT	ERIALS AND METHODS
	2.1	Test Substance
	2.2	Negative Control
	2.2 2.3	Negative Control Preparation and Analysis of the Dosing Formulations
	2.2 2.3 2.4	Negative Control Preparation and Analysis of the Dosing Formulations Positive Controls
	2.2 2.3 2.4 2.5	Negative Control Preparation and Analysis of the Dosing Formulations Positive Controls Medium
	2.2 2.3 2.4 2.5 2.6	Negative Control Preparation and Analysis of the Dosing Formulations Positive Controls Medium Preparation of S9 Mix
	2.2 2.3 2.4 2.5 2.6 2.7	Negative Control Preparation and Analysis of the Dosing Formulations Positive Controls Medium Preparation of S9 Mix Bacterial Strains
	2.2 2.3 2.4 2.5 2.6 2.7 2.8	Negative Control Preparation and Analysis of the Dosing Formulations Positive Controls Medium Preparation of S9 Mix Bacterial Strains Dose Range Finding Study
	2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9	Negative Control Preparation and Analysis of the Dosing Formulations Positive Controls Medium Preparation of S9 Mix Bacterial Strains Dose Range Finding Study Main Study
	2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10	Negative Control Preparation and Analysis of the Dosing Formulations Positive Controls Medium Preparation of S9 Mix Bacterial Strains Dose Range Finding Study Main Study Accentance Criteria
	2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10 2.11	Negative Control Preparation and Analysis of the Dosing Formulations Positive Controls Medium Preparation of S9 Mix Bacterial Strains Dose Range Finding Study Main Study Acceptance Criteria Evaluation Criteria

-3/15-

(b) (4) Study No.: B20743 Protocol

1. EXPERIMENTAL OUTLINE

1.1 Purpose

The purpose of this study is to evaluate the mutagenic potential of the test substance, L-Valine (VAL Pro), using histidine requiring *Salmonella typhimurium* strains and tryptophan requiring *Escherichia coli* strain.

1.2 Good Laboratory Practice Regulations

This study will be conducted in accordance with the following Good Laboratory Practice Regulations:

- "Good Laboratory Practice Regulation for Nonclinical Laboratory Studies"

Notification No. 2018-93, Ministry of Food and Drug Safety, Republic of Korea (Nov. 21, 2018)

- "OECD Principles of Good Laboratory Practice"

Organisation for Economic Co-operation and Development, ENV/MC/CHEM(98) 17 (as revised in 1997)

1.3 Regulatory Guidelines

This study will be conducted in accordance with the following guideline:

- "OECD Guidelines for the Testing of Chemicals, 471, Bacterial Reverse Mutation Test"
 - Organisation for Economic Co-operation and Development (Adopted: 26 June 2020)

1.4 Sponsor

Name	CJ CheilJedang
Address	55, Gwanggyo-ro 42beon-gil, Yeongtong-gu, Suwon-si, Gyeonggi-do,
	16495, Republic of Korea
TEL	+ 82-31-8099-1515

-4/15-
1.5 Test Facility

	Name	-	(b) (4)		
	Address			 -	(6) (4)
	(b) (4)				100
1.6	Study Director				
	Name	-	(b) (4)		

1.7 Study Schedule

Study initiation	Sep. 28, 2020
Experimental start	Oct. 13, 2020
<dose finding="" range="" study=""></dose>	
- Inoculation of strains	Oct. 13, 2020
- Treatment of dosing formulation	Oct. 14, 2020
- Incubation of strains	Oct. 14-16, 2020
- Colony counting	Oct. 16, 2020
<main study=""></main>	
- Inoculation of strains	Oct. 26 and 27, 2020
- Treatment of dosing formulation	Oct. 27 and 28, 2020
- Incubation of strains	Oct. 27-29, Oct. 28-30, 2020
- Colony counting	Oct. 29 and 30, 2020
Experimental completion	Oct. 30, 2020
Draft report issue	Nov. 27, 2020

1.8 Protocol Amendments

After the approval of the protocol, protocol amendments including reason for the changes, the contents of change and date of amendment will be documented and signed by the study director.

-5/15-

1.9 Final Report

The final report will be written including figures, tables and appendices. The original document will be retained in the archives of Biotoxtech Co., Ltd.

1.10 Retention of Raw Data

1.10.1 Duration

Duration Three years from the approval date

(Notification No. 2018-93, Ministry of Food and Drug Safety, Republic of Korea)

1.10.2 Storage facility

(Raw data will be retained for the first five years after the completion of the study in the archives of (b) (4) Further storage will be determined in agreement with the Sponsor.)

1.10.3 Type of records and data

Protocol, final report, all raw data, documents related to the study, communications, etc.

-6/15-

2. MATERIALS AND METHODS

2.1 Test Substance

2.1.1	Name	L-Valine (VAL Pro)
2.1.2	Lot No./Batch No.	GVAL191121
2.1.3	Appearance	Light brown granules
2,1,4	Component · Content	Valine 72.57%
2.1.5	Date of manufacture	Nov. 21, 2019
2.1,6	Date of expiration	Dec. 23, 2021
2.1.7	Storage condition	Room temperature (15-25°C)
2.1.8	Handling instructions	Not specific
2.1.9	Supplier	
	Name	CJ CheilJedang
	Address	55, Gwanggyo-ro 42beon-gil, Yeongtong-gu, Suwon-si,
		Gyeonggi-do, 16495, Republic of Korea
2.1.10	Disposition of test substance	Any remaining test substance is returned to the Sponsor.

2.2 Negative Control

2.2.1	Name	Water for injection
2.2.2	Storage condition	Room temperature (1-30°C)
2.2.3	Manufacturer	(b) (4)
2.2.4	Justification for selection	Water for injection, the vehicle of the test substance, will be used as the negative control.

-7/15-

2.3 Preparation and Analysis of the Dosing Formulations

- 2.3.1 Vehicle
 - 2.3.1.1 Name Water for injection
 - 2.3.1.2 Justification for selection

In order to produce a dose of $5,000 \mu g/plate$, which is the high dose level of the dose range finding study, a preliminary solubility test was conducted. As a result, the test substance was suspended uniformly in water for injection. Therefore, water for injection will be selected as the vehicle for this study.

2.3.2 Preparation method (SOP/FOT/140)

All preparations will be conducted on the day of treatment of dosing formulations.

The required amount of the test substance will be weighed and placed in a mortar. A small amount of vehicle, water for injection, will be added and the both materials will be mixed using a pestle until suspended uniformly. Then, the mixture will be transferred in a measuring tube and vehicle will be added to yield the desired dose level. The high dose formulation will be serially diluted to produce lower dose levels.

2.3.3 Analysis of the dosing formulations (SOP/ANA/002)

Analysis for stability, homogeneity and concentration of the dosing formulations will not be performed.

2.4 Positive Controls (SOP/GNT/004, SOP/FOT/140)

2.4.1 Name

Name	Storage condition	Manufacturer
Sodium azide (SA)	Room temperature	(b) (4)
2-Nitrofluorene (2-NF)	Room temperature	
2-Aminoanthracene (2-AA)	Room temperature	
9-Aminoacridine (9-AA)	Room temperature	
4-Nitroquinoline N-oxide (4-NQO)	Room temperature	

-8/15-

2.4.2 Vehicle of the positive controls

Name	Storage condition	Manufacturer
Water for injection (SA)	Room temperature	(b) (4)
Dimethyl sulfoxide (2-NF, 2-AA, 9-AA, 4-NQO)	Room temperature	

2.4.3 Preparation of the positive controls

The required amount of the positive controls will be weighed. The positive controls are prepared in vehicle. The prepared positive controls are stored in a deep freezer $(-80-60^{\circ}C, (b)^{(4)})$ and thawed just prior to use.

<The type and dose of the positive controls for the respective strains>

S9 mix	Strain	Name	Dose (µg/plate)
	TA98	2-NF	5.0
	TA100	SA	1,5
÷.	TA1535	SA	1.5
	TA1537	9-AA	80.0
	WP2uvrA(pKM101)	4-NQO	0.1
	TA98	2-AA	1.0
	TA100	2-AA	2.0
+	TA1535	2-AA	3.0
	TA1537	2-AA	3.0
	WP2uvrA(pKM101)	2-AA	2.0

2.5 Medium (SOP/GNT/003)

2.5.1 Nutrient broth medium

Nutrient broth (b)(4) will be weighed and mixed with a small amount of ultra pure water using a stirrer until dissolved. Ultra pure water will be added to yield a concentration of 0.8% and then autoclaved.

-9/15-

(b) (4)

(b) (4) Study No.: B20743 Protocol

2.5.2 Minimal glucose agar plate

2.5.2.1 Storage condition

Room temperature

2.5.2.2 Producer and supplier

<Composition of the minimal glucose agar plate>

Component	Amount of each component
Bacto agar	15 g
10-fold VB salts	100 mL
20% Glucose	100 mL
Ultra pure water	800 mL
Total volume	1 L

<Composition of the 10-fold VB salts >

Component	Used amount	Supplier
MgSO ₄ ·7H ₂ O	0.2 g	(b) (4)
Citric acid	1.829 g	(b) (4)
K ₂ HPO ₄	10 g	(b) (4)
NaNH4HPO4·4H2O	3.58 g	(b) (4)
Ultra pure water	100 mL	

2.5.3 Top agar

NaCl and bacto agar ^{(b)(4)} will be weighed and ultra pure water will be added to yield the concentrations of 0.5% and 0.6%, respectively, and then autoclaved. These mixtures will be mixed with the 0.5 mM L-Histidine/D-Biotin ^{(b)(4)} solution at a ratio of 10 to 1 for Salmonella typhimurium and with the 0.5 mM L-Tryptophan ^{(b)(4)}

typhimurium and with the 0.5 mM L-Tryptophan solution at a ratio of 10 to 1 for Escherichia coli.

2.6 Preparation of S9 Mix (SOP/GNT/006)

2.6.1	Name	89 and Cofactor A

2.6.2	Storage condition	Deep freezer (-80-60°C)	
2.6.3	Producer	(b) (4)	
2.6.4	Supplier	C.	(b) (4)

-10/15-

2.6.5 Characteristics of S9

Species and strain	Sprague-Dawley rat (b) (4)
Sex and age	Male, 7 weeks old
Organ	Liver
Inducing agent	Phenobarbital (PB) and 5,6-benzoflavone (BF)
Dose and frequency	 PB: 30 mg/kg, once (Day 1) 60 mg/kg, once daily for 3 consecutive days (Days 2-4) BF: 80 mg/kg, once (Day 3)
Route of administration	Intraperitoneal injection

2.6.6 Composition of S9 mix

Component		Amount of each component
\$9	Contract Contractor	0.1 mL
-	0.4 mol/L MgCl2	0.02 mL (8 µmol)
	1.65 mol/L KCl	0.02 mL (33 µmol)
	1.0 mol/L Glucose-6-phosphate	0.005 mL (5 µmol)
1.0 mol/L Glucose 0.1 mol/L NADPH	0.1 mol/L NADPH	0.04 mL (4 µmol)
Colactor A	0.1 mol/L NADH	0.04 mL (4 µmol)
	0.2 mol/L Sodium phosphate buffer, pH 7.4	0.5 mL (100 µmol)
	Purified water	0.275 mL
Total volum	e	1 mL

2.6.7 Preparation method of S9 mix

The preparation of S9 mix will be conducted immediately prior to use. The frozen S9 and Cofactor A will be thawed and mixed at a ratio of 1 to 9.

2.7 Bacterial Strains (SOP/GER/030, SOP/GNT/007)

2.7.1 Species and strains

Salmonella typhimurium TA98

Salmonella typhimurium TA100

Salmonella typhimurium TA1535

Salmonella typhimurium TA1537

Escherichia coli WP2uvrA(pKM101)

-11/15-

2.7.2	Storage condition	Deep freezer (-80-60°C)		
2.7.3	Producer	0		(6) (4)
2.7.4	Supplier	0	(b) (4)	

2.7.5 Justification for strain selection

These strains are highly sensitive to mutagens, commonly used in mutagenicity studies and recommended in the test guidelines.

2.7.6 Genotypes of each strain

Species	Strain	Genotype	
	TA98		(b) (4)
Salmonella	TA100		
typhimurium	TA1535		
	TA1537		
Escherichia coli	WP2uvrA(pKM101)		

2.7.7 Pre-incubation

After confirming strain characteristics, each frozen bacterial suspension will be thawed. And then, it will be inoculated into the nutrient broth medium and incubated in a shaking water bath (37°C, 130 rpm, ^{(b)(4)}

Following pre-incubation, the turbidity of the cultures will bemeasured with a UV/VIS spectrophotometer (660 nm,(b)(4)Cultures with a density greater than 1×10^9 cells/mL will be used in this study.

2.8 Dose Range Finding Study (SOP/GNT/012)

A dose range finding study will be conducted to determine the high dose for the main study.

2.8.1 Dose levels

The high dose of the test substance will be set at 5,000 μ g/plate, which is required in the test guidelines. The high dose will be sequentially diluted by applying a geometric ratio of 4 to produce 5 lower dose levels (1,250, 313, 78.1, 19.5 and 4.88 μ g/plate). In addition, the negative and positive control groups will be set.

-12/15-

2.8.2 Study method

The dose range finding study will be conducted using the same method and conditions as the main study. Two plates per dose will be used in the dose range finding study.

2.8.3 Justification for selection of the dose levels in the main study

If growth inhibition and precipitation of test substance are not evident at any dose level as a result of the dose range finding study, the high dose in the main study will be selected at 5,000 μ g/plate and it will be sequentially diluted by applying a geometric ratio of 2 to produce 4 lower dose levels (2,500, 1,250, 625 and 313 μ g/plate). In addition, the negative and positive control groups will be set.

If growth inhibition by the test substance is evident, the high dose in the main study will be selected at the lowest dose level at which growth inhibition is confirmed and it will be sequentially diluted by applying a geometric ratio of 2 to produce at least 5 lower dose levels in order to secure at least 4 dose levels that do not exhibit growth inhibition. In addition, the negative and positive control groups will be set.

If growth inhibition by the test substance is not evident and precipitation of the test substance is evident, the high dose in the main study will be selected at the high dose at which precipitation is observed but it does not interfere with the colony counting and it will be sequentially diluted by applying a geometric ratio of 2 to produce 4 lower dose levels. In addition, the negative and positive control groups will be set.

2.9 Main Study (SOP/GNT/012)

2.9.1 Study method

The main study will be conducted according to the pre-incubation method. All treatments will be divided into absence and presence of metabolic activation.

Three plates per dose will be used in the main study and the treatment will be conducted in duplicate.

Each plate will be labeled with an identification number which indicates the bacterial strain, dose, the negative and positive controls and the absence or presence of S9 mix.

-13/15-

(b) (4)

(b) (4) Study No.: B20743 Protocol

2.9.2 Treatment method

2.9.3 Incubation method and period

After the top agar is solidified, the plates will be inverted and cultured in an incubator at approximately 37°C for 48 hours.

2.9.4 Observation of precipitation

The precipitation of the test substance will be observed with the naked eye and recorded at the time of treatment of the test substance and colony counting.

2.9.5 Revertant colony counting

Following cultivation, the number of revertant colonies will be automatically counted by a colony counter $(\Phi)(4)$ $(\Phi)(4)$ or by visual counting. If automatic counting is considered to be inaccurate, the number of revertant colonies will be counted by visual counting.

2.9.6 Observation of background lawn

To confirm the absence or presence of growth inhibition by the test substance, the background lawn will be observed using a stereoscopic microscope (45-fold magnification, (b)(4)). Growth inhibition will be detected by reduction in the number of revertant colonics, or by diminution or clearing of background lawn compared to the negative control group.

-14/15-

2.10 Acceptance Criteria (SOP/GNT/012)

Evaluation of the validity of the study results will be conducted based on the following criteria:

•	The results of gene mutagenic potential in the main studies are reproducible.
•	There are more than 4 dose levels at which growth inhibition is not observed.
	The mean number of revertant colonies for the negative and positive control groups is within the range of the historical control data or the mean number of revertant colonies in the positive control group is increased at least twice as compared to the negative control group.
•	No plate shows any evidence of contamination.

2.11 Evaluation Criteria (SOP/GNT/012)

The results of the study will be judged to be positive if the following conditions are met (others are considered as negative). A confirmatory study will be conducted if the result is not clearly positive.

 The number of revertant colonies in any strain at one or more doses is increased at least by two times when compared to the negative control group. There should be dose dependency or reproducibility as dose increases.

2.12 Statistical Analysis

Individual plates will be counted for revertant colonies. The average and standard deviation of the number of revertant colonies will be calculated. Statistical analysis will not be performed.

-15/15-

Appendix II. Protocol Amendments

Procedure Protocol Amendments

No amendments were noted on the study.

Appendix III. Protocol Deviations

Procedure	Protocol Deviations
No deviations were noted on the stu	udy.

Appendix IV. Certificate of Analysis of Test Substance

55, Gwanggyo-ro Gyeonggi-do, 16 TEL : 031	 42beon-gil, Ye 495, Korea <u>www.cj.co.k</u> 8099-2450 FAX 	eongtong-gu, Suwon-si, <u>r</u> 031) 8099-2918	cj	CHEILJEDANG		
	Cer	tificate of analysi	s			
Certificate No.	2019 PR 20	5 Receipt No.	2	019 AN 130		
Client		Date of Receipt		2019.11.25		
Client Name	-	Date of Test		2019.11.26		
Client Tel	-	Use of Report	R	eference test		
Client Address						
Test Sample	L-Valine	Feed Grade				
Manuf. Date	2019.11.	2019.11.21.				
Lot. No	GVAL191	GVAL191121				
Quantity (kg)					
Test Item(s)		Test Result Test method use				
Valine			(b) (4)	HPLC		
Loss on dryin	g			AOAC 934.01		
* Information						
 Temperature : (2 N.D : not detected The results show The Test Report Tested by Approved by Te 	2~28) °C, Relative ad (not quantifiab on in this test report cannot be report (b)(4) chriical Manager	e Humidity : (30~60) % ole) ort refer only to the sample f hund, except in full. (b)(4),	tested uni	ess otherwise stated. Nov 29 201		
	and of the	alust a state		Nov, 29, 201		
			stand and have been been	and all all all all all all all all all al		

CJ BIO AD form 100-01 REV.01

Appendix V. Certificate of Analysis of S9 mix

(b) (4)

- 50/50 -

	_				110-	_
. Client					Jest	
D Name		0	(b) (4)	② Company	CJ Ch	eilJedang
3 Address	55, Ye Gyeo	42 beongil, gy eongtong gu, S nggi do Repub	anggyo ro, Suwon si, Ilic of Korea	④ Telephone	+82-31-	8099-1539
. Sample desc	ription					
D Receipt No. (b) (4)			② Receipt Date	Decembe	er 30, 2020	
3) Sample Type		Powder		④ Quantity		1
5) Sample name		GVAL2009	10	6 Analysis Date	Decembe	er 30, 2020
			Test F	Results		
a-Thiazolealanine a-Hydroxyvaline		LC-MS/MS LC-MS/MS	mg/kg mg/kg		0.011 0.004	0.034
L-Norvaline		LC-MS/MS	mg/kg		0.096	0.307
	This tes The re and i	t report shall be esults have been t is the decision	e used within made for th of the clien	the purpose of its define the sample supplied by the presented	ned usage. he client, sample.	
This is to the testing	inform th and ana	ne results of	laboratory	analysis according t	December 3	31, 2020 ations for

			- de-et-	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	No:	
1. Client						
1) Name	(6) (4)			② Company	CJ Ch	eilJedang
3 Address	55, 42 beongil, gyanggyo ro, Yeongtong gu, Suwon si, Gyeonggi do Republic of Korea			(4) Telephone	+82-31-	8099-1539
2. Sample descrip	tion					
D Receipt No.	Receipt No. (b) (4)			② Receipt Date	Decembe	er 30, 2020
3) Sample Type		Powder	N	④ Quantity		1
5 Sample name		GVAL2009	11	6 Analysis Date	Decembe	er 30, 2020
1.00			Test F	Results	1	
L-a-Aminobutyric acid a-Thiazolealanine a-Hydroxyvaline		LC-MS/MS LC-MS/MS LC-MS/MS	mg/kg mg/kg mg/kg	(0) (4)	0.025 0.011 0.004	0.080 0.034 0.011
a-Hydroxyval	ine	LC-MS/MS	mg/kg		0.004	0.011
L-Norvaline		LC-MS/MS	mg/kg		0.096	0.307
	This tes The re and it	t report shall be sults have been is the decision	e used within made for th of the client	the purpose of its define the sample supplied by the naming the presented	ned usage. he client, sample.	
This is to int the testing a	form th	ne results of	laboratory	analysis according t	December 3	31, 2020 ations for

			and shared by		No:	
Client		- 1 -				
Name	(b) (4)			② Company	CJ Ch	eilJedang
Address	55, 42 beongil, gyanggyo ro, Yeongtong gu, Suwon si, Gyeonggi do Republic of Korea			④ Telephone	+82-31-	8099-1539
Sample descrip	otion					
Receipt No.			(b) (4)	② Receipt Date	Decembe	er 30, 2020
Sample Type		Powder	N	④ Quantity		1
Sample name		GVAL2009	12	6 Analysis Date	Decembe	er 30, 2020
-			Test F	Results		
L-a-Aminobutyric acid a-Thiazolealanine a-Hydroxyvaline		LC-MS/MS LC-MS/MS LC-MS/MS	mg/kg mg/kg mg/kg		0.025 0.011 0.004	0.080 0.034 0.011
a-Hydroxyva	line	LC-MS/MS	mg/kg		0.004	0.011
L-Norvaline		LC-MS/MS	mg/kg		0.096	0.307
	This tes The re and it	t report shall be sults have been t is the decision	used within made for th of the client	the purpose of its define the sample supplied by t naming the presented	hed usage. he client, sample.	
			0		December 3	31, 2020
This is to in the testing a	and ana	ne results of alysis at	laboratory	analysis according t	to the regul	ations for

Olient						
		_	(h) (4)		01.01	- 11 4
U Name	55	10 beengil gu		2 Company	CJ Ch	ellJedang
3) Address	55, 42 beongil, gyanggyo ro, Yeongtong gu, Suwon si, Gyeonggi do Republic of Korea			(4) Telephone	+82-31-	8099-1539
. Sample descrip	tion					
D Receipt No.			(b) (4)	② Receipt Date	Decembe	er 30, 2020
3) Sample Type		Powder	6	④ Quantity		1
5 Sample name	GVAL	_200910 + 5pp	m standard	6 Analysis Date	Decembe	er 30, 2020
			Test R	esults		
L-a-Aminobutyria a-Thiazolealan	c acid ine	LC-MS/MS	mg/kg mg/kg	-	0.025	0.080
L-a-Aminobutyria	c acid	LC-MS/MS	mg/kg	(b) (4)	0.025	0.080
a-Thiazolealan	ine	LC-MS/MS	mg/kg		0.011	0.034
a-Hydroxyvali	ne	LC-MS/MS	mg/kg		0.004	0.011
T NT		LC-MS/MS	mg/kg		0.096	0.307
L-Norvaline		report shall be	A second second	the purpose of its defin	ed usage.	
L-Norvaline	This test The rea and it	sults have been is the decision	e used within the made for the of the client	e sample supplied by the naming the presented s	ne client, sample.	
L-Norvaline	This test The rea and it	sults have been is the decision	e used within the made for the	e sample supplied by the naming the presented s	ne client, sample.	31, 2020
L-Norvaline This is to inf the testing ar	This test The res and it orm th	is the decision	a used within the made for the of the client	analysis according to	be client, sample. December 3 the regul	31, 2020 ations for

- BGLAN						_
. Client	1	-	Andre .		-	
D Name			(b) (4)	② Company	CJ Ch	eilJedang
3 Address	55, 42 beongil, gyanggyo ro, Yeongtong gu, Suwon si, Gyeonggi do Republic of Korea			④ Telephone	+82-31-	-8099-1539
. Sample descri	ption		1			
D Receipt No.	Receipt No. (b) (4)			② Receipt Date	Decembe	er 30, 2020
3) Sample Type		Powder		(4) Quantity		1
5) Sample name	GVA	L200911 + 5pp	m standard	6 Analysis Date	Decemb	er 30, 2020
			Test R	esults		
L-a-Aminobutyn a-Thiazoleala	ric acid	LC-MS/MS	mg/kg mg/kg		0.025	0.080
I_q_Aminobutu	ia soid		madra	(b) (4)	0.025	0.0%
a-Thiazoleala	nine	LC-MS/MS	mg/kg		0.011	0.034
a-Hydroxyva	line	LC-MS/MS	mg/kg		0.004	0.011
L-Norvalin	L-Norvaline LC-MS/MS mg/kg			0.096	0.307	
	This tes The re and it	t report shall be sults have been t is the decision	e used within made for the of the client	the purpose of its defin e sample supplied by th naming the presented	ed usage. ne client, sample.	
				[December 3	31, 2020
This is to in	nform th and ana	ne results of alysis at	laboratory	analysis according t	o the regul	lations for

and a local						
. Client	1	-				
D Name	(b) (4)			2 Company	CJ Ch	eilJedang
3) Address	55, 42 beongil, gyanggyo ro, Yeongtong gu, Suwon si, Gyeonggi do Republic of Korea			(4) Telephone	+82-31-	-8099-1539
. Sample descri	otion					
Receipt No.	Receipt No.			② Receipt Date	Decembe	er 30, 2020
3) Sample Type		Powder	6	(4) Quantity		1
) Sample name	GVA	L200912 + 5pp	m standard	6 Analysis Date	Decembe	er 30, 2020
			Test R	esults		
L-a-Aminobuty	ic acid	LC-MS/MS	mg/kg	(0) (4)	0.025	0.080
Compound			Unit	b) (4)-	LOD	LOQ
a-Thiazoleala	nine	LC-MS/MS	mg/kg		0.011	0.034
a-Hydroxyva	line	LC-MS/MS	mg/kg		0.004	0.011
L-Norvalin	e	LC-MS/MS	mg/kg		0.096	0.307
	This tes The re and it	t report shall be sults have beer t is the decision	e used within made for the of the client	the purpose of its defin a sample supplied by th naming the presented s	ed usage. ne client, sample.	
					December 3	31, 2020
This is to ir the testing a	nform th and ana	ne results of alysis at	laboratory a	analysis according to	o the regul	lations for

Biogenic amine assessment

CJ CheilJedang analyzed the biogenic amines in test samples to 3rd party laboratory, (b) (4) The type of samples are liquid and solid (powder) collected from the fermentation broth and final product, respectively (Table 1). In order to observe whether the matrix effect occurred during the analysis, additional analysis of each sample spiked with biogenic amine standard were conducted. Taking the analyzed concentration of biogenic amines in each sample into account, 100 ppb and 5 ppm biogenic amine standard were added into the liquid and solid (powder) sample, respectively. As shown in the Table 2 and 3, we concluded that no interference was observed by the fermentation broth components and biomass. Analytical method and test reports of each sample are attached to this document.

Sample name	Туре	Description	Reference
ATCC14067_200907	Liquid	Fermentation broth of ATCC 14067 (wild-	Appendix 2. (C. Spill-
		type strain)	over analysis, Table
ATCC14067_200908	Liquid	Fermentation broth of ATCC 14067 (wild-	C.2.6)
		type strain)	
ATCC14067_200909	Liquid	Fermentation broth of ATCC 14067 (wild-	
		type strain)	
CA08_0012_200907	Liquid	Fermentation broth of CA08_0012 (parent	
		strain)	
CA08_0012_200908	Liquid	Fermentation broth of CA08_0012 (parent	
		strain)	
CA08_0012_200909	Liquid	Fermentation broth of CA08_0012 (parent	
		strain)	
KCCM80240_200907	Liquid	Fermentation broth of KCCM 80240	
		(production strain)	
KCCM80240_200908	Liquid	Fermentation broth of KCCM 80240	
		(production strain)	
KCCM80240_200909	Liquid	Fermentation broth of KCCM 80240	
		(production strain)	
GVAL200910	Solid (powder)	Dried L-Valine Fermentation Product	GRAS Notice (6.6
GVAL200911	Solid (powder)	Dried L-Valine Fermentation Product	Safety Assessment for
			Human Consumption,
GVAL200912	Solid (powder)	Dried L-Valine Fermentation Product	Table 6.3)
ATCC14067_200907	Liquid	Fermentation broth of ATCC 14067 (wild-	Appendix 10
+100ppb standard		type strain) with 100 ppb biogenic amine	(Biogenic Amine
		standard (spike test)	Assessment, Table 2)
ATCC14067_200908+1	Liquid	Fermentation broth of ATCC 14067 (wild-	
00ppb standard		type strain) with 100 ppb biogenic amine	
		standard (spike test)	
ATCC14067_200909+1	Liquid	Fermentation broth of ATCC 14067 (wild-	

Table 1. Sample information

00ppb standard		type strain) with 100 ppb biogenic amine	
		standard (spike test)	
CA08_0012_200907+1	Liquid	Fermentation broth of CA08_0012 (parent	
00ppb standard		strain) with 100 ppb biogenic amine standard	
		(spike test)	
CA08_0012_200908+1	Liquid	Fermentation broth of CA08_0012 (parent	
00ppb standard		strain) with 100 ppb biogenic amine standard	
		(spike test)	
CA08_0012_200909+1	Liquid	Fermentation broth of CA08_0012 (parent	
00ppb standard		strain) with 100 ppb biogenic amine standard	
		(spike test)	
KCCM80240_200907+	Liquid	Fermentation broth of KCCM 80240	
100ppb standard		(production strain) with 100 ppb biogenic	
		amine standard (spike test)	
KCCM80240_200908+	Liquid	Fermentation broth of KCCM 80240	
100ppb standard		(production strain) with 100 ppb biogenic	
		amine standard (spike test)	
KCCM80240_200909+	Liquid	Fermentation broth of KCCM 80240	
100ppb standard		(production strain) with 100 ppb biogenic	
		amine standard (spike test)	
GVAL200910+5ppm	Solid (powder)	Dried L-Valine Fermentation Product with 5	Appendix 10
standard		ppm biogenic amine standard (spike test)	(Biogenic Amine
GVAL200911+5ppm	Solid (powder)	Dried L-Valine Fermentation Product with 5	Assessment, Table 3)
standard		ppm biogenic amine standard (spike test)	
GVAL200912+5ppm	Solid (powder)	Dried L-Valine Fermentation Product with 5	
standard		ppm biogenic amine standard (spike test)	

Table 2. Spike test (Liquid)

Sample name	Cadaverine (µg/kg)	Histamine (µg/kg)	Phenylethyl- amine (ug/kg)	Putrescine (µg/kg)	Tyrptamine (µg/kg)	Tyramine (µg/kg)
ATCC14067 200907		1	14-8-8/			(b) (4)
ATCC14067_200907 +100ppb standard						
Recovery (%)						
ATCC14067_200908	-					
ATCC14067_200908+100 ppb standard						
Recovery (%)						
ATCC14067_200909						
ATCC14067_200909+100 ppb standard						
Recovery (%)						
CA08_0012_200907						
CA08_0012_200907+100p pb standard						
Recovery (%)						
CA08_0012_200908						
CA08_0012_200908+100p pb standard						
Recovery (%)						
CA08_0012_200909						
CA08_0012_200909+100p pb standard						
Recovery (%)						
KCCM80240_200907	1					
KCCM80240_200907+100 ppb standard						
Recovery (%)						
KCCM80240_200908						
KCCM80240_200908+100 ppb standard						
Recovery (%)						
KCCM80240_200909						
KCCM80240_200909+100 ppb standard						
Recovery (%)			-			(b) (4)
Recovery (%) in average	91.67±7.0	6 109.25±7.3	0 94.19±7.54	101.13±10.2	6 101.61±3.7	5 107.54±7.53

Table 3. Spike test (Powder)

Sample name	Cadaverine (mg/kg)	Histamine (mg/kg)	Phenylethyl- amine (mg/kg)	Putrescine (mg/kg)	Tyrptamine (mg/kg)	Tyramine (mg/kg)
GVAL200910						(b) (4)
GVAL200910+5ppm standard						
Recovery (%)						
GVAL200911						
GVAL200911+5ppm standard	0					
Recovery (%)						
GVAL200912						
GVAL200912+5ppm standard						
Recovery (%)						
Recovery (%) in average	107.53±7.91	109.87±10.32	99.60±9.18	104.07±10.10	104.13±0.58	107.07±3.97

Summary of the analytical method

A. Sample preparation (Powder)

(b) (4)

B. Sample preparation (Liquid)

C. Analytical condition

(a) LC condition

System	HPLC			
Column		^{(b) (4)} , 2.1x150, 1.6um,	, particle size 1	.6 µm
Mobile phase	A: 0.1% F	ormic acid in water, B: 0.1	% Formic acid	in acetonitrile
Gradient mode	Time	Flow rate (ml/min)	%A	%B
	0	0.3	1100	(b) (4)
	1	0.3		
	8	0.3		
	10	0.3		
	11	0.3		
	15	0.3		
Column temperature	45°C			
Sample temperature	10°C			
Injection volume	3 μ1			

(b) MS/MS condition

System	Triple quadruple				
Ion Source Type	H-ESI				
Positive Ion (V)	3500				
Ion Transfer Tube Temp	325				
Vaporizer Temp (°C)	350				
Polarity	Positive				
MRM condition	Compound	Retention Time (min)	Precursor (m/z)	Product (m/z)	Collision Energy (V)
	Tryptamine				(b) (4)
	Tryptamine				
	Tryptamine				
	Phenylethylamine				
	Phenylethylamine				
	Phenylethylamine				
	Putrescine				
	Putrescine				
	Putrescine				
	Cadaverine				
	Cadaverine				
	Cadaverine				
	Histamine				
	Histamine				
	Histamine				
	Tyramine				
	Tyramine				
	Tyramine				

. Client						
D Name			(6) (4)	② Company	CJ CheilJe	
3 Address	55, Ye Gyeo	42beon-gil, Gw eongtong-gu, S nggi-do, Reput	anggyo-ro, suwon-si, blic of Korea	(4) Telephone	+82-31-8099-153	
. Sample descri	ption	CHE C				
D Receipt No.			(b) (4)	② Receipt Date	January	26, 2021
3) Sample Type		Liquid		(4) Quantity	1	
Sample name		ATCC14067_2	00907	6 Analysis Date	January 26, 202	
			Test R	esults		
Cadaverin	е	LC-MS/MS	ng/mL	(b) (4	0.0415	0.1320
Compound	d	Method	Unit	Test Result	LOD	LOQ
Cadaverin	e	LC-MS/MS	ng/mL		0.0415	0.1320
Histamine		LC-MS/MS	ng/mL		0.0497	0.1584
Detection	nine	LC-MS/MS	ng/mL		0.0199	0.1944
Putrescine		LC-MS/MS	ng/mL		0.0391	0.1244
Tryptamin	e	LC-MS/MS	ng/mL		0.0177	0.0565
Tyramine		LC-MS/MS	ng/mL		0.0413	0.1315
	This tes The re and i	at report shall be esults have been it is the decision	used within made for th of the client	the purpose of its define e sample supplied by to naming the presented	ned usage. the client, sample.	
31		10.0			January 28,	2021
This is to in	nform ti	he results of	laboratory	analysis according	to the regul	ations for
This is to in	nform ti	he results of	laboratory	analysis according	to the regul	ations for

. Client					
D Name		(6) (4)	② Company	y CJ CheilJ	
3 Address	55, 42beon-gil, Gw Yeongtong-gu, S Gyeonggi-do, Reput	vanggyo-ro, Suwon-si, plic of Korea	(4) Telephone	+82-31-8099-153	
2. Sample descript	tion				
D Receipt No.		(b) (4)	2 Receipt Date	January	26, 2021
3) Sample Type	Liquid		④ Quantity	1	
5) Sample name	ATCC14067_2	00908	6 Analysis Date	January 26, 202	
		Test F	Results		
Cadaverine	LC-MS/MS	ng/mL	(b) (c	0.0415	0.1320
Compound	Mathad	Unit	Toot Booult	100	100
Cadaverine	LC-MS/MS	ng/mL		0.0415	0.1320
Histamine	LC-MS/MS	ng/mL		0.0497	0.1584
Pnenyletnylami		ng/mL		0.0199	0.1944
Putrescine	LC-MS/MS	ng/mL		0.0391	0.1244
Tryptamine	LC-MS/MS	ng/mL		0.0177	0.0565
Tyramine	LC-MS/MS	ng/mL		0.0413	0.1315
T	This test report shall be The results have been and it is the decision	e used within made for th of the client	the purpose of its define the sample supplied by the presented	ned usage. the client, sample.	
This is to inf	orm the results of	laboratory	analysis according	January 28, to the regul	2021 ations for
the testing ar	nd analysis at	(b) (4)	analysis according	to the legal	
the teeting of				-	

. Client						
D Name			Company CJ CheilJ			
3 Address	55, 42beon-gil, Gw Yeongtong-gu, S Gyeonggi-do, Reput	vanggyo-ro, Suwon-si, blic of Korea	(1) Telephone	+82-31-8099-1539		
2. Sample descript	ion					
D Receipt No.		(b) (4)	② Receipt Date	January	26, 2021	
3) Sample Type	Liquid		(4) Quantity	1		
5) Sample name	ATCC14067_2	00909	6 Analysis Date	January 26, 2021		
		Test B	esults			
Cadaverine Histamine	LC-MS/MS LC-MS/MS	ng/mL ng/mL	(b) (4	0.0415	0.1320 0.1584	
Cadaverine	LC-MS/MS	ng/mL	(8) (4	0.0415	0.1320	
Bhonylothylomi	LC-MS/MS	ng/mL		0.0497	0.1364	
Phenyletnylami		ng/mL		0.0199	0.0054	
Truttering	LC-MS/MS	ng/mL		0.0391	0.1244	
Typtamine	LC-MS/MS	ng/mL		0.0413	0.1315	
I y runnic		ing/ int		0.0110	0.1010	
Т	his test report shall be The results have been and it is the decision	e used within made for th of the client	the purpose of its define e sample supplied by to naming the presented	ned usage. the client, sample.		
21	1.00			January 28,	2021	
This is to info the testing an	orm the results of d analysis at	laboratory	analysis according	to the regul	ations for	
the testing an	d analysis at			-	0.00	

. Client							
D Name			(b) (4)	2 Company	CJ Ch	eilJedang	
3) Address	55, Ye Gyeo	42beon-gil, Gw eongtong-gu, S nggi-do, Reput	anggyo-ro, suwon-si, blic of Korea	④ Telephone	+82-31-8099-1539		
. Sample desci	ription						
D Receipt No.			(b) (4)	② Receipt Date	January	26, 2021	
3) Sample Type		Liquid		④ Quantity		1	
Sample name		CA08_0012_2	00907	6 Analysis Date	January 26, 2021		
			Test R	esults			
Compour	nd	Method	Unit	Test Result	LOD	LOQ	
Compour	nd	Method	Unit	Test Result	LOD	LOQ	
Cadaverin	ne	LC-MS/MS	ng/mL		0.0415	0.1320	
Histamin	e	LC-MS/MS	ng/mL		0.0497	0.1584	
Phenylethyla	mine	LC-MS/MS	ng/mL		0.0199	0.0634	
Putrescir	ne	LC-MS/MS	ng/mL		0.0391	0.1244	
Tryptami	ne	LC-MS/MS	ng/mL		0.0177	0.0565	
Tyramin	e	LC-MS/MS	ng/mL		0.0413	0.1315	
	This tes The re and i	t report shall be esults have been t is the decision	e used within made for the of the client	the purpose of its defir e sample supplied by t naming the presented	hed usage. he client, sample. January 28,	2021	
This is to	inform th	ne results of	laboratory a	analysis according t	to the regul	ations for	

(b) (4)

. Client						
) Name				② Company	CJ Ch	eilJedang
D Address	55, 4 Ye Gyeor	2beon-gil, Gw ongtong-gu, S oggi-do, Reput	vanggyo-ro, Suwon-si, blic of Korea	(4) Telephone	+82-31-8099-1539	
. Sample descr	iption					
Receipt No.			(b) (4)	② Receipt Date	January	26, 2021
Sample Type		Liquid		④ Quantity	1	
Sample name		CA08_0012_2	00908	6 Analysis Date	January 26, 202	
1.000			Test R	esults		
Cadaverin	e	LC-MS/MS	ng/mL	(b)(4	0.0415	0.1320
125.73				Contract of the		
Cadaverin	e	LC-MS/MS	ng/mL		0.0415	0.1320
Histamine	e	LC-MS/MS	ng/mL		0.0497	0.1584
Phenylethyla	mine	LC-MS/MS	ng/mL		0.0199	0.0634
Putrescine	e	LC-MS/MS	ng/mL		0.0391	0.1244
Tryptamir	ne	LC-MS/MS	ng/mL		0.0177	0.0565
Tyramine	e	LC-MS/MS	ng/mL		0.0413	0.1315
	This test The re and it	report shall be sults have been is the decision	e used within made for the of the client	the purpose of its define a sample supplied by to naming the presented	ned usage. the client, sample.	
This is to i	nform th	e results of	laboratory a	analysis according	January 28, to the regul	2021 ations for

I. Client						
① Name		(b) (4)	© Company	CJ CheilJedang		
③ Address	55, 42beon-gil, Gw Yeongtong-gu, S Gyeonggi-do, Reput	anggyo-ro, Suwon-si, blic of Korea	④ Telephone	+82-31-8099-1539		
2. Sample descript	tion					
1) Receipt No.		(b) (4)	② Receipt Date	January	26, 2021	
3 Sample Type	Liquid		④ Quantity	1		
5 Sample name	CA08_0012_2	00909	6 Analysis Date	January 26, 2021		
		Test R	esults			
Compound	Method	Unit	Test Result	LOD	LOQ	
Cadaverine	LC-MS/MS	ng/mL	(b) (4)	0.0415	0.1320	
Histamine	LC-MS/MS	ng/mL		0.0497	0.1584	
Phenylethylam	ine LC-MS/MS	ng/mL		0.0199	0.0634	
Putrescine	LC-MS/MS	ng/mL		0.0391	0.1244	
Tryptamine	LC-MS/MS	ng/mL		0.0177	0.0565	
Tyramine	LC-MS/MS	ng/mL		0.0413	0.1315	
	This test report shall be The results have been and it is the decision	e used within made for th of the client	the purpose of its define e sample supplied by the naming the presented	hed usage. he client, sample. January 28,	2021	
This is to inf	orm the results of	laboratory	analysis according t	o the regul	ations for	
the testing an	nd analysis at	,0) (4)				

Client						
Name	ame (b) (4)			② Company	CJ CheilJedang	
Address	55, 42beon-gil, Gwanggyo-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, Republic of Korea			④ Telephone	+82-31-8099-1539	
Sample descrip	otion					
) Receipt No.			② Receipt Date	January 26, 2021		
Sample Type		Liquid		(4) Quantity	1	
) Sample name	к	CCM80240_2	200907	6 Analysis Date	January 26, 2021	
	1	-	Test Be	esults		
Histamine Phenylethylan	L L L	C-MS/MS C-MS/MS C-MS/MS	ng/mL ng/mL		0.0413 0.0497 0.0199	0.1584 0.0634 0.1244
Putrescine	L	C-MS/MS	ng/mL		0.0391	0.1244
Typtamine		C-MS/MS	ng/mL		0.0177	0.0000
	This test re The result and it is	port shall be ts have beer the decision	e used within t made for the of the client	the purpose of its defir a sample supplied by t naming the presented	hed usage. he client, sample.	
This is to in	form the	results of	laboratory a	analysis according t	January 28, to the regul	2021 ations for

. Client					-
) Name		② Company	CJ CheilJedang		
3 Address	55, 42beon-gil, Gw Yeongtong-gu, S Gyeonggi-do, Repul	vanggyo-ro, Suwon-si, blic of Korea	④ Telephone	+82-31-8099-1539	
. Sample descrip	tion				
) Receipt No.			② Receipt Date	January 26, 2021	
3 Sample Type	Liquid	Liquid		1	
5) Sample name	KCCM80240_2	200908	6 Analysis Date	January 26, 2021	
		Test P	esults		
Histamine Phenylethylam	LC-MS/MS ine LC-MS/MS	ng/mL ng/mL		0.0497	0.1584 0.0634
Phenylethylam	ine LC-MS/MS	ng/mL		0.0199	0.0634
Putrescine	LC-MS/MS	ng/mL		0.0391	0.1244
Tryptamine	LC-MS/MS	ng/mL		0.0177	0.0565
Tyramine	LC-MS/MS	ng/mL		0.0413	0.1315
	This test report shall be The results have beer and it is the decision	e used within made for th of the client	the purpose of its define the sample supplied by t naming the presented	hed usage. he client, sample.	
				January 28,	2021
man i de la companya	orm the results of	laboratory	analysis according t	to the regul	ations for
This is to int the testing a	nd analysis at				(0) (4
This is to int the testing a	nd analysis at	-			(0) (4

(b) (4)

. Client						
D Name	Name (b) (4)			CJ CheilJedang		
3 Address	55, 42beon-gil, Gv Yeongtong-gu, S Gyeonggi-do, Repu	wanggyo-ro, Suwon-si, blic of Korea	④ Telephone	+82-31-8099-1539		
. Sample desci	iption					
D Receipt No.) Receipt No.			January 26, 2021		
3) Sample Type	Liquid	Liquid		1		
5 Sample name	KCCM80240_	KCCM80240_200909		January 26, 2021		
		Test R	esults			
Compour	ud Mathad	Unit	Toot Popult	LOD	100	
Compour	d Method	Unit	Test Result	LOD	LOQ	
Cadaverin	ne LC-MS/MS	ng/mL	(0) (4	0.0415	0.1320	
Histamin	e LC-MS/MS	ng/mL		0.0497	0.1584	
Phenylethyla	mine LC-MS/MS	ng/mL		0.0199	0.0634	
Putrescir	le LC-MS/MS	ng/mL		0.0391	0.1244	
Tryptami	ne LC-MS/MS	ng/mL		0.0177	0.0565	
Tyramin	e LC-MS/MS	ng/mL		0.0413	0.1315	
	This test report shall be The results have been and it is the decision	e used within n made for th n of the client	the purpose of its defir e sample supplied by t naming the presented	hed usage. he client, sample. January 28,	2021	
This is to the testing	inform the results of and analysis at	laboratory	analysis according t	to the regul	ations for	
. Client				1.11		
------------------------	--	--	---	---	--------------------	--
) Name		(6) (4)	② Company	CJ CheilJedang		
Address	55, 42beon-gil, Gw Yeongtong-gu, S Gyeonggi-do, Reput	55, 42beon-gil, Gwanggyo-ro, Yeongtong-gu, Suwon-si,(4) Telephone+8Gyeonggi-do, Republic of Korea				
. Sample descri	ption					
Receipt No.		(b) (4)	② Receipt Date	January	26, 2021	
) Sample Type	Powder		④ Quantity	1		
) Sample name	GVAL2009	10	6 Analysis Date	January 26, 2021		
and the second		Test F	Results			
Compound Cadaverine	d Method e LC-MS/MS	Unit mg/kg	Test Result ৩০	LOD 0.00207	LOQ 0.00660	
Histamine	LC-MS/MS	mg/kg		0.00249	0.00792	
Putrescine	LC-MS/MS	mg/kg		0.00099	0.00317	
Tryptamin	e LC-MS/MS	mg/kg		0.00089	0.00282	
Tyramine	LC-MS/MS	mg/kg		0.00206	0.00657	
This is to ir	This test report shall be The results have been and it is the decision	laboratory	the purpose of its define the sample supplied by the naming the presented	hed usage. the client, sample. January 28, to the regul	2021 ations for	

Client		11			
) Name		(b) (4)	② Company	CJ CheilJedang	
) Address	55, 42beon-gil, Gv Yeongtong-gu, Gyeonggi-do, Repu	wanggyo-ro, Suwon-si, Iblic of Korea	④ Telephone	+82-31-8099-1539	
. Sample descr	iption				
D Receipt No.		(b) (4)	② Receipt Date	January	26, 2021
3) Sample Type	Powde	r	(4) Quantity	1	
Sample name	GVAL200	911	6 Analysis Date	January 26, 2021	
1. S.	-	Test B	esults		-
Compour	d Method	Unit	Test Result	LOD	LOQ
Compour	d Method	Unit	Test Result	LOD	LOQ
Cadaverir	e LC-MS/MS	mg/kg		0.00207	0.00660
Histamin	e LC-MS/MS	mg/kg		0.00249	0.00792
Phenylethyla	mine LC-MS/MS	mg/kg		0.00099	0.00317
Putrescin	e LC-MS/MS	mg/kg		0.00195	0.00622
Tryptami	LC-MS/MS	mg/kg		0.00089	0.00282
Tyramin	e LC-MS/MS	mg/kg		0.00206	0.00657
	This test report shall b The results have bee and it is the decision	e used within in made for the n of the client	the purpose of its defin e sample supplied by th naming the presented s	ed usage. ne client, sample.	
This is to	nform the results of	laboratory a	analysis according t	January 28, o the regul	2021 ations for

	(b) (4)	② Company	CJ Ch	eilJedang	
55, 42beon-gil, Gw Yeongtong-gu, S Gyeonggi-do, Reput	anggyo-ro, suwon-si, blic of Korea	(4) Telephone	+82-31-8099-1539		
on					
	(b) (4)	② Receipt Date	January	26, 2021	
Powder		④ Quantity	1		
GVAL2009	12	6 Analysis Date	January 26, 2021		
	Test F	Results		-	
1	1		1		
Method	Unit	Test Result	LOD	LOQ	
LC-MS/MS	mg/kg	(ხ) (4	0.00207	0.00660	
LC-MS/MS	mg/kg		0.00249	0.00792	
e LC-MS/MS	mg/kg		0.00099	0.00317	
LC-MS/MS	mg/kg		0.00195	0.00622	
LC-MS/MS	mg/kg		0.00089	0.00282	
LC-MS/MS	mg/kg		0.00206	0.00657	
is test report shall be The results have been and it is the decision	e used within made for th of the client	the purpose of its define the sample supplied by the t naming the presented	hed usage. the client, sample. January 28,	2021	
rm the results of	laboratory	analysis according	to the regul	ations for	
	55, 42beon-gil, Gw Yeongtong-gu, S Gyeonggi-do, Reput on Powder GVAL2009 Method LC-MS/MS LC-MS/MS LC-MS/MS LC-MS/MS LC-MS/MS IC-MS/MS IS test report shall be The results have been and it is the decision arm the results of	(b) (4) 55, 42beon-gil, Gwanggyo-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, Republic of Korea (b) (4) (4) (5) (4) (5) (4) (5) (4) (4) (5) (4) (5) (4) (5) (4) (4) (4) (4) (4) (4) (5) (4) (5) (4) (5) (4) (5) (4) (5) (4) (5) (4) (5) (4) <td>(*)*(*) (*) Company 55, 42beon-gil, Gwanggyo-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, Republic of Korea (*) Telephone (*)*(*) (*) Telephone (*)*(*) (*) Receipt Date (*)*(*) (*) Receipt Date (*)*(*) (*) Quantity (*) (*) Quantity (*) (*) Quantity <td>Image: Non-Sile Image: Non-Sile</td></td>	(*)*(*) (*) Company 55, 42beon-gil, Gwanggyo-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, Republic of Korea (*) Telephone (*)*(*) (*) Telephone (*)*(*) (*) Receipt Date (*)*(*) (*) Receipt Date (*)*(*) (*) Quantity (*) (*) Quantity (*) (*) Quantity <td>Image: Non-Sile Image: Non-Sile</td>	Image: Non-Sile Image: Non-Sile	

. Client					
) Name		(b) (4)	② Company	CJ CheilJedang	
) Address	55, 42beon-gil, Gw Yeongtong-gu, S Gyeonggi-do, Repul	55, 42beon-gil, Gwanggyo-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, Republic of Korea		+82-31-8099-1539	
. Sample descri	ption				
Receipt No.		(b) (4)	② Receipt Date	January	26, 2021
Sample Type	Liquid		④ Quantity	1	
) Sample name	ATCC14067_2 + 100ppb sta	00907 ndard	6 Analysis Date	January 26, 2021	
		Test F	Results		
Compound	d Method	Unit	Test Result	LOD	LOQ
Cadaverine	e LC-MS/MS	ng/mL	(b) (4)	0.0415	0.1320
Histamine	LC-MS/MS	ng/mL		0.0497	0.1584
Phenylethylar	nine LC-MS/MS	ng/mL		0.0199	0.0634
Putrescine	e LC-MS/MS	ng/mL		0.0391	0.1244
Tryptamin	e LC-MS/MS	ng/mL		0.0177	0.0565
Tyramine	LC-MS/MS	ng/mL		0.0413	0.1315
	This test report shall be The results have been and it is the decision	e used within made for th of the client	the purpose of its defir ne sample supplied by t t naming the presented	ied usage. he client, sample.	
This is to ir	nform the results of	laboratory	analysis according t	January 28, to the regul	2021 ations for

(b) (4)

Client				1	
Name		(b) (4)	② Company	CJ CheilJedang	
Address	55, 42beon-gil, Gw Yeongtong-gu, S Gyeonggi-do, Reput	Gwanggyo-ro, J, Suwon-si, ④ Telephone +82-31-80 epublic of Korea		8099-1539	
Sample descrip	otion				
Receipt No.		(b) (4)	② Receipt Date	January	26, 2021
Sample Type	Liquid		(a) Quantity	1	
Sample name	ATCC14067_2 + 100ppb sta	00908 ndard	6 Analysis Date	January 26, 2021	
		Test F	Results		
	10.00				
Compound	Method	Unit	Test Result	LOD	LOQ
Cadaverine	e LC-MS/MS	ng/mL	(b) (4)	0.0415	0.1320
Histamine	LC-MS/MS	ng/mL		0.0497	0.1584
Phenylethylan	nine LC-MS/MS	ng/mL		0.0199	0.0634
Putrescine	LC-MS/MS	ng/mL		0.0391	0.1244
Tryptamine	e LC-MS/MS	ng/mL		0.0177	0.0565
Tyramine	LC-MS/MS	ng/mL		0.0413	0.1315
	This test report shall be The results have beer and it is the decision	e used within made for th of the client	the purpose of its defir ne sample supplied by t t naming the presented	ned usage. he client, sample.	
This is to ir	form the results of	laboratory	analysis according t	January 28, to the regul	2021 ations for

. Client					
) Name		(b) (4)	② Company	CJ CheilJedang	
) Address	55, 42beon-gil, Gw Yeongtong-gu, S Gyeonggi-do, Reput	vanggyo-ro, Suwon-si, blic of Korea	Telephone	(4) Telephone +82-31-8099-	
. Sample descrip	otion				
Receipt No.		(b) (4)	② Receipt Date	January	26, 2021
Sample Type	Liquid		④ Quantity	1	
Sample name	ATCC14067_2 + 100ppb sta	00909 ndard	6 Analysis Date	January 26, 2021	
		Test F	Results		
	10.00				
Compound	Method	Unit	Test Result	LOD	LOQ
Cadaverine	LC-MS/MS	ng/mL	(b) (4) ⁻	0.0415	0.1320
Histamine	LC-MS/MS	ng/mL		0.0497	0.1584
Phenylethylan	nine LC-MS/MS	ng/mL		0.0199	0.0634
Putrescine	LC-MS/MS	ng/mL		0.0391	0.1244
Tryptamine	e LC-MS/MS	ng/mL		0.0177	0.0565
Tyramine	LC-MS/MS	ng/mL		0.0413	0.1315
	This test report shall be The results have been and it is the decision	e used within made for th of the client	the purpose of its defin- ne sample supplied by th t naming the presented s	ed usage. ne client, sample.	
This is to ir	form the results of	laboratory	J analysis according to	lanuary 28, o the regul	2021 ations for

. Client				1-517	
) Name		(b) (4)	② Company	CJ CheilJedang	
) Address	55, 42beon-gil, Gwanggyo-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, Republic of Korea		(4) Telephone	+82-31-8099-1539	
. Sample descript	tion			1	
Receipt No.		(b) (4)	② Receipt Date	January	26, 2021
Sample Type	Liquid		④ Quantity	1	
Sample name	CA08_0012_20 + 100ppb sta	00907 ndard	6 Analysis Date	January 26, 202	
	1.000	Test F	lesults		
Compound	Method	Unit	Test Result	LOD	LOQ
Cadaverine	LC-MS/MS	ng/mL	დ) (4)	0.0415	0.1320
Histamine	LC-MS/MS	ng/mL		0.0497	0.1584
Phenylethylami	ine LC-MS/MS	ng/mL		0.0199	0.0634
Putrescine	LC-MS/MS	ng/mL		0.0391	0.1244
Tryptamine	LC-MS/MS	ng/mL		0.0177	0.0565
Tyramine	LC-MS/MS	ng/mL		0.0413	0.1315
T	This test report shall be The results have been and it is the decision	sused within made for th of the client	the purpose of its defin te sample supplied by th t naming the presented	ed usage. ne client, sample.	
This is as lef		1-1		January 28,	2021
the testing ar	orm the results of	1aboratory	analysis according t	o the regula	ations for
the testing a	iu analysis al				-

. Client					
) Name		(b) (4)	② Company	CJ CheilJedang	
D Address	55, 42beon-gil, G Yeongtong-gu, Gyeonggi-do, Repu	55, 42beon-gil, Gwanggyo-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, Republic of Korea		+82-31-8099-1539	
. Sample descr	iption				
① Receipt No.		② Receipt Date	January 26, 2021		
Sample Type	Liquid		④ Quantity	1	
Sample name	CA08_0012_ + 100ppb st	200908 andard	6 Analysis Date	January 26, 2021	
		Test F	Results		
Compoun	d Method	Unit	Test Result	LOD	LOQ
Cadaverin	e LC-MS/MS	ng/mL	(b) (4	0.0415	0.1320
Histamin	e LC-MS/MS	ng/mL		0.0497	0.1584
Phenylethyla	mine LC-MS/MS	ng/mL		0.0199	0.0634
Putrescin	e LC-MS/MS	ng/mL		0.0391	0.1244
Tryptamir	ne LC-MS/MS	ng/mL		0.0177	0.0565
Tyramine	e LC-MS/MS	ng/mL		0.0413	0.1315
	This test report shall b The results have bee and it is the decisio	be used within an made for th an of the client	the purpose of its define the sample supplied by the t naming the presented	hed usage. he client, sample.	2004
This is to i	nform the results of	f laboratory	analysis according t	o the regul	ations for

(b) (4)

Client					
) Name		(6) (4)		Company CJ CheilJe	
) Address	55, 42beon-gil, Gw Yeongtong-gu, S Gyeonggi-do, Reput	55, 42beon-gil, Gwanggyo-ro, Yeongtong-gu, Suwon-si, iyeonggi-do, Republic of Korea		+82-31-8099-1539	
. Sample descrip	tion				
Receipt No.		(b) (4)	② Receipt Date	January	26, 2021
Sample Type	Liquid		④ Quantity		1
) Sample name	CA08_0012_2 + 100ppb sta	00909 ndard	6 Analysis Date	January 26, 2021	
		Test F	Results		
	100.00				
Compound	Method	Unit	Test Result	LOD	LOQ
Cadaverine	LC-MS/MS	ng/mL	(b) (4)	0.0415	0.1320
Histamine	LC-MS/MS	ng/mL		0.0497	0.1584
Phenylethylam	ine LC-MS/MS	ng/mL		0.0199	0.0634
Putrescine	LC-MS/MS	ng/mL		0.0391	0.1244
Tryptamine	LC-MS/MS	ng/mL		0.0177	0.0565
Tyramine	LC-MS/MS	ng/mL		0.0413	0.1315
	This test report shall be The results have beer and it is the decision	e used within made for th of the client	the purpose of its define the sample supplied by the the presented	hed usage. he client, sample.	
This is to in	form the results of	laboratory	analysis according t	January 28, to the regul	2021 ations for

Client							
) Name		(b) (4) ② Company CJ Ch		(6) (4)		CJ CheilJeda	
3) Address	55, 42beon-gil, Gw Yeongtong-gu, S Gyeonggi-do, Reput	n-gil, Gwanggyo-ro, ng-gu, Suwon-si, o, Republic of Korea		+82-31-8099-1539			
2. Sample descrip	otion						
D Receipt No.		(b) (4)	2 Receipt Date	January	26, 2021		
3) Sample Type	Liquid	Liquid		1			
5) Sample name	KCCM80240_2 + 100ppb sta	200907 ndard	6 Analysis Date	January 26, 2021			
		Test F	Results				
	1.						
Compound	Method	Unit	Test Result	LOD	LOQ		
Cadaverine	LC-MS/MS	ng/mL	(b) (4	0.0415	0.1320		
Histamine	LC-MS/MS	ng/mL		0.0497	0.1584		
Phenylethylam	ine LC-MS/MS	ng/mL		0.0199	0.0634		
Putrescine	LC-MS/MS	ng/mL		0.0391	0.1244		
Tryptamine	e LC-MS/MS	ng/mL		0.0177	0.0565		
Tyramine	LC-MS/MS	ng/mL		0.0413	0.1315		
	This test report shall be The results have been and it is the decision	e used within made for th of the client	the purpose of its define the sample supplied by t the naming the presented	he client, sample.	2021		
This is to in	form the results of	laboratory	analysis according t	the regul	ations for		

(b) (4)

Client					
Name		(b) (4)	② Company	CJ CheilJedang	
3) Address	55, 42beon-gil, Gw Yeongtong-gu, S Gyeonggi-do, Reput	55, 42beon-gil, Gwanggyo-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, Republic of Korea		+82-31-8099-1539	
. Sample descrip	otion				
D Receipt No.		(b) (4)	② Receipt Date	January	26, 2021
3) Sample Type	Liquid		④ Quantity		1
5) Sample name	KCCM80240_2 + 100ppb sta	200908 ndard	6 Analysis Date	January 26, 2021	
		Test F	Results		
	100				
Compound	Method	Unit	Test Result	LOD	LOQ
Cadaverine	e LC-MS/MS	ng/mL	(b) (4)	0.0415	0.1320
Histamine	LC-MS/MS	ng/mL		0.0497	0.1584
Phenylethylan	nine LC-MS/MS	ng/mL		0.0199	0.0634
Putrescine	LC-MS/MS	ng/mL		0.0391	0.1244
Tryptamine	e LC-MS/MS	ng/mL		0.0177	0.0565
Tyramine	LC-MS/MS	ng/mL		0.0413	0.1315
	This test report shall be The results have been and it is the decision	e used within made for the of the client	the purpose of its define the sample supplied by t t naming the presented	ned usage. he client, sample.	
				January 28,	2021
This is to in	form the results of	laboratory	analysis according t	o the regul	ations for
the testing a	and analysis at	(b) (4)			×

. Client					
) Name		(b) (4)	② Company	CJ CheilJedang	
) Address	55, 42beon-gil, Gwanggyo-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, Republic of Korea		(4) Telephone	+82-31-8099-1539	
. Sample descri	otion				
Receipt No.		(b) (4)	② Receipt Date	January	26, 2021
Sample Type	Liquid		④ Quantity		1
) Sample name	KCCM80240_ + 100ppb sta	200909 andard	6 Analysis Date	January 26, 2021	
		Test F	Results		
	10.00				
Compound	Method	Unit	Test Result	LOD	LOQ
Cadaverine	LC-MS/MS	ng/mL	(b) (4	0.0415	0.1320
Histamine	LC-MS/MS	ng/mL		0.0497	0.1584
Phenylethylan	nine LC-MS/MS	ng/mL		0.0199	0.0634
Putrescine	LC-MS/MS	ng/mL		0.0391	0.1244
Tryptamine	e LC-MS/MS	ng/mL		0.0177	0.0565
Tyramine	LC-MS/MS	ng/mL		0.0413	0.1315
	This test report shall b The results have bee and it is the decision	e used within In made for th In of the client	the purpose of its define the sample supplied by t t naming the presented	ned usage. he client, sample.	
This is to ir	form the results of	laboratory	analysis according t	January 28, to the regul	2021 ations for

. Client		-			
D Name		(b) (4)	② Company	CJ Ch	eilJedang
3 Address Yeongtong-gu, Suwon-si, Gyeonggi-do, Republic of Korea		(4) Telephone	+82-31-	8099-1539	
2. Sample descript	ion				
D Receipt No.		(b) (4)	2 Receipt Date	January 26, 2021	
3) Sample Type	Powder		④ Quantity		1
5) Sample name	GVAL2009 + 5ppm stan	10 dard	6 Analysis Date	January 26, 2021	
		Test F	Results		
Compound	Method	Unit	Test Result	LOD	LOQ
Cadaverine	LC-MS/MS	mg/kg	(b) (4	0.00207	0.00660
Histamine	LC-MS/MS	mg/kg		0.00249	0.00792
Phenylethylami	ne LC-MS/MS	mg/kg		0.00099	0.00317
Putrescine	LC-MS/MS	mg/kg		0.00195	0.00622
Tryptamine	LC-MS/MS	mg/kg		0.00089	0.00282
Tyramine	LC-MS/MS	mg/kg		0.00206	0.00657
T	his test report shall be The results have been and it is the decision	e used within made for th of the client	the purpose of its define the sample supplied by the presented	hed usage. the client, sample. January 28,	2021
This is to info	orm the results of	laboratory	analysis according	to the regul	ations for

I

.....

D Name (b) (4) ② Company 3 Address 55, 42beon-gil, Gwanggyo-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, Republic of Korea ④ Telephone 3. Sample description ④ Receipt No. ④ Receipt Date 3. Sample Type Powder ④ Quantity 6. Sample name GVAL200911 + 5ppm standard ⑥ Analysis Date	CJ Ch +82-31- January	eilJedang 8099-1539
3) Address 55, 42beon-gil, Gwanggyo-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, Republic of Korea 4 Telephone 4) Telephone 4 Telephone 2) Sample description (a) Powder 3) Sample Type Powder 4) Quantity (a) Address 5) Sample name GVAL200911 + 5ppm standard	+82-31- January	8099-1539
2. Sample description D Receipt No. (b) (4) (2) Receipt Date 3) Sample Type Powder (4) Quantity 5) Sample name GVAL200911 + 5ppm standard (6) Analysis Date	January	
D Receipt No.(b) (4)(2) Receipt Date(3) Sample TypePowder(4) Quantity(5) Sample nameGVAL200911 + 5ppm standard(6) Analysis Date	January	
③ Sample TypePowder④ Quantity⑤ Sample nameGVAL200911 + 5ppm standard⑥ Analysis Date		26, 2021
Sample nameGVAL200911 + 5ppm standard(6) Analysis Date		1
	January 26, 2021	
Test Results		
Compound Method Unit Test Result	LOD	LOQ
Cadaverine LC-MS/MS mg/kg	0.00207	0.00660
Histamine LC-MS/MS mg/kg	0.00249	0.00792
Phenylethylamine LC-MS/MS mg/kg	0.00099	0.00317
Putrescine LC-MS/MS mg/kg	0.00195	0.00622
Tryptamine LC-MS/MS mg/kg	0.00089	0.00282
Tyramine LC-MS/MS mg/kg	0.00206	0.00657
This test report shall be used within the purpose of its defined The results have been made for the sample supplied by the and it is the decision of the client naming the presented same	l usage. client, mple.	
Jai	nuary 28,	2021
	the regul	ations for

. Client					
D Name		(b) (4)	② Company	CJ Ch	eilJedang
3 Address55, 42beon-gil, Gwanggyo-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, Republic of Korea		④ Telephone	+82-31-	8099-1539	
2. Sample descript	ion				
D Receipt No.		(b) (4)	② Receipt Date	January	26, 2021
3 Sample Type	Powder		④ Quantity		1
5) Sample name	GVAL2009 + 5ppm stan	12 dard	6 Analysis Date	January 26, 2021	
		Test F	Results		
	100				
Compound	Method	Unit	Test Result	LOD	LOQ
Cadaverine	LC-MS/MS	mg/kg	(ნ) (მ	0.00207	0.00660
Histamine	LC-MS/MS	mg/kg		0.00249	0.00792
Phenylethylami	ne LC-MS/MS	mg/kg		0.00099	0.00317
Putrescine	LC-MS/MS	mg/kg		0.00195	0.00622
Tryptamine	LC-MS/MS	mg/kg		0.00089	0.00282
Tyramine	LC-MS/MS	mg/kg		0.00206	0.00657
Т	his test report shall be The results have been and it is the decision	e used within made for th of the client	the purpose of its define the sample supplied by a naming the presented	ned usage. the client, sample.	
				January 28,	2021
		Ale real	0.000		
This is to info	orm the results of	laboratory	analysis according	to the regul	ations for
the testing an	u analysis at			-	G

Appendix 11. Literature Review *Corynebacterium glutamicum* – with references

Review of the safety of Corynebacterium glutamicum

TABLE OF CONTENTS

1.	Introduction	2
2.	Evaluation by EFSA	2
2.	Qualified presumption of safety (QPS)	2
2.	2 Re-evaluation using literature review	2
2.	3 QPS Classification of <i>Corynebacterium glutamicum</i>	3
3.	Literature Search (2003-2019)	3
3.	Method Used	3
3.	2 Relevant Records Retrieved	4
4.	Narrative - Corynebacterium glutamicum	4
4.	Taxonomy and Characteristics	4
4.	2 Amino Acid Production	5
	4.2.1 Production methods	6
4.	B Other Uses	6
4.	Genetic engineering	6
4.	5 Safety Concerns	6
	4.5.1 Nonpathogenicity	7
5.	Summary and Conclusions	7
6.	References	8
7.	Appendix 1 1	4
8.	Appendix 21	7

1. INTRODUCTION

This document addresses the safety of the microorganism *Corynebacterium glutamicum*. It presents scientific data and information gathered from in-depth literature reviews which demonstrate that *C. glutamicum* can be used as a microorganism for the industrial production of amino acids and other substances which in turn can be safely added to feed for food-producing animals and poses no risk or health hazards to humans consuming products from food-producing animals consuming the substance. This review, as prescribed by the Division of Animal Feed staff, is intended to refresh the detailed safety review assessment completed in 2003 by the Division with the addition of *Corynebacterium glutamicum* and *Corynebacterium glutamicum* derived ingredients as an authorized feed ingredient.

2. EVALUATION BY EFSA

2.1 Qualified presumption of safety (QPS)

A wide variety of microorganisms are intentionally added at different stages into the food chain, either directly or as a source of food and feed additives, enzymes or plant protection products. The qualified presumption of safety (QPS) approach was developed by the EFSA Scientific Committee to provide a generic concept to prioritize and to harmonize risk assessment within EFSA of microorganisms intentionally introduced into the food chain (EFSA, 2005, 2007).

The list of QPS microorganisms has been continuously revised and updated since it was established in 2007. The publication of the overall assessment of the taxonomic units (TU) previously recommended for the QPS list is carried out every three years (EFSA, 2007, 2012). The recommendations provided concerning that list of microorganisms are maintained and re-evaluated based on extensive literature reviews and expert knowledge. (EFSA, 2007, 2018).

2.2 Re-evaluation using literature review

The bi-annual re-evaluation of microorganisms begins with a literature review for each TU that is notified to EFSA. QPS recommended TU and those which represent new TU notifications are annually reviewed (EFSA, 2007). The literature review for a new TU is broader to cover the history of use, the potential safety concerns and the ecology. Relevant databases such as Web of Science Core Collection, CAB Abstracts, BIOSIS Citation Index, MEDLINE and Food Science Technology Abstracts are searched using the TU in combination with common keywords (e.g. toxin, disease, antibiotic/antimycotic resistance, safety, syndrome) and respective animal categories. The search terms are broad and cover synonyms or former names of taxonomic units (EFSA, 2012, 2013, 2017). Findings from the literature review are then evaluated, taking into consideration recommendations given in the previous QPS Opinion. A detailed description of the methodology used in carrying out the literature review can be found in EFSA (2013, 2017). A summary of the literature search strategy for the most recent QPS update for *C. glutamicum* is given in Table 1.

Table 1.	Corynebacterium glutamicum		
String for species			
"Corynebacterium glutamicum" OR "C			

glutamicum" OR "Brevibacterium			
lactofermentum" OR "B			
lactofermentum"			
Outcome	String		
1) Antimicrobial/Antibiotic/Antimycotic	"antimicrobial resistan*" OR "antibiotic resistan*" OR "antimicrobial susceptibil*"		
2)	infection* OR abscess* OR sepsis* or septic* OR		
Infection/Bacteremia/Fungemia/Sepsis	bacteremia OR bacteraemia OR toxin* OR "pathogen*"		
3) Type of disease	Not applied		
4) Mortality/Morbidity	clinical* OR death* OR morbidit* OR mortalit* OR disease* OR illness*		
5) Disease Risk	opportunistic OR virulen*		

Flow records by search strategy resulted in 78 papers being identified using title screening, of which 8 papers were identified using title/abstract screening, of which 1 was identified using article appraisal and was considered relevant for QPS. Following the review of that paper (Yang and Yang, 2017), it was concluded that there were no safety concerns identified in the only article considered relevant for QPS exercise (EFSA, 2019).

A literature review did not reveal new information about adverse health effects or on safety concerns since the last update (EFSA, 2013). The QPS recommendation has been confirmed.

Source: EFSA (2018).

2.3 QPS Classification of Corynebacterium glutamicum

The QPS approach is currently used for microorganisms in the three broad categories within which most of the species notified to EFSA fall: bacteria, yeasts and viruses (EFSA, 2005, 2007). Here only information as it relates to the QPS assessment of the bacterium *C. glutamicum* is presented.

As noted, each updated QPS Opinion is based on a review of newly available scientific literature and recommendations given in the previous years' **opinions**. Scientific opinions on the update of the list of QPS-recommended biological agents intentionally added to food or feed that include *C. glutamicum* are reported for the years 2007, 2008, 2010, 2011, 2012, 2013, 2016, 2017 and 2019. The recommendations given in each QPS Opinion for these respective years are summarized in Appendix 1. The recommendations unanimously confirm that *C. glutamicum* meets the QPS criteria for humans and animals and there are no adverse health effects or on safety concerns.

3. LITERATURE SEARCH (2003-2019)

3.1 Method Used

An electronic literature search (ELS) was conducted by saqual GmbH to collect scientific studies, articles, reports and other documents deemed to be relevant for a review of the safety/risk assessment of *C. glutamicum*. The ELS was carried out in October 30th, 2019 using the Google Scholar database and included information published from 2003 onwards. A detailed description of the ELS strategy employed and a listing of the search **"strings"** used **and "hits"** obtained is detailed in Appendix 2. The ELS was based on the search terms or

"strings" used by EFSA in the 2017 QPS re-evaluations for *C. glutamicum* (Section 2.2, Table 1), but adapted to the Google Scholar and its specific structure. The information collected from the ELS was reviewed and follow-up selective searches were made using the Web of Science Core Collection, CAB Abstracts and Global Health, BIOSIS Citation Index and Current Contents.

3.2 Relevant Records Retrieved

The "hits" or records retrieved in the ELS search were compiled and each publication was reviewed and judged whether it contained information relevant to the safety of C. glutamicum (Appendix 2, Table 2). Some examples of the topics addressing *C. glutamicum* in the records retrieved include the role of pathogenic and non-pathogenic *Corynebacterium spp.*, particularly in human clinical trials (Camello et al., 2003; Roux et al., 2004; Bernard, 2005; Eguchi et al., 2008; Olender, 2012; Oliveira et al., 2017), genetic and biochemical characterization of *C. glutamicum* and site directed mutagenesis (Zhang et al., 2012), gene identification and sequencing (Ikeda and Nagakawa, 2003; Khamis et al., 2004; Ordonez et al., 2005; Yukawa et al., 2007), gene deletion and the effect on cell morphology and antibiotic resistance (Möker et al., 2004; Oritz-Pérez et al., 2010; Bernard, 2012) and carcass degradation (Kim et al., 2017).

Overall, no studies were retrieved either in the ELS or follow-up selective searches that contained information indicating potential safety issues or hazards associated with *C. glutamicum*. Those records retrieved from the searches that support the accepted safe use of different strains of C. glutamicum for amino acid production are reviewed in the following narrative.

4. NARRATIVE - CORYNEBACTERIUM GLUTAMICUM

The scientific data and information presented in the following sections demonstrate that *C. glutamicum* can be safely used as a microorganism for the industrial production of amino acids under the conditions of intended use for the target animals and humans consuming food derived from food-producing animals consuming the substance.

4.1 Taxonomy and Characteristics

The genus *Corynebacterium* belongs to the taxonomic class *Actinobacteria* that represents gram-positive bacteria with a high guanine and cytosine content in their DNA (Stackebrandt et al., 1997; Ventura et al., 2007). The genus Corynebacterium which currently has 110 validated species, is highly diversified and includes species that are of medical, veterinary, or biotechnological relevance (Pascual et al., 1995; Khamis et al., 2004; Bernard, 2012; Soares et al., 2013; Oliveira et al., 2017; Dalen et al., 2018).

One of the most prominent members among the genus *Corynebacterium* is *C. glutamicum*, a bacterium isolated in 1956 from an avian-feces-contaminated soil sample collected from Ueno Zoo in Tokyo (Japan) with a natural capacity to accumulate L-glutamate extracellularly in a biotin-limited medium (Kinoshita et al., 1957; Udaka, 1960; Shiio et al., 1962). *C. glutamicum* belongs to a broad, diverse group of mycolic acid-containing bacteria that share the property of having an unusual cell envelope composition and architecture, differing from those of other gram-positive bacteria (Peuch et al., 2001).

GRAS Notice Dried L-Valine Fermentation Product Appendix 11

C. glutamicum is a nonmotile, facultative anaerobic, Gram-positive biotin-auxotrophic soil bacterium, which forms rod-shaped, straight, or slightly curved cells (Becker and Whittman, 2017). The chromosome of the wild-type strain *C. glutamicum* ATCC 14067 is 3,273,044 bp in length, with an average GC content of 54.13% (Yangyong Lv et al., 2012). *C. glutamicum* can use a variety of carbon sources as growth and energy substrates, including sugars, sugar alcohols, organic acids and aromatic compounds (Becker et al., 2016). For information on taxonomical studies see Abe et al (1967) and Liebl (2005).

Although some *Corynebacterium spp.* have been detected as components of the bacterial community of cheese surface (Monnet et al., 2006), only *C. glutamicum* is considered of relevance for industry feed and food production sectors.

4.2 Amino Acid Production

The global amino acid market is more than \$US 7 billion and is forecast to reach \$US 11.6 billion by the year 2015 and \$US 35 billion by 2022 (Radiant Insights, Inc., 2015). Global volume consumption of feed grade amino acids, estimated at 4.5 million metric tons in 2017, is projected to reach 6.2 million metric tons by 2022. Poultry feed constitutes the largest consumer of feed amino acids globally with 2017 market share of 43.4% (Business Wire, 2017).

C. glutamicum has many fundamental physiological properties that make it an important industrial workhorse. These properties are listed by Lee et al (2016) as follows: (i) not pathogenic and generally recognized as a safe strain (GRAS); (ii) fast growth to high cell densities; (iii) genetically stable owing to the lack of a recombination repair system; (iv) limited restriction-modification system; (v) no autolysis and maintenance of metabolic activity under growth arrested conditions; (vi) low protease activity favoring recombinant protein production; (vii) plasticity of metabolism and strong secondary metabolism properties; and (viii) broad spectrum of carbon utilization (pentoses, hexoses, and alternative carbon sources); stress tolerance to carbon sources.

C. glutamicum's inability to form spores, relatively few growth requirements and natural capability to produce and secrete glutamate in high amounts makes it one of the most important platform microorganisms used for industrial production of amino acids. The practice of developing amino acid overproducing strains by mutagenesis and selection is a very well-established technique (Rowlands, 1984). Different strains have been utilized for decades by the industry to produce glutamate, lysine, tryptophan, threonine, isoleucine, valine and leucine as described in the "Handbook of *Corynebacterium glutamicum*" (Eggeling and Bott, 2005).

Amino acids have a wide variety of characteristics in terms of nutritional value, taste, medicinal action, and chemical properties, and thus have many potential uses, e.g., in food additives, feed supplements, pharmaceuticals, cosmetics, polymer materials, and agricultural chemicals (Ikeda and Takeno, 2013). Industrial amino acids produced by microorganisms are identical to those naturally found in vegetables and animals (Bercovici and Fuller, 1995).

Over the past decades, global competition among leading companies in the field steadily demanded innovation to improve key performance indicators: yield, titer, and productivity (Becker et al., 2016). For this reason, *C. glutamicum* has become one of the best characterized microorganisms worldwide with regard to substrate spectrum and nutrient requirement (Buschke et al., 2013), catabolic and anabolic pathways and their regulation (Kalinowski et al., 2003; Schroder and Tauch, 2010) underlying biochemistry (Blombach and Seibold, 2010) and response to environmental conditions (Ehira et al., 2009).

4.2.1 Production methods

The two microbiological (biotechnology) methods for the industrial production of amino acids are the use of microbial enzymes or immobilized cells (enzymatic method) and fermentation (semi or direct) (Ivanov et al., 2013). The fermentation process is briefly addressed here to illustrate that the purification step within the fermentation process ensures a safe product.

Fermentation processes typically comprise three steps: fermentation, crude isolation and purification (Kusumoto, 2011; Ikeda and Takeno, 2013; Ivanov et al., 2013). In the fermentation process, the desired amino acid is specifically produced by the fermentation microorganism (e.g. *C. glutamicum* in the production of L-glutamine, L-lysine, L-valine). During the crude isolation process, most impurities contained in the fermentation broth are removed by combining various technologies. Final purification is performed to ensure the required quality for the intended use. The final product is obtained as a crystalline powder. The product is released only after quality tests have verified that the product meets specific requirements, and the normal functioning of each process step has been verified. All manufacturing processes to produce amino acids must comply with current good manufacturing practice requirements.

4.3 Other Uses

C. glutamicum is also employed in the production of L-phenylalanine (Shu and Liao, 2002), L-serine (Stolz et al. 2007) and for secreted protein production (Kikuchi et al., 2003; Umakoshi et al., 2011). The bacterium can be engineered for production of isobutanol (Blombach et al., 2011) and succinate (Litsanov et al., 2013).

Products for health and nutrition have the longest history in industrial biotechnology, with *C. glutamicum* being one of the major producers Meanwhile, processes for other products including non-proteinogenic amino acids, vitamins, flavors and fragrances and other nutrients and health care products are also on the rise (Burnett et al., 2013; Becker et al., 2016).

4.4 Genetic engineering

The past quarter century has seen rapid developments in strain development technology. Metabolic engineering has repeatedly led to successful yield improvements, especially in the field of amino acid production by *C. glutamicum* (Kirchner and Tauch, 2003; Eggeling and Bott, 2005; Wendisch, 2006; Becker and Whittmann, 2012; Zahoor et al., 2012; Burkovski, 2013; Buschke et al, 2013; Heider and Wendisch, 2015).

4.5 Safety Concerns

The species, *C. glutamicum*, which serves as recipient and donor strain is generally considered to be non-pathogenic and no safety concerns are reported for this bacterial species for humans and animals. It is not known to produce toxins or present any other hazards (Nelson et al., 2000; Kalinowski et al., 2003; Bernard, 2005; Olender, 2012; Oliviera et al., 2017).

As discussed in Section 2, *C. glutamicum* meets the EFSA premarket qualified presumption of safety (QPS) assessment criteria when used for fermentation of amino acids.

Page 7

C. glutamicum is listed as a fermentation organism in several AAFCO feed ingredient definitions (e.g. 36.1, 36.16 and 36.17 (AAFCO 2016). Moreover, amino acids produced by an aerobic fermentation process using *C. glutamicum* are generally recognized as a safe (GRAS) for humans and food producing animals.

Due to its importance as an amino acid producer, *C. glutamicum* is one of the mostinvestigated and documented microorganisms (Jetten and Sinskey, 1995; Sahm et al., 1995, 2000; Krömer et al., 2004; Leuchtenberger et al. 2005; Dong et al., 2011; Schneider et al., 2011; Ikeda and Takeno, 2013; Lv et al., 2015; Hirasawa and Shimizu, 2016; Wendisch et al., 2016). Lee et al (2016) reviewed the literature and found that as of 2015 over 2,700 papers and 1,700 patents have been reported relating to *C. glutamicum*. The breadth and depth of research carried out on *C. glutamicum* substantiates the accepted safety of using this bacterium by the industry.

In addition to being used for the industrial production of amino acids, *Corynebacterium spp.* have a long history of safe use in food production, including preparation of fermented maize, sorghum, millet, African oil bean seed, rice, soybean and cassava (Caplice and Fitzgerald, 1999; Tateno et al., 2007; Osungbaro, 2009).

4.5.1 Nonpathogenicity

Many of the genes present in the completely sequenced genome of *C. glutamicum* are highly conserved in sequence and gene order within the other members of the *genus Corynebacterium* (Ikeda and Nakagawa, 2003; Kalinowski *et al* 2003). As a non-pathogenic member of the genus, *C. glutamicum* is of increasing interest as a model organism for other members of the suborder including important pathogens such as *C. diphtheriae, Mycobacterium tuberculosis* and *M. leprae* (Camello et al., 2003; Gibson et al., 2003; Moeker et al., 2004; Olender et al., 2012; Tauch and Burkovski, 2015; Cashmore et al., 2017).

5. SUMMARY AND CONCLUSIONS

The data and scientific information presented in this document demonstrate that there are no known safety issues regarding the use of *C. glutamicum* in the production of compounds for use in food for humans and for food-producing animals. *C. glutamicum* is generally considered to be non-pathogenic and no safety concerns are envisaged. The ELS and follow-up selected literature reviews carried out did not reveal any hazards associated with *C. glutamicum* when added to food or feed. These findings agree with the EFSA QPS Opinions issued from 2005 onwards.

6. REFERENCES

AAFCO. 2016. 2016 Official Publication. Association of American Feed Control Officials, Inc. Oxford, Indiana.

Abe, S., Takayama, K.I. and Kinoshita, S. 1967. Taxonomical studies on glutamic acid-producing bacteria. The Journal of General and Applied Microbiology 13(3):279-301.

Becker, J. and Wittmann, C. 2012. Systems and synthetic metabolic engineering for amino acid production—the heartbeat of industrial strain development. Current Opinion in Biotechnology 23(5):718-726.

Becker, J and Wittmann, C. 2017. Industrial microorganisms: Corynebacterium glutamicum. In: C. Wittmann and J.C. Liao (eds) Industrial Biotechnology: Microrganisms. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany. pp 183-222.

Becker, J., Gießelmann, G., Hoffmann, S.L. and Wittmann, C. 2016. Corynebacterium glutamicum for sustainable bioproduction: from metabolic physiology to systems metabolic engineering. In Synthetic Biology-Metabolic Engineering (pp. 217-263). Springer, Cham.

Bercovici, D. and Fuller, M.F. 1995. Industrial amino acids in nonruminant animal nutrition. In: Biotechnology in Animal Feeds and Animal Feeding. R.J. Wallace and A. Chesson (eds), Wiley-VCH Verlag GmbH, Weinheim, Germany. pp. 93-113.

Bernard, K. 2005. Corynebacterium species and coryneforms: an update on taxonomy and diseases attributed to these taxa. Clinical Microbiology Newsletter 27(2):9-18.

Bernard, K. 2012. The genus Corynebacterium and other medically-relevant, coryneform like bacteria. Journal of Clinical Microbiology 50(10):3152-3158.

Blombach B, Seibold G.M. 2010. Carbohydrate metabolism in Corynebacterium glutamicum and applications for the metabolic engineering of L-lysine production strains. Applied Microbiology and Biotechnology 86(5):1313-1322.

Blombach, B., Riester, T., Wieschalka, S., Ziert, C., Youn, J.W., Wendisch, V.F. and Eikmanns, B.J. 2011. Corynebacterium glutamicum tailored for efficient isobutanol production. Applied and Environmental Microbiology 77(10):3300-3310.

Burkovski, A. 2013. Cell envelope of corynebacteria: structure and influence on pathogenicity. ISRN Microbiology 2013:1-12.

Burnett, C.L., Heldreth, B., Bergfeld, W. F., Belsito, D.V., Hill, R. A., Klaassen, C.D., et al. and Andersen, A. 2013. Safety assessment of α -amino acids as used in cosmetics. International Journal of Toxicology, 32(6_suppl):41S-64S.

Buschke, N., Schäfer, R., Becker, J. And Wittmann, C. 2013. Metabolicengineering of industrial platform microorganisms for biorefinery applications—optimization of substrate spectrum and process robustness by rational and evolutive strategies. Bioresource Technology 135:544-554.

Business Wire. 2017. Global Feed Amino Acids Market Overview 2017-2022 - Research and Markets. https://www.businesswire.com/news/home/20171024005799/en/Global-Feed-Amino-Acids-Market-Overview-2017-2022>.

Camello T.C.F, Mattos-Guaraldi, A.L., Formiga, L.C.D. and Marques, E.A. 2003. Nondiphtherial Corynebacterium species isolated from clinical specimens of patients in a University hospital, Rio de Janeiro, Brazil. Brazilian Journal of Microbiolgy 34:39-44.

Caplice, E. and Fitzgerald, G.F. 1999. Food Fermentation: Role of Microorganisms in Food Production and Preservation. International Journal of Food Microbiology 50:131-149.

CLSI, 2007. Clinical and Laboratory Standards Institute (CLSI). Methods for antimicrobial dilution and disk susceptibility testing of infrequently isolated or fastidious bacteria; approved guideline. CLSI document M45-A (ISBN 1-56238-607-7). CLSI, Wayne, Pennsylvania.

Cashmore, T.J., Klatt, S., Yamaryo-Botte, Y., Brammananth, R., Rainczuk, A.K., McConville, M.J., Crellin, P.K. and Coppel, R.L. 2017. Identification of a membrane protein required for lipomannan maturation and lipoarabinomannan synthesis in Corynebacterineae. Journal of Biological Chemistry 292(12):4976-4986.

Costa-Riu, N., Burkovski, A., Krämer, R. and Benz, R. 2003. PorA represents the major cell wall channel of the gram-positive bacterium Corynebacterium glutamicum. Journal of Bacteriology 185:4779 -4786.

Dalen, G., Rachah, A., Nørstebø, H., Schukken, Y.H., Gröhn, Y.T., Barlow, J.W. and Reksen, O. 2018. Transmission dynamics of intramammary infections caused by Corynebacterium species. Journal of Dairy Science, 101(1), 472-479.

Deng, Y., Bao, X., Ji, L., Chen, L., Liu, J., Miao, J., Cheng, D., Bian, H., Li, Y. and Yu, G. 2015. Resistance integrons: class 1, 2 and 3 integrons. Annals of Clinical Microbiology and Antimicrobials 14(1):45-55.

Dong, X., Quinn, P.J. and Wang, X. 2011. Metabolic engineering of Escherichia coli and Corynebacterium glutamicum for the production of L-threonine. Biotechnology Advances 29(1):11-23.

EFSA. 2005. Opinion of the Scientific Committee on a request from EFSA related to A generic approach to the safety assessment by EFSA of microorganisms used in food/feed and the production of food/feed additives (Request No EFSA-Q-2004-021) (adopted on 15 April 2005). EFSA Journal 2005, 226:1-12.

EFSA. 2007. Opinion of the Scientific Committee on a request from EFSA on the introduction of a Qualified Presumption of Safety (QPS) approach for assessment of selected microorganisms referred to EFSA. EFSA Journal 2007, 587:1-16.

EFSA. 2008. Scientific Opinion of the Panel on Biological Hazards on a request from EFSA on the maintenance of the QPS list of microorganisms intentionally added to food or feed. EFSA Journal 2008, 923:1-48.

EFSA. 2010. EFSA Panel on Biological Hazards (BIOHAZ); Scientific Opinion on the maintenance of the list of QPS biological agents intentionally added to food and feed (2010 update). EFSA Journal 2010;8(12):1944. 56 pp.

EFSA. 2011. EFSA Panel on Biological Hazards (BIOHAZ); Scientific Opinion on the maintenance of the list of QPS biological agents intentionally added to food and feed (2011 update). EFSA Journal 2011;9(12):2497. 82 pp.

EFSA. 2012. Scientific Opinion on the maintenance of the list of QPS biological agents intentionally added to food and feed (2012 update). EFSA Panel on Biological Hazards. EFSA Journal 2012, 10(12):3020. 84 pp.

EFSA. 2013. Scientific Opinion on the maintenance of the list of QPS biological agents intentionally added to food and feed (2013 update). EFSA Panel on Biological Hazards. EFSA Journal 2013;11(11):3449, 107 pp.

EFSA. 2017. Scientific Opinion on the update of the list of QPS-recommended biological agents intentionally added to food or feed as notified to EFSA. EFSA Journal 2017, 15(3):4664, 178 pp.

EFSA. 2018. Update of the list of QPS-recommended biological agents intentionally added to food or feed as notified to EFSA 7: suitability of taxonomic units notified to EFSA until September 2017. EFSA Journal 2018, 16(1):5131, 43 pp.

EFSA. 2019. Update of the list of QPS-recommended biological agents intentionally added to food or feed as notified to EFSA 10: suitability of taxonomic units notified to EFSA until March 2019. EFSA Journal 2019, 17(1):5753

Eggeling, L. and Bott, M. 2005. (eds). Handbook of Corynebacterium glutamicum. CRC Press, Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 3000, Boca Raton, FL.

Eguchi, H., Kuwahara, T., Miyamoto, T., Nakayama-Imaohji, H., Ichimura, M., Hayashi, T. and Shiota, H. 2008. High-level fluoroquinolone resistance in ophthalmic clinical isolates belonging to the species Corynebacterium macginleyi. Journal of Clinical Microbiology 46(2):527-532.

Ehira, S., Teramoto, H., Inui, M. and Yukawa, H. 2009. Regulation of Corynebacterium glutamicum heat shock response by the extracytoplasmic-function sigma factor SigH and transcriptional regulators HspR and HrcA. Journal of Bacteriology 191(9):2964-2972.

Ganguly, S. and Satapathy, K.B. 2014. Effect of Surface active agents, Chelating agents and Antibiotics on L-methionine fermentation by a multiple analogue resistant mutant Corynebacterium glutamicum X300. European Chemical Bulleti, 3(4):346-351.

Gibson, K.J., Eggeling, L., Maughan, W.N., Krumbach, K., Gurcha, S.S., Nigou, J., et al. and Besra, G.S. 2003. Disruption of Cg-Ppm1, a polyprenyl monophosphomannose synthase, and the generation of lipoglycan-less mutants in Corynebacterium glutamicum. Journal of Biological Chemistry 278(42):40842-40850.

Guo, Y., Han, M., Yan, W., Xu, J. and Zhang, W. 2014. Generation of branched-chain amino acids resistant Corynebacterium glutamicum acetohydroxy acid synthase by site-directed mutagenesis. Biotechnology and Bioprocess Engineering 19(3):456-467.

Heider, S.A. and Wendisch, V.F. 2015. Engineering microbial cell factories: Metabolic engineering of Corynebacterium glutamicum with a focus on non-natural products. Biotechnology Journal 10(8):1170-1184.

Hirasawa, T. and Shimizu, H. 2016. Recent advances in amino acid production by microbial cells. Current Opinion in Biotechnology 42:133-146.

Ikeda, M. and Nakagawa, S. 2003. The Corynebacterium glutamicum genome: features and impacts on biotechnological processes. Applied Microbiology and Biotechnology 62:99-109.

Ikeda, M. and Takeno, S. 2013. Amino acid production by Corynebacterium glutamicum. In Corynebacterium glutamicum (pp. 107-147). Springer, Berlin, Heidelberg.

Ivanov, K., Stoimenova, A., Obreshkova, D. and Saso, L. 2013. Biotechnology in the production of pharmaceutical industry ingredients: amino acids. Biotechnology & Biotechnological Equipment 27(2):3620-3626.

Jetten, M.S. and Sinskey, A.J. 1995. Recent advances in the physiology and genetics of amino acid-producing bacteria. Critical Reviews in Biotechnology 15(1):73-103.

Khamis, A., Raoult, D. and La Scola, B. 2004. rpoB gene sequencing for identification of Corynebacterium species. Journal of Clinical Microbiology 42(9):3925-3931.

Kikuchi. Y., Date, M., Yokoyama, K., Umezawa, Y. and Matsui, H. 2003. Secretion of activeform Streptoverticillium mobaraense transglutaminase by Corynebacterium glutamicum: processing of the pro-transglutaminase by a cosecreted subtilisin-like protease from Streptomyces albogriseolus. Applied Environmental Microbiology 69:358-366. Kim, S., Kwon, H., Park, S., Jeon, H., Park, J.K. and Park, J. 2017. Pilot-Scale bio-augmented aerobic composting of excavated foot-and-mouth disease Carcasses. Sustainability 9(3):445-458.

Kinoshita, S., Udaka, S. and Shimono, M. 1957. Studies on the amino acid fermentation. Part 1. Production of L-glutamic acid by various microorganisms. In Journal of General Applied Microbiology 3 (3): 193–205.

Kirchner, O. and Tauch, A. 2003. Tools for genetic engineering in the amino acid-producing bacterium Corynebacterium glutamicum. Journal of Biotechnology 104(1-3):287-299.

Krömer, J.O., Sorgenfrei, O., Klopprogge, K., Heinzle, E. and Wittmann, C., 2004. In-depth profiling of lysine-producing Corynebacterium glutamicum by combined analysis of the transcriptome, metabolome, and fluxome. Journal of Bacteriology 186(6):1769-1784.

Kusumoto, I. 2001. Industrial production of L-glutamine. The Journal of Nutrition 131(9):2552S-2555S.

Lee, J.Y., Na, Y.A., Kim, E., Lee, H.S. and Kim, P. 2016. The actinobacterium Corynebacterium glutamicum, an industrial workhorse. Journal of Microbiology and Biotechnology 26(5):807-822.

Leuchtenberger, W., Huthmacher, K. and Drauz, K. 2005: Biotechnological production of amino acids and derivatives. Current status and prospects. In Applied Microbiology and Biotechnology 69 (1):1-8.

Liebl, W. 2005. Corynebacterium taxonomy. Handbook of Corynebacterium glutamicum. CRC Press, Boca Raton, FL. pp 9-34.

Litsanov, B., Brocker, M. And Bott, M. 2013. Glycerol as a substrate for aerobic succinate production in minimal medium with Corynebacterium glutamicum. Microbial biotechnology 6(2):189-195.

Lv, Y., Liao, J., Wu, Z., Han, S., Lin, Y. And Zheng, S. 2012. Genome sequence of Corynebacterium glutamicum ATCC 14067, which provides insight into amino acid biosynthesis in coryneform bacteria. Journal of Bacteriology 194(3):742-743.

Möker, N., Brocker, M., Schaffer, S., Krämer, R., Morbach, S. And Bott, M. 2004. Deletion of the genes encoding the MtrA–MtrB two-component system of Corynebacterium glutamicum has a strong influence on cell morphology, antibiotics susceptibility and expression of genes involved in osmoprotection. Molecular Microbiology 54(2):420-438.

Monnet, C., Correia, K., Sarthou, A.S. and Irlinger, F. 2006. Quantitative detection of Corynebacterium casei in cheese by real-time PCR. Applied and Environmental Microbiology 72(11):6972-6979.

Nelson, K.E., Paulsen, I.T., Heidelberg, J.F. and Fraser, C.M. 2000. Status of genome projects for nonpathogenic bacteria and archaea. Nature Biotechnology 18(10):1049.

Olender, A. 2012. Mechanisms of antibiotic resistance in Corynebacterium spp. causing infections in people. Chapter 15, pp. 87-402. In M. Pana (ed), Antibiotic Resistant Bacteria - A Continuous Challenge in the New Millennium. InTech (www.intechopen.com).

Oliveira, A., Oliveira, L.C., Aburjaile, F., Benevides, L., Tiwari, S., Jamal, S.B., Silva, A., Figueiredo, H.C.P., Ghosh, P., Portela, R.W., De Carvalho Azevedo, V.A. and Wattam, A.R 2017. Insight of Genus Corynebacterium: Ascertaining the Role of Pathogenic and Non-pathogenic Species. Frontiers in Microbiology 8:1937.

Ortiz-Pérez, A., Martín-De-Hijas, N.Z., Esteban, J., Fernández-Natal, M.I., García-Cía, J.I. and Fernández-Roblas, R. 2010. High frequency of macrolide resistance mechanisms in clinical isolates of Corynebacterium species. Microbial Drug Resistance 16(4):273-277.

Osungbaro, T. 2009. Physical and nutritive properties of fermented cereal foods. African Journal of Food Science, 3(2):023-027.

Pascual, C., Lawson, P.A., Farrow, J.A., Gimenez, M.N. and Collins, M.D. 1995. Phylogenetic analysis of the genus Corynebacterium based on 16S rRNA gene sequences. International Journal of Systematic and Evolutionary Microbiology 45(4):724-728.

Puech, V., Chami, M., Lemassu, A., Laneelle, M.A., Schiffler, B., Gounon, P., Bayan, N., Benz, R. and Daffe, M. 2001. Structure of the cell envelope of corynebacteria: importance of the non-covalently bound lipids in the formation of the cell wall permeability barrier and fracture plane. Microbiology 147:1365-1382.

Qin, L., Sakai, Y., Bao, R., Xie, H., Masunaga, K., Miura, M., et al. and Watanabe, H. 2017. Characteristics of Multidrug-Resistant Corynebacterium spp. Isolated from Blood Cultures of Hospitalized Patients in Japan. Japanese Journal of Infectious Diseases 70(2):152-157.

Radiant Insights, Inc. 2015. Amino Acids Market Size & Research Report, 2022. https://www.radiantinsights.com/research/amino-acids-market>.

Roux, V., Drancourt, M., Stein, A., Riegel, P., Raoult, D., and La Scola, B. 2004. Corynebacterium species isolated from bone and joint infections identified by 16S rRNA gene sequence analysis. Journal of Clinical Microbiology 42(5):2231-2233.

Sahm, H., Eggeling, L., Eikmanns, B. and Krämer, R. 1995. Metabolic design in amino acid producing bacterium Corynebacterium glutamicum. FEMS Microbiology Reviews 16(2-3):243-252.

Sahm, H., Eggeling, L. and de Graaf, A.A., 2000. Pathway analysis and metabolic engineering in Corynebacterium glutamicum. Biological Chemistry 381(9-10):899-910.

Schneider, J., Niermann, K. and Wendisch, V.F., 2011. Production of the amino acids Lglutamate, L-lysine, L-ornithine and L-arginine from arabinose by recombinant Corynebacterium glutamicum. Journal of Biotechnology 154(2-3):191-198.

Shiio, I., Ô tsuka, S.I. and Takahashi, M. 1962. Effect of biotin on the bacterial formation of glutamic acid: I. Glutamate formation and cellular permeability of amino acids. The Journal of Biochemistry 51(1):56-62.

Shu, C.H. and Liao, C.C. 2002. Optimization of L-phenylalanine production of Corynebacterium glutamicum under product feedback inhibition by elevated oxygen transfer rate. Biotechnology and Bioengineering 77(2):131-141.

Singh, C. 2010. Phenotypic and genotypic characterization of high-level macrolide and lincosamide resistance in Corynebacterium species in Canada and the distribution of the ermX resistance determinant among Corynebacterium species. MSc. Thesis. Department of Medical Microbiology Faculty of Medicine University of Manitoba Winnipeg, Manitoba, Canada. 122 pp.

Soares, S.C., Silva, A., Trost, E., Blom, J., Ramos, R., Carneiro, A., Ali, A., Santos, A.R., Pinto, A.C., Diniz, C. and Barbosa, E.G., 2013. The pan-genome of the animal pathogen Corynebacterium pseudotuberculosis reveals differences in genome plasticity between the biovar ovis and equi strains. PLoS One 8(1):e53818.

Stackebrandt, E., Rainey, F.A. and Ward-Rainey, N.L. 1997. Proposal for a new hierarchic classification system, Actinobacteria classis nov. International Journal of Systematic and Evolutionary Microbiology, 47(2):479-491.

Stolz, M., Peters-Wendisch, P., Etterich, H., Gerharz, T., Faurie, R., Sahm, H., Fersterra, H. and Eggeling, L. 2007. Reduced folate supply as a key to enhanced L-serine production by Corynebacterium glutamicum. Applied Environmental Microbiology 73:750-755.

Tateno, T., Fukuda, H. and Kondo, A., 2007. Direct production of L-lysine from raw corn starch by Corynebacterium glutamicum secreting Streptococcus bovis α -amylase using cspB promoter and signal sequence. Applied Microbiology and Biotechnology 77(3):533-541.

Tauch, A. and Burkovski, A., 2015. Molecular armory or niche factors: virulence determinants of Corynebacterium species. FEMS Microbiology Letters 362(23).

Udaka, S. 1960. Screening method for microorganisms accumulating metabolites and its use in the isolation of Micrococcus glutamicus. Journal of Bacteriology 79(5):754.

Umakoshi, M., Hirasawa, T., Furusawa, C., Takenaka, Y., Kikuchi, Y. and Shimizu, H. 2011. Improving protein secretion of a transglutaminase-secreting Corynebacterium glutamicum recombinant strain on the basis of 13 C metabolic flux analysis. Journal of Bioscience and Bioengineering 112:595-601.

Ventura, M., Canchaya, C., Tauch, A., Chandra, G., Fitzgerald, G.F., Chater, K.F. and van Sinderen, D. 2007. Genomics of Actinobacteria: tracing the evolutionary history of an ancient phylum. Microbiology and Molecular Biology Reviews 71:495-548.

Wendisch, V.F., Bott, M. And Eikmanns, B.J. 2006. Metabolic engineering of Escherichia coli and Corynebacterium glutamicum for biotechnological production of organic acids and amino acids. Current Opinion in Microbiology 9(3):268-274.

Wendisch, V.F., Jorge, J.M., Pérez-García, F. and Sgobba, E. 2016. Updates on industrial production of amino acids using Corynebacterium glutamicum. World Journal of Microbiology and Biotechnology 32(6):105.

Wittmann, C. and Becker, J. 2007. The L-lysine story: from metabolic pathways to industrial production. In Amino Acid Biosynthesis Biosynthesis ~ Pathways, Regulation and Metabolic Engineering (pp. 39-70). Springer, Berlin, Heidelberg.

Yang, J. and Yang, S. 2017. Comparative analysis of Corynebacterium glutamicum genomes: a new perspective for the industrial production of amino acids. BMC Genomics 18:940.

Yangyong Lv, Juanjun Liao, Zhanhong Wu, Shuangyan Han, Ying Lin, and Suiping Zheng. 2012. Genome Sequence of Corynebacterium glutamicum ATCC 14067, Which Provides Insight into Amino Acid Biosynthesis in Coryneform Bacteria. Journal of Bacteriology 194(3):742-743.

Yukawa, H., Omumasaba, C.A., Nonaka, H., Kos, P., Okai, N., Suzuki, N., Suda, M., Tsuge, Y., Watanabe, J., Ikeda, Y., Verte`s, A.A. and Inui, M. 2007. Comparative analysis of the Corynebacterium glutamicum group and complete genome sequence of strain R. Microbiology 153(4):1042-1058.

Zahoor, A., Lindner, S.N. and Wendisch, V.F. 2012. Metabolic engineering of Corynebacterium glutamicum aimed at alternative carbon sources and new products. Computational and Structural Biotechnology Journal 3(4):e201210004.

Zhang, Y., Shang, X., Deng, A., Chai, X., Lai, S., Zhang, G., and Wen, T. 2012. Genetic and biochemical characterization of Corynebacterium glutamicum ATP phosphoribosyltransferase and its three mutants resistant to feedback inhibition by histidine. Biochimie 94(3):829-838.

7. APPENDIX 1

Scientific Opinion on the update of the list of QPS-recommended biological agents intentionally added to food or feed as notified to EFSA

Scientific opinions for *C. glutamicum* for each year are extracted from the respective reference cited.

Year 2007

EFSA. 2007. Opinion of the Scientific Committee on a request from EFSA on the introduction of a Qualified Presumption of Safety (QPS) approach for assessment of selected microorganisms referred to EFSA. EFSA Journal 2007, 587:1-16.

Corynebacterium glutamicum

C. glutamicum is a soil bacterium widely used for the biotechnological production of amino acids. Amino acid producing strains have been selected and improved by mutagenesis as well as by using recombinant DNA technology. *C. glutamicum* belongs to a genus which also includes significant human pathogenic bacteria. Although some *Corynebacterium* species have been detected as components of the bacterial community of cheese surface, only *C. glutamicum* is considered of relevance for feed and food sectors. Only this species has been considered for the QPS assessment because of its significant role in the industrial production of amino acids.

Taxonomic unit defined

The genus *Corynebacterium* belongs to a branch of the *Actinomycetales* that also includes the genera *Mycobacterium*, *Nocardia* and *Rhodococcus*. Bacterial species belonging to this branch of the Gram-positive bacteria share particular characteristics, such as high G+C content (47–74%) and a specific cell envelope organization, mainly characterized by the presence of peptidoglycan, arabinogalactan and mycolic acids. The genus currently contains 63 species, which colonize different environments.

Is the body of knowledge sufficient?

The characteristics, the physiology and the genetics of *C. glutamicum* are well known. The genome sequence of this industrial bacterium has been determined (Kalinowski et al., 2003), reflecting the considerable biotechnological importance of these organisms.

Are there safety concerns?

C. glutamicum plays an important role in the amino acid fermentation industry. No safety concerns are reported for this bacterial species for humans and animals, and no information on the presence of acquired antibiotic resistances in this bacterial species is available. However, it should be kept in mind that the direct exposure of consumers to this bacterial species is expected to be very low.

Can the safety concerns be excluded?

C. glutamicum has generally been considered to be non-pathogenic and no safety concerns are envisaged. However, its history of use is as a source of amino acids and has not, to date, involved the direct and deliberate exposure of humans or livestock.

Units proposed for QPS status

There is a long history of safe use of *C. glutamicum* as an amino acid producer; consequently, *C. glutamicum* is proposed for QPS status with the qualification that this status applies only when the species is used for production purposes only.

Year 2008

EFSA. 2008. Scientific Opinion of the Panel on Biological Hazards on a request from EFSA on the maintenance of the QPS list of microorganisms intentionally added to food or feed. EFSA Journal 2008, 923, 1-48.

Corynebacterium glutamicum

QPS status applies only when the species is used for production purposes. Year 2010

EFSA. 2010. EFSA Panel on Biological Hazards (BIOHAZ); Scientific Opinion on the maintenance of the list of QPS biological agents intentionally added to food and feed (2010 update). EFSA Journal 2010;8(12):1944. 56 pp.

Corynebacterium glutamicum

QPS recommendation only when the species is used for amino acid production.

Year 2011

EFSA. 2011. EFSA Panel on Biological Hazards (BIOHAZ); Scientific Opinion on the maintenance of the list of QPS biological agents intentionally added to food and feed (2011 update). EFSA Journal 2011;9(12):2497. 82 pp.

Corynebacteria

A literature review did not reveal new information about adverse health effects or on safety concerns since the last update (EFSA, 2010). The QPS recommendation has been confirmed.

Antimicrobial resistance aspects regarding the qualification

While no actual antibiotic MIC determinations for *C. glutamicum* appear to have been done, the antibiotic sensitivity of a strain used for amino acid production, has been tested using a disc method (Costa-Riu et al., 2003). The strain was sensitive to ampicillin, kanamycin, streptomycin, tetracycline, susceptible to gentamicin and resistant to norfloxacin, and chloramphenicol. However, the susceptibility test was not performed according to the methodology recommended by the CLSI guideline (Anonymous, 2007). There is no new information that would require a modification in the qualification of the antimicrobial resistance.

Year 2012

EFSA. 2012. Scientific Opinion on the maintenance of the list of QPS biological agents intentionally added to food and feed (2012 update). EFSA Panel on Biological Hazards. EFSA Journal 2012, 10(12):3020. 84 pp.

Corynebacteria

A literature review did not reveal new information about adverse health effects or safety concerns with regards to the last update (EFSA, 2011). The QPS recommendation has been confirmed.

Antimicrobial resistance aspects regarding the qualification

While no actual antibiotic MIC determinations for *C. glutamicum* appear to have been done, the antibiotic sensitivity of a strain used for amino acid production, has been tested using a disc method (Costa-Riu et al., 2003). The strain was sensitive to ampicillin, kanamycin, streptomycin, tetracycline, gentamicin and resistant to norfloxacin, and chloramphenicol. The susceptibility test was not performed according to the methodology recommended by the CLSI guideline (CLSI, 2007). There is no new information that would require a modification in the qualification of the antimicrobial resistance.

Year 2013

GRAS Notice Dried L-Valine Fermentation Product Appendix 11

EFSA. 2013. Scientific Opinion on the maintenance of the list of QPS biological agents intentionally added to food and feed (2013 update). EFSA Panel on Biological Hazards. EFSA Journal 2013;11(11):3449, 107 pp.

Corynebacterium glutamicum

A literature review did not reveal new information about adverse health effects or safety concerns with regards to the last update (EFSA, 2012). The QPS recommendation has been confirmed.

Antimicrobial resistance aspects regarding the qualification

No new relevant information in the last year was published on the antimicrobial susceptibility or resistance of *C. glutamicum*, therefore no modifications in the qualification of the antimicrobial resistance are proposed.

Year 2017

EFSA. 2017. Scientific Opinion on the update of the list of QPS-recommended biological agents intentionally added to food or feed as notified to EFSA. EFSA Journal 2017, 15(3):4664, 178 pp.

Corynebacterium glutamicum

Taxonomy

Since the last update on the QPS status (EFSA, 2013), no new information on the taxonomy of the *C. glutamicum* has been published.

Update of the body of knowledge on safety concerns

The total number of references found through the ELS was 188; after screening at title/abstract level, 33 passed to the full text phase; of those, two were considered relevant for the QPS assessment. A literature review did not reveal any new information about adverse health effects or safety concerns since the last update (EFSA, 2013).

Revision of antimicrobial resistance aspects

The involvement of class 1 integrons in the AMR towards streptomycin/spectinomycin and tetracycline in *C. glutamicum* isolates has been confirmed and reviewed by Deng et al. (2015). No additional relevant information was published in the last year on the antimicrobial susceptibility or resistance of *C. glutamicum*.

Update on other qualifications

This TU has the following qualification 'QPS only applies when the species is used for amino acid production'. Due to a lack of knowledge in relation to history of use of the viable organisms and because other members of the same genus are pathogenic, the qualification is confirmed.

Other relevant information

No new relevant information was identified.

Conclusion regarding a QPS recommendation

The QPS recommendation is confirmed for *C. glutamicum* as well as the qualification.

Year 2018

EFSA. 2018. Update of the list of QPS-recommended biological agents intentionally added to food or feed as notified to EFSA 7: suitability of taxonomic units notified to EFSA until September 2017. EFSA Journal 2018, 16(1):5131, 43 pp.

Corynebacterium glutamicum

No safety concerns identified in the only article considered relevant for QPS exercise.

Year 2019

EFSA. 2019. Update of the list of QPS-recommended biological agents intentionally added to food or feed as notified to EFSA 10: suitability of taxonomic units notified to EFSA until March 2019. EFSA Journal 2019, 17(7):5753, 79 pp.

Corynebacterium glutamicum

A search for papers potentially relevant for the QPS consideration of Corynebacterium glutamicum provided 45 references. No paper reached the final selection phase, therefore no new safety concerns were identified.

8. APPENDIX 2

Electronic Literature Search for safety / risk assessment of *Corynebacterium* glutamicum

<u>Project:</u> Electronic Literature Search for safety / risk assessment of *Corynebacterium* glutamicum

An electronic literature search (ELS) on *Corynebacterium glutamicum* was conducted to collect studies, articles, reports and reviews that are deemed likely to be relevant for further safety / risk assessment of *Corynebacterium glutamicum*.

The search was conducted with the following information:

- 1. Name of the database searched: Google Scholar (<u>https://scholar.google.co.in</u>).
- 2. Dates on which the database searched: October 30-31, 2019.
- 3. Time period between which the database searched: Publications between 2003 and till date.
- 4. Other restrictions applied: Search terms present in 'allintitle' and 'anywhere' excluding patents and citations.
- 5. Languages searched: For pages written in any language.
- 6. Publications searched: Articles published in any peer reviewed journal; book or book chapters; theses; published reviews; etc.
- 7. Search strategy applied, and records retrieved: Recorded in <u>Table 1</u>.

<u>Selection of articles</u>: A stepwise exercise was performed to select articles that are deemed likely to be relevant for further safety / risk assessment of *Corynebacterium glutamicum* and **the shortlisted articles were made available for the 'full review' at the end of ELS**.

- 1. Step 1: Check if the word "Corynebacterium" is mentioned in title, keywords and/or abstract
- 2. Step 2: Check if the term "Corynebacterium glutamicum" is described in abstract
- 3. Step 3: Read the abstract
- 4. Step 4: Select articles for the 'full review' if abstract describes "Corynebacterium glutamicum" or "Corynebacterium spp" and at least some indicative information that the article covers either safety aspects; hazards / disease events in plant, animals and humans; toxin production; or carry genes for antimicrobial resistance. Further detailed evaluation on deemed likely to be included or excluded for the 'full review' was recorded in <u>Table 2</u>.

Table 1: Electronic Literature Search (ELS) Strategy and Retrieved Hits:

Strategy	Terms	Hits	Notes
number			
#1	allintitle: "Corynebacterium glutamicum"	2780	First 50 hits were checked following 'selection of articles' as mentioned above and recorded in table 2.
#2	allintitle: "Corynebacterium"	4550	First 50 hits were checked following 'selection of articles' as mentioned above and recorded in table 2.
#3	#2 resistance	53	All hits were checked following 'selection of articles' as mentioned above and recorded in table 2.
#4	#2 resistant	52	All hits were checked following 'selection of articles' as mentioned above and recorded in table 2.
#5	#2 antibiotic resistance	4	Both hits were checked following 'selection of articles' as mentioned above and recorded in table 2.
#6	#2 antibiotic resistant	4	All hits were checked following 'selection of articles' as mentioned above and recorded in table 2.
#7	#2 antimicrobial susceptibility OR susceptibilities	10	All hits were checked following 'selection of articles' as mentioned above and recorded in table 2.
#8	#2 infection OR infections	252	All hits were checked following 'selection of articles' as mentioned above and recorded in table 2.
#9	#2 abscess OR abscesses	36	All hits were checked following 'selection of articles' as mentioned above and recorded in table 2.
#10	#2 sepsis OR septic	22	All hits were checked following 'selection of articles' as mentioned above and recorded in table 2.
#11	#2 bacteremia OR bacteraemia	27	All hits were checked following 'selection of articles' as mentioned above and recorded in table 2.
#12	#2 toxic OR toxin OR toxins	42	First 20 hits were checked following 'selection of articles' as mentioned above and recorded in table 2.

Strategy number	Terms	Hits	Notes
#13	#2 pathogen OR pathogenic OR pathogenicity	91	First 20 hits were checked following 'selection of articles' as mentioned above and recorded in table 2.
#14	#2 opportunistic OR virulence OR virulent	50	First 20 hits were checked following 'selection of articles' as mentioned above and recorded in table 2.
#15	#2 safety OR risk	28	All hits were checked following 'selection of articles' as mentioned above and recorded in table 2.
#16	#2 mutagenic OR mutagenicity	00	All hits were checked following 'selection of articles' as mentioned above and recorded in table 2.
#17	#2 toxicity OR toxicology	5	All hits were checked following 'selection of arti cles' as mentioned above and recorded in table 2.
#18	#2 clinical OR clinically	96	First 20 hits were checked following 'selection of articles' as mentioned above and recorded in table 2.
#19	#2 death OR deaths	2	All hits were checked following 'selection of articles' as mentioned above and recorded in table 2.
#20	#2 morbidity OR morbidities	00	
#21	#2 mortality OR mortalities	2	All hits were checked following 'selection of articles' as mentioned above and recorded in table 2.
#22	#2 disease OR diseases	24	First 20 hits were checked following 'selection of articles' as mentioned above and recorded in table 2.
#23	#2 illness OR illnesses	5	All hits were checked following 'selection of articles' as mentioned above and recorded in table 2.
#24	anywhere: "Corynebacterium glutamicum"	611	First 20 hits were checked following 'selection of articles' as mentioned above and recorded in table 2.

Strategy	Terms	Hits	Notes
number			
#25	#24 resistance	453	First 20 hits were checked following 'selection of articles' as mentioned above and recorded in table 2.
#26	#24 resistant	494	First 20 hits were checked following 'selection of articles' as mentioned above and recorded in table 2.
#27	#24 antibiotic resistance	436	First 20 hits were checked following 'selection of articles' as mentioned above and recorded in table 2.
#28	#24 antibiotic resistant	353	First 20 hits were checked following 'selection of articles' as mentioned above and recorded in table 2.
#29	#24 antimicrobial susceptibility OR susceptibilities	269	First 20 hits were checked following 'selection of articles' as mentioned above and recorded in table 2.
#30	#24 infection OR infections	271	First 20 hits were checked following 'selection of articles' as mentioned above and recorded in table 2.
#31	#24 abscess OR abscesses	15	All hits were checked following 'selection of articles' as mentioned above and recorded in table 2.
#32	#24 sepsis OR septic	32	All hits were checked following 'selection of articles' as mentioned above and recorded in table 2.
#33	#24 bacteremia OR bacteraemia	18	All hits were checked following 'selection of articles' as mentioned above and recorded in table 2.
#34	#24 toxic OR toxin OR toxins	300	First 20 hits were checked following 'selection of articles' as mentioned above and recorded in table 2.
#35	#24 pathogen OR pathogenic OR pathogenicity	296	First 20 hits were checked following 'selection of articles' as mentioned above and recorded in table 2.
#36	#24 opportunistic OR virulence OR virulent	217	First 20 hits were checked following 'selection of arti cles' as mentioned above and recorded in table 2.

Strategy	Terms	Hits	Notes
number			
#37	#24 safety OR risk	223	First 20 hits were checked following 'selection of articles' as mentioned above and recorded in table 2.
#38	#24 mutagenic OR mutagenicity	39	First 10 hits were checked following 'selection of articles' as mentioned above and recorded in table 2.
#39	#24 toxicity OR toxicology	205	First 20 hits were checked following 'selection of articles' as mentioned above and recorded in table 2.
#40	#24 clinical OR clinically	252	First 20 hits were checked following 'selection of articles' as mentioned above and recorded in table 2.
#41	#24 death OR deaths	219	First 20 hits were checked following 'selection of articles' as mentioned above and recorded in table 2.
#42	#24 morbidity OR morbidities	28	First 10 hits were checked following 'selection of articles' as mentioned above and recorded in table 2.
#43	#24 mortality OR mortalities	235	First 20 hits were checked following 'selection of articles' as mentioned above and recorded in table 2.
#44	#24 disease OR diseases	355	First 20 hits were checked following 'selection of articles' as mentioned above and recorded in table 2.
#45	#24 illness OR illnesses	43	First 10 hits were checked following 'selection of articles' as mentioned above a nd recorded in table 2.
--			

Search	Search	Selected Publications	Include / Exclude
Strate	Strategy		
gy No.			Justification
/ hits			
#1 /	allintitle:	Handbook of	Review / Exclude
2780	"Corynebacteriu	Corynebacterium glutamicum	
	m glutamicum"	Eggeling L, Bott M. CRC Press,	Not relevant to safety
		2005. ISBN: 9781420039696	of C. glutamicum
		The Corynebacterium	Review / Exclude
		glutamicum genome: features	
		and impacts on	Not relevant to safety
		biotechnological processes	of C. glutamicum
		agawa S. Applied Microbiology and	
		Biotechnology, 2003. Vol. 62(2 –	
		3), pp 99 – 109.	
		Comparative analysis of the	Review / Exclude
		Corynebacterium glutamicum	
		group and complete genome	Not relevant to safety
		sequence of strain R	of C. glutamicum
		Yukawa H, et al. Microbiology,	
		2007. Vol. 153, pp. 1042 – 1058.	
		doi: 10.1099/mic.0.2006/003657-	
		0	
		Deletion of the genes encoding	Review / Exclude
		the MtrA–MtrB two-	
		component system of	Not relevant to safety
		Corynebacterium glutamicum	of C. glutamicum
		has a strong influence on cell	
		morphology, antibiotics	
		susceptibility and expression	
		of genes involved in	
		osmoprotection	
		Möker N, et al. Molecular	
		Microbiology, 2004. Vol. 54 (2),	
		pp.	
		420 – 438.	
#2/	allintitle:	The Corynebacterium	Review / Exclude
4550	"Corynebacteriu	glutamicum genome: features	
	m"	and impacts on	Not relevant to safety
		biotechnological processes	of C. glutamicum
		M.Ikeda et al. Applied	
		Microbiology and Biotechnology.,	
		2003. Vol.62 (2-3), pp. 99 – 109.	
		Several results repeated	
#3 / 53	allintitle:	Analysis of Genes Involved in	Review / Exclude
	Corynebacterium	Arsenic Resistance in	
	resistance	Corynebacterium alutamicum	Not relevant to safety

Search	Search	Selected Publications	Include / Exclude
Strate	Strategy		
gy No.			Justification
/ hits			
		ATCC 13032Efrén Ordóñez et al.	of C. glutamicum
		Applied of Genes Involved in	
		Arsenic Resistance in	
		Corynebacterium glutamicum	
		ATCC13032, 2005. Vol. 71(10), pp.	
		6206 – 6215.	
		A Corynebacterium	Review / Exclude
		glutamicum gene conferring	
		multidrug resistance in the	Not relevant to C.
		heterologous host Escherichia	glutamicum
		coli.W Jäger, et al. Journal of	
		Biotechnology 1997. Vol. 179(7),	
		pp. 2449 – 2451.	
		The alanine racemase gene alr	Review / Exclude
		resistance genes in cloning	Not relevant to safety
		systems for industrial	of C. glutamicum
		Corvnebacterium glutamicum	
		strainsAndreas Tauch, et al	
		Journal of Biotechnology, 2002.	
		Vol. 99(1), pp. 79 – 91.	
		Mechanisms of Antibiotic	Review / Exclude
		Resistance in	
		Corynebacterium spp.	Not relevant to safety
		Causing Infections in People	of C. glutamicum
		Olender A. 2012	
		https://www.intechopen.com/	
		https://cdn.intechopen.com/pdfs-	
		<u>wm/34699.pdf</u>	
		The identification and	Exclude (based on
		resistance analysis to 66	abstract; no
		strains of corynebacterium	translation of full
		clinical isolates	paper))
		Zhang LWZ. Chinese Journal of	
		Laboratory Diagnosis, 2007. Vol. 7.	Not relevant to safety
		http://en.cnki.com.cn/Article_en/	of C. glutamicum
		ZSZD200707029.htm	
		Antimicrobial Resistance in	Review / Exclude
		Corynebacterium spp.,	
		Arcanobacterium spp., and	Not relevant to safety
		Trueperella pyogenes.	of C. glutamicum
		Feßler AT, Schwarz S. Microbiology	
		Spectrum, 2017. Vol. 5(6). DOI:	
		10.1128/microbiolspec.ARBA-	

Search	Search	Selected Publications	Include / Exclude
Strate	Strategy		
gy No.			Justification
/ hits		0001 0017	
		0021-2017	Doviow / Excludo
		sigma factor gD conform	Review / Exclude
		resistance to environmental	Not relevant to safety
		stress by enhancing mycolate	of C. alutamicum
		synthesis and modifying	or of gratarmean
		peptidoglycan structures in	
		Corynebacterium glutamicum	
		Koichi Toyoda,	
		Toyoda K, Masayuki I. Molecular	
		Microbiology, 2018. Vol. 107 (3),	
		pp. 312 – 329.	
		Phenotypic and genotypic	Review / Exclude
		characterization of high-level	
		macrolide and lincosamide	Not relevant to safety
		resistance in	of C. glutamicum
		Consider and the distribution of	
		the ermX resistance	
		determinant among	
		Corvnebacterium species	
		Singh, Cathleen. Theses, 2010.	
		A National Survey of Multi-	Review / Exclude
		Drug Resistance in	
		Ophthalmic Clinical Isolates	Not relevant to safety
		of Corynebacterium in Japan	of C. glutamicum
		Eguchi H, et al., Investigative	
		Ophthalmology and Visual Science,	
		2008. Vol.49, pp. 5530	
#4 / 50	alliptitla	Several results repeated	Daviaw / Evaluda
#4/52	Corveobactorium	reeuback-resistant	Review / Exclude
	resistant	increases valine production in	Not relevant to safety
		Corvnebacterium	of C. glutamicum
		glutamicum Veronika Elišáková .	or or gratarnioann
		et al. Genetics and Molecular	
		Biology, 2005.,pp 207 – 213.	
		Co-expression of feedback-	Review / Exclude
		resistant threonine	
		dehydratase and acetohydroxy	Not relevant to safety
		acid synthase increase I-	of C. glutamicum
		isoleucine production in	
		Corynebacterium	
		giutamicumAuthor links open	
		overlay panelLianghongYin. et al.	

Search	Search	Selected Publications	Include / Exclude
Strate	Strategy		
gy No.			Justification
/ hits			
		Metabolic Engineering, 2012. Vol.	
		14 (5), pp.542 – 550.	
		Corynebacterium resistens sp.	Review / Exclude
		nov., a New Multidrug-	
		Resistant Coryneform	Not relevant to C.
		Bacterium Isolated from	glutamicum
		Human InfectionsYoshihito	
		Otsuka, et al. Journal of Clinical	
		Microbiology, 2005. Vol. 43 (8), pp	
		3713 – 3717.	
		Adaptive evolution of	Review / Exclude
		Corynebacterium glutamicum	
		resistant to oxidative stress	Not relevant to safety
		and its global gene expression	of C. glutamicum
		profilingJY Lee, et al.	
		Biotechnology Letters, 2013. Vol.	
		35 (5), pp 709 – 717.	
		Genetic and biochemical	Review / Exclude
			Not role (opt to cofet)
			of C alutamicum
		nhosphoribosyltransforaso	or C. giutarnicum
		and its three mutants	
		resistant to feedback	
		inhibition by histidineYun	
		Zhang et al. Japanese Journal of	
		Infectious, 2012, Vol. 94(3), Pp	
		829-838	
		Characteristics of Multidrug-	Review / Exclude
		resistant Corynebacterium	
		spp. Isolated from Blood	Not relevant to safety
		Cultures from Hospitalized	of C. glutamicum
		Patients in JapanLiang Qin, et	
		al. Japanese Journal of Infectious	
		Diseases, 2017. Vol.70(2), pp.152-	
		157	
		Generation of branched-chain	Review / Include
		amino acids resistant	
		Corynebacterium glutamicum	Article discusses
		acetohydroxy acid synthase by	antibiotic resistance.
		site-directed mutagenesisGuo	
		Y, et al. Biotechnology and	
		Bioprocess Engineering, 2014. Vol.	
		19(3), pp. 456 – 467.	
		Few results repeated	

Strate			Therade / Exclude
	Strategy		
gy INO.			Justification
#5/4	allintitle	Results repeated	
// 5/ +	Corvnebacterium		
	antibiotic		
	resistance		
#6/4	allintitle:	none	
	Corynebacterium		
	antibiotic		
	resistant		
#//10	allintitle:	Antimicrobial Susceptibility	Review / Exclude
		Corverbactorium con Strains	Not rolovant to cofoty
		Collected in Europe and USA	of C alutamicum
	susceptibilities	Medical Centers (2006-2010)	
		Sader HS, et al. Sentry	
		Antimicrobial Surveillance, 2012.	
		P1092 ECCMID 2012 JMI	
		Laboratories North Liberty, IA,	
		USA	
		Few results repeated	
#8 /	allintitle:	Idiopathic Granulomatous	Review / Exclude
252		Mastitis Associated with	Not role (opt to cofet)
	infections	Lefection Creed Michael Stary, et	of C alutamicum
	IIIICCIUIIS	al Hawai'I Medical Journal 2011	or c. glutarmeum
		Vol.70 (5), pp. 99 –101.	
		Corynebacterium-associated	Review / Exclude
		skin infections	
		Blaise G, et al. International	Not relevant to safety
		Journal of Dermatology, 2008. Vol.	of C. glutamicum
		47 (9), pp. 884 – 890.	
		Corynebacterium Species	Review / Exclude
		Infections Identified by 16S	Not relevant to safety
		rRNA Gene Sequence Analysis	of C alutamicum
		Raoult D. et al. J. Clin. Microbiol.	or of glutarmean
		2004. Vol. 42 (5), pp. 2231 – 2233.	
		Case of erythema nodosum	Review / Exclude
		associated with	
		granulomatous mastitis	Not relevant to safety
		probably due to	of C. glutamicum
		Corynebacterium infection	
1		Kubo Y, et al. The Journal of	
		Dermatology 2014 V/al $41(0)$ as	
		Dermatology, 2014. Vol. 41(9), pp.	
		Isolated from Bone and Joint Infections Identified by 16S rRNA Gene Sequence Analysis Raoult D, et al. J. Clin. Microbiol., 2004. Vol. 42 (5), pp. 2231 – 2233. Case of erythema nodosum associated with granulomatous mastitis probably due to Corynebacterium infection Kubo Y, et al. The Journal of	Not relevant to safety of C. glutamicum Review / Exclude Not relevant to safety of C. glutamicum

Search	Search	Selected Publications	Include / Exclude
Strate	Strategy		
gy No.			Justification
/ hits			
		opportunistic	(based on abstract;
		corynebacterium species]	no translation of full
		Olender A, Łetowska I. Medycyna	paper))
		Doswiadczalna i Mikrobiologia,	
		2010. Vol. 62 (2), pp. 135 – 140.	Not relevant to safety
			of C. glutamicum
		Identification of	Review / Exclude
		Corynebacterium spp. isolated	
		from bovine intramammary	Not relevant to safety
		infections by matrix-assisted	of C. glutamicum
		laser desorption ionization-	
		time of flight mass	
		spectrometry	
		dos Santos MV, et al. Veterinary	
		Microbiology, 2014. Vol. 1/3 (1 –	
		2), pp. 147 – 151.	Doviow / Evoludo
		Corveobactorium Species	Review / LAciude
		Equipine Dacter run Species	Not relevant to safety
		Dr. Silni Basak (Ed.). In Tech. DOL:	of C alutamicum
		10.5772/56214.	or c. gratarnicarn
		Hardware Infection with	Review / Exclude
		Corynebacterium spp.: a Case	
		Report and Review of the	Not relevant to safety
		Literature	of C. glutamicum
		Clarridge III JE, et al. Clinical	
		Microbiology Newsletter, 2014.	
		V01. $36(2)$, pp. $9 - 13$.	Daviaw / Evaluda
		Cerebrospinal huid shunt	Review / Exclude
		Corveobactorium ser Case	Not rolevant to cofety
		con ynebacter funn sp. Case	of C alutamicum
		Randi BA et al Brain Iniury 2014	or c. grutarnicum
		$V_{ol} = 28(9)$ nn $1223 - 1225$	
		Transmission dynamics of	Review / Exclude
		intramammary infections	
		caused by Corvnebacterium	Not relevant to safety
		species	of C. glutamicum
		Delen G, et al. Journal of Dairv	
		Science, 2018. Vol. 101 (1), pp. 472	
		- 479.	
		Modelling and dynamics of	Review / Exclude
		intramammary infections	
		caused by Corynebacterium	Not relevant to safety
		species	of C. glutamicum

Search	Search	Selected Publications	Include / Exclude
Strate	Strategy		
gy No.			Justification
/ hits			
		Rachah A, et al. 7th International	
		Conference on Modeling,	
		Simulation, and Applied	
		Optimization (ICMSAO), 2017.	
		Conference proceedings.	
		Few results repeated	
#9/36	allintitle:	none	
	Corynebacterium		
	abscess OR		
	abscesses		
#10 /	allintitle:	none	
22	Corynebacterium		
	sepsis OR septic		
#11 / 27	allintitle:	none	
	Corynebacterium		
	bacteremia OR		
	bacteraemia		
#12 /	allintitle:	none	
42	Corynebacterium		
	toxic OR toxin		
	OR toxins		
#13 / 91	allintitle:	Corynebacterium occurance	Exclude (based on
	Corynebacterium	and pathogenicity for humans	abstract; no
	pathogen OR	and animals Banaszkiewicz T,	translation of full
	pathogenic OR	Krukowski H. Medycyna	paper))
	pathogenicity	Weterynaryjna, 2011. Vol.67 No.4	
		pp.229-232	Not relevant to safety
			of C. glutamicum
		Insight of Genus	Review / Exclude
		Corynebacterium	
		Ascertaining the Role of	Not relevant to safety
		Pathogenic and Non-	of C. glutamicum
		pathogenic Species	
		Oliveira A, et al. Front. Microbiol.,	
		nttps://doi.org/10.3389/fmicb.201	
		7.01937	
<u> </u>		Few results repeated	Doutour / Evolution
#14 /			Review / Exclude
50		determinante of	Not role (apt to cofet)
			not relevant to safety
	VIRUIENCE OR	Corynebacterium species	or C. glutamicum
	viruient	Microbiology Latters 2010 Mal	
		$\frac{1}{2} = \frac{1}{2} = \frac{1}$	
1	1	02(2), pp.135-140	

Search	Search	Selected Publications	Include / Exclude
Strate	Strategy		
gy No.			Justification
/ hits			
		Few results repeated	
#15 /	allintitle:	Safety and efficacy of L	Review / Include
28	Corynebacterium	arginine produced by	
	safety OR risk	Corynebacterium glutamicum	Assessment reviews
		KCTC 10423BP for all animal	safety, efficacy and
		species	toxicity
		EFSA. EFSA Journal, 2016. DOI:	
		10.2903/J.ersa.2016.4345	
		Scientific Opinion on the	Review / Include
		safety and efficacy of L-valine	Accessment reviews
		produced by Corynebacterium	Assessment reviews
		for all animal species based	tovicity
		on a dession submitted by C I	loxicity
		Europe GmbH	
		EESA EESA Journal 2013 DOL	
		10 2903/i efsa 2013 3429	
		Safety and efficacy of I-	Review / Include
		arginine produced by	
		Corynebacterium glutamicum	Assessment reviews
		KCCM 80099 for all animal	safety, efficacy and
		species	toxicity
		EFSA. EFSA Journal, 2017. DOI:	
		10.2903/j.efsa.2017.4858	
		Opinion of the Panel on	Review / Include
		additives and products or	
		substances used in animal	Assessment reviews
		feed (FEEDAP) on the safety	safety, efficacy and
		and efficacy of the product	toxicity
		containing L-arginine	
		produced by fermentation	
		from Corynebacterium	
		glutamicum (AICC-13870) for	
		all animal species	
		EFSA. EFSA JOUITIAI, 2007. DOT:	
		Scientific Opinion on the	Paviaw / Includa
		safety and efficacy of L-valine	
		(ValAMINO [®]) produced by	Assessment reviews
		Corvnebacterium alutamicum	safety, efficacy and
		(DSM 25202) for all animal	toxicity
		species, based on a dossier	
		submitted by Evonik	
		Industries AG	
		EFSA. EFSA Journal, 2014. DOI:	

Search	Search	Selected Publications	Include / Exclude
Strate	Strategy		
gy No.			Justification
/ hits			
		10.2903/j.efsa.2014.3795	
		Scientific Opinion on the	Review / Include
		safety and efficacy of L-lysine	
		monohydrochloride,	Assessment reviews
		technically pure, produced	safety, efficacy and
		with Escherichia coli CGMCC	toxicity
		3705 and L-lysine sulphate	
		produced with	
		Corynebacterium glutamicum	
		CGMCC 3/04 for all animal	
		species, based on a dossier	
		submitted by HELM AG	
		EFSA. EFSA JOURNAI, 2015. DOI:	
		10.2903/J.elsa.2015.4150	Daviaw / Includa
		(base) Livsing	Review / Include
		(base), i-iysine monohydrochloride and	Assessment reviews
		I-lysine sulfate produced using	safety efficacy and
		different strains of	toxicity
		Corvnebacterium glutamicum	
		for all animal species based on	
		a dossier submitted by	
		FEFANA asbl	
		EFSA. EFSA Journal, 2019. DOI:	
		10.2903/j.efsa.2019.5532	
		Safety and efficacy of I-lysine	Review / Include
		monohydrochloride and	
		concentrated liquid I-lysine	Assessment reviews
		(base) produced by	safety, efficacy and
		fermentation using	toxicity
		Corynebacterium glutamicum	
		strain NRRL B-50775 for all	
		animal species based on a	
		dossier submitted by ADM	
		EFSA. EFSA JOURNAI, 2019. DOI:	
		10.2903/J.elsd.2019.3537	Doviow / Includo
		Largining produced by	Review / Include
		fermentation using	Assessment reviews
		Corvnebacterium glutamicum	safety efficacy and
		KCCM 10741P for all animal	toxicity
		species	<u>-</u> -
		EFSA. EFSA Journal, 2018. DOI:	
		10.2903/j.efsa.2018.5277	

Search	Search	Selected Publications	Include / Exclude
Strate	Strategy		
gy No.			Justification
/ hits			
		Safety and efficacy of	Review / Include
		I-arginine produced by	
		fermentation with	Assessment reviews
		Corynebacterium glutamicum	safety, efficacy and
		KCCM 80182 for all animal	toxicity
		species	
		EFSA. EFSA Journal, 2019. DOI:	
		10.2903/j.etsa.2019.5696	
		Safety and efficacy of I-histidine	Review / Include
		monohydrochloride	Assessment reviews
		monohydrate produced using	safety, efficacy and
		Corynebacterium glutamicum	toxicity
		KCCM 80172 for all animal	
		species	
		EFSA. EFSA Journal, 2019. DOI:	
		10.2903/j.efsa.2019.5783	
		Few results repeated	
#16/	allintitle:		
0			
#17 / 5	alliptitle:	Transcriptomic analysis of	Doviow / Evoludo
#1775	Corvpobactorium		Review / Exclude
	toxicity OR	in the response to the toxicity	Not relevant to safety
	toxicology	of furfural present in	of C. alutamicum
	toxicology	lignocellulosic hydrolysates	or of gratannoann
		Park HS, et al. Process	
		Biochemistry, 2015. Vol. 50(3), pp.	
		347 – 356.	
#18 /	allintitle:	The clinical course of	Review / Exclude
96	Corynebacterium	peritoneal dialysis-related	
	clinical OR	peritonitis caused by	Not relevant to safety
	clinically	Corynebacterium species	of C. glutamicum
		Szeto CC, et al. Nephrology Dialysis	
		Transplantation, 2005. Vol. 20	
		(12), pp. 2793 – 2796.	
		https://doi.org/10.1093/ndt/gfi123	
			Review / Exclude
		Corynepacterium species	Not polo voiat to officia
		isolated from clinical	not relevant to safety
		specifiens of patients in a	or C. grutamicum
		laneiro Brazil	
		Camello TCE et al Braz I	

Search	Search	Selected Publications	Include / Exclude
Strate	Strategy		
gy No.			Justification
/ hits			
		Microbiol., 2003. Vol. 34 (1).	
		Antibiotic susceptibility of	Review / Exclude
		Corynebacterium isolated	
		from clinical specimens	Not relevant to safety
		Chen D, et al. Chinese Journal of	of C. glutamicum
		Clinical Laboratory Science, 2011.	
		Vol. 3	
		Relationship Between	Review / Exclude
		Susceptibility to Quinolones	
		in Corynebacterium	Not relevant to safety
		Ophthalmic Clinical Isolates	of C. glutamicum
		and the GyrA Gene Mutations	
		Katome T, et al. Investigative	
		Ophthalmology & Visual Science,	
		2008. Vol. 49 (13).	
		Relationship Between	Review / Exclude
		Mutations in the gyrA Gene	
		and Quinoione Resistance in	Not relevant to safety
		Ophthalmic Clinical Isolates	or C. glutamicum
		or Corynebacterium Species	
		Control A, et al., Investigative	
		2006 Vol. 47 (12) pp. 2566	
		Epdophthalmitis Causad by	Doviow / Evoludo
		Corveshactorium Species:	Review / Liciude
		Clinical Features Antibiotic	Not relevant to safety
		Suscentibility and Treatment	of C alutamicum
		Outcomes	or c. gratarnicam
		Kuriyan AF et al. Ophthalmology	
		retina 2017 Vol 1 (3) pp 200 -	
		205.	
#19 /2	allintitle:	none	
	Corynebacterium		
	death OR deaths		
#20/0	allintitle:	none	
	Corynebacterium		
	morbidity OR		
	morbidities		
#21/2	allintitle:	Biodegradation of	Exclude (based on
	Corynebacterium	Contaminated Environments	abstract; no
	mortality OR	Using Corynebacterium	translation of full
	mortalities	glutamicum and Its	paper))
		Application to Livestock	
		Mortalities Burials	Not relevant to safety
		[rest of the details are in Chinese]	of C. glutamicum

Search	Search	Selected Publications	Include / Exclude
Strate	Strategy		luctification
/ hits			JUSTITICATION
#22 /	allintitle:	Corynebacterium species and	Exclude
24	Corynebacterium	coryneforms: An update on	
	disease OR	taxonomy and diseases	Not relevant to safety
	diseases	Attributed to these taxa	of C. glutamicum
		Newsletter 2005 Vol 27(2) pp 9	
		– 18. DOI:	
		https://doi.org/10.1016/j.clinmicn	
		<u>ews.2005.01.002</u> .	
#23/5	allintitle:	none	
	Corynebacterium		
	illnesses		
#24 /	anywhere:	Few results repeated	
611	"Corynebacteriu		
	m glutamicum"		
#257	anywhere:	none	
400	m dlutamicum"		
	resistance		
#26 /	anywhere:	none	
494	"Corynebacteriu		
	m giutamicum resistant		
#27 /	anywhere:	none	
436	"Corynebacteriu		
	m glutamicum"		
	antibiotic		
#20 /	resistance	Drivers of bacterial genemos	Evoludo
#207 353	"Corvnehacteriu	plasticity and roles they play	
000	m glutamicum"	in pathogen virulence,	Not relevant to safety
	antibiotic	persistence and drug	of C. glutamicum
	resistant	resistance	
		Patel S. Infection, Genetics and	
		Evolution, 2016. Vol. 45, pp. 151 –	
#29 /	anywhere:	none	
269	"Corynebacteriu		
	m glutamicum"		
	antimicrobial		
	susceptibility OR		
#30 /	anywhere.	none	
271	"Corynebacteriu		

Search	Search	Selected Publications	Include / Exclude
Strate	Strategy		
gy No.			Justification
/ hits			
	m glutamicum		
	infections		
#31 / 15	anywhere:	Corynebacterium ulcerans, an	Exclude
	"Corynebacteriu	emerging human pathogen	
	m glutamicum"	Hacker E, et al. Future	Not relevant to C.
	abscess OR	Microbiology, 2016. Vol. 11 (9).	glutamicum
	abscesses	https://doi.org/10.2217/fmb-2016-	
	1	0085	
#327	anywnere:	none	
52	m dutamicum"		
	sepsis OR septic		
#33 /	anywhere:	none	
18	"Corynebacteriu		
	m glutamicum"		
	bacteremia OR		
#24/		2020	
#347	"Corvnehacteriu		
500	m glutamicum"		
	toxic OR toxin		
	OR toxins		
#35 /	anywhere:	none	
296	"Corynebacteriu		
	m glutamicum"		
	pathogonic OP		
#36 /	anywhere:	none	
217	"Corynebacteriu		
	m glutamicum"		
	opportunistic OR		
	virulence OR		
	virulent		
#3//	anywnere:	none	
223	m alutamicum"		
	safety OR risk		
#38 /	anywhere:	none	
39	"Corynebacteriu		
	m glutamicum"		
	mutagenic OR		
	mutagenicity		
#39 /	anywhere:	none	

Search Strate gy No. / hits	Search Strategy	Selected Publications	Include / Exclude Justification
205	"Corynebacteriu m glutamicum" toxicity OR toxicology		
#40 / 252	anywhere: "Corynebacteriu m glutamicum" clinical OR clinically	none	
#41 / 219	anywhere: "Corynebacteriu m glutamicum" death OR deaths	none	
#42 / 28	anywhere: "Corynebacteriu m glutamicum" morbidity OR morbidities	none	
#43 / 235	anywhere: "Corynebacteriu m glutamicum" mortality OR mortalities	none	
#44 /355	anywhere: "Corynebacteriu m glutamicum" disease OR diseases	none	
#45 / 43	anywhere: "Corynebacteriu m glutamicum"	none	

REPORT

Analytical Method Validation of Dried L-Valine Fermentation Product using HPLC (Confidential)

Original final report date: Dec 21, 2020

Study Director	Quality Assurance Manager
	(b) (4)
Dami Jeong	Seok-Hun Yun

CJ Research Institute of Biotechnology

Table of contents

1. Introduction
2. Test article
3. HPLC analytical condition
4. Standard preparation
5. Sample preparation
6. Data processing and calculation
7. Specificity
8. System suitability
9. Homogeneity
10. Stability11
11. Linearity
12. Limit of detection and limit of quantification
13. Precision
14. Accuracy
15. Robustness
16. Impurity identification
17. Conclusion
18. Raw data file

1. Introduction

There are several official methods to analyze L-valine. The commonly used method of L-valine analysis is potentiometric titration with perchloric acid, however, most other amino acids could also be detected by this method. Therefore, titration method is not applicable in case of sample containing the other amino acids as an impurity.

For this reason, CJ developed the analytical method for 'Dried L-Valine Fermentation Product' and this analytical method was verified by method validation.

2. Test article

- 2.1. Test Article
- 1) Identity: Dried L-Valine Fermentation Product (VAL Pro)
- 2) Lot number: GVAL200910
- 3) Purity: > 72.0% (L-Valine, dry basis)
- 4) Date of receipt: November 30, 2020
- 5) Amount of receipt: approximately 100 g
- 6) Storage conditions: room temperature
- 7) Supplier: CJ Research Institute of Biotechnology

2.2. Reference standard

- 1) Identity: L-Valine
- 2) Product No.: V0500 (SLCD6123)
- 3) Purity: 100%
- 4) Quality release Date: October 04, 2019
- 5) Amount of receipt: 25 g
- 6) Storage conditions: room temperature
- 7) Supplier: (b) (4)
- 8) Expiry date (retest date): October, 2022

3. HPLC analytical condition

3.1. HPLC Condition

Table 1. HPLC Condition

	Condition
System	HPLC (SHIMADZU Nexera UPLC-30A)
Detector	Fluorescence detector (Excitation λ : 338nm Emission λ : 425nm)
Column	ODS C18, 150×4.6 mm, particle size 3 μ m
Column temperature	40°C
Mobile phase	16.7 mM-KH ₂ PO ₄ + 5 mM OSA in 12% CH ₃ CN, pH 2.5 (by H ₃ PO ₄)
Flow rate of mobile phase	1.0 ml/min
Reaction reagent	201.91mM-KOH + 241.39mM-H ₃ BO ₃ + 2.53mM-OPA + C ₂ H ₆ OS 1mL + CH ₃ OH 5mL + 3.5%-Brij 1.25mL
Flow rate of reaction reagent	0.5 ml/min
Sample temperature	15°C
Injection volume	5 µl
Concentration of sample and standard solution	0.1 g/L (L-valine concentration basis)

3.2. Preparation reagent for mobile phase and reaction reagent

Table 2. Preparation reagent for mobile phase and reaction reagent

Mobile phase			
	Purity	Manufacturer	Product No.
Acetonitrile(CH ₃ CN)	HPLC Grade	(b) (4)	(b) (4)
Potassium dihydrogen phosphate (KH ₂ PO ₄)	≥99%	(b) (4)	(b) (4)
Phosphoric acid(H ₃ PO ₄)	≥85%	(b) (4)	(b) (4)
1-Octanfonic acid sodium salt (OSA)	≥98%	(b) (4)	(b) (4)
Distilled water	minimum cond	ductivity (18.2 $M\Omega$)	

Reaction reagent			
	Purity	Manufacturer	Product No.
Potassium hydroxide	≥85%	(b) (4)	(b) (4)
Boric acid	≥99.5%	(b) (4)	(b) (4)
O-phthalaldehyde (OPA)	≥97%	(b) (4)	(b) (4)
2-Mercapto ethanol(2-ETSH)	≥99%	(b) (4)	(b) (4)
Methyl alcohol	≥98%	(b) (4)	(b) (4)
Distilled water	minimum cond	luctivity (18.2 MQ)	

3.3. Mobile phase solution preparation method

Table 3. Mobile phase solution preparation method

Reagent name	Concentration (mM)	Amount (g)	Total volume (mL)
Potassium dihydrogen phosphate (KH ₂ PO ₄)			(b) (4)
1-Octanfonic acid sodium salt (OSA)			
Acetonitrile (CH ₃ CN)			1137
Phosphoric Acid (H ₃ PO ₄)			

3.4. Reaction reagent preparation method

Table 4. Reaction reagent preparation method

Reagent name	Concentration (mM)	Amount (g)	Total volume (mL)
Potassium hydroxide		(b) (4)	
Boric acid			
O-phthalaldehyde (OPA)			1000
2-Mercaptoethanol (2-ETSH)			1000
Methyl alcohol			
3.5%-Brij solution			

4. Standard preparation

(b) (4)

5. Sample preparation

(b) (4)

6. Data processing and calculation

(b) (4)

(b) (4)

Table 5. Data calculation

	Standard solution	Sample solution
Weight		(b) (4)
Preparation concentration		
Area 1		
Area 2		
Area 3		
Area 4		
Average		
STDEV		(b) (4
%RSD*		
R.F.		
(Response factor		
Measurement		
concentration		
Result		

* If the area difference is $RSD \ge 1\%$, reanalyze and if the difference is still over 1%, instrument should be checked.

7. Specificity

8. System suitability

Tabl	e 6.	Reference	standard	soluti	ion (0.025	g/L)
------	------	-----------	----------	--------	-------	-------	------

Table 7. Reference standard solution (0.1 g/L)

	Peak area (STD 1, 0.025 g/L)	0	Peak area (STD 4, 0.100 g/L)
1	(b) (4)	1	(b) (4)
2		2	
3		3	
4		4	
5		5	
6		6	
7		7	
8		8	
9		9	
10		10	
%RSD	0.18%	%RSD	0.16%

9. Homogeneity

	(b) (4)
1	
0	

Table 8. Homogeneity of sample

Sample	Sample weight (g)	L-Valine (%)
Sampling 1	0.13775 g/1000mL	(b) (4)
Sampling 2	0.13705 g/1000mL	
Sampling 3	0.13787 g/1000mL	
Sampling 4	0.13761 g/1000mL	
Sampling 5	0.13678 g/1000mL	
Average	-	72.19
%RSD	-	0.28

10. Stability

And %RSD was 0.17%.

The recovery of sample was satisfied with the acceptance criteria of 98%-102% and %RSD criteria of < 1%.

Time (day)	Time (h)	L-Valine (%)	Recovery (%)
day 1_1	0		(b) (4)
day 1_2	5		
day 1_3	10		
day 2_1	23		
day 2_2	28		
day 2_3	32		
day 3_1	53		
day 3_2	57		
day 3_3	62		
%RS	SD	0.17%	3

Table 9. Stabilit	v of the sample	(investigation of	precision of	sample)
ruore	y of the sumple	(investigation of	precision or	Sumple)

(c) (b) (4) 4.00-3.00-> 2.00-1.00-0.00-3.00 200 4.00 8.00 1.00 6.00 7.00 0.00 5.00 9.00 Minutes (d) **(b)** (4) 4.00-3.00-> 2.00-1.00-0.00-1.00 0.00 2.00 3.00 6.00 7.00 8.00 4.00 5.00 9.00 Minutes (e) (b) (4) 4.00-3.00-> 2.00-1.00-0.00-7.00 1.00 2.00 3,00 4.00 6.00 8.00 0.00 5.00 9.00 Minutes

page 14 / 47

11. Linearity

(b) (4)

Table 10. Calibration curve

	L-Valine (g/L)	Peak area*
STD 1 (25%)		(b) (4
STD 2 (50%)		
STD 3 (80%)		
STD 4 (100%)		
STD 5 (120%)		

* Mean area of triplet injection

Figure 5. Calibration curve

Validation report – Dried L-Valine Fermentation Product

12. Limit of detection and limit of quantification

12.1. LOD and LOQ of L-valine

Table 11. .Summary output for regression analysis study

13. Precision

Table 12. Repeated injection of sample solution

	Sample solution
1	(b) (4)
2	
3	
4	
5	
6	
7	
8	
9	
10	
%RSD	0.17 %

Table 13. Repeated injection of CRM solution

	CRM solution	
1		(b) (4)
2		
3		
4		
5		
6		
7		
8		
9		
10		
%RSD	0.12 %	

page 20 / 47

Validation report - Dried L-Valine Fermentation Product

14. Accuracy

	(b) (4)
	(б) (4)
	1010
	_
	(0) (4)

14.1. Summary of uncertainty measurement

Table 14. Uncertainty measurement

Uncertainty contributor	Measurement value	Standard uncertainty	Relative standard uncertainty	Effective degree of freedom	Туре	Probability distribution
14.2.1. Standard preparation						(b) (4,
14.2.1.1. Uncertainty in weight determination						
1) Dispersion in repeated measurements						
2) Uncertainty of Balance calibration result						
14.2.1.2. Volumetric measuring						

1) Dispersion
in repeated
measurements
2) Uncertainty
of balance
calibration result
3) Uncertainty
of 1000 mL
volumetric flask
calibration result
14.2.2. Sample
preparation
1/ 2 2 1
It.2.2.1.
sample weight
sample weight
determination
1) Dispersion
in repeated
measurements
2) Uncertainty
of balance
calibration result
14.2.2.2
Volumetric
measuring
1) Dispersion
mensurements
2) Uncertainty
of balance
calibration result
3) Uncertainty
of 250 mL
volumetric flask
calibration result
1123 Provision
of the instrument
of the instrument
14.2.3.1.
Uncertainty of
dispersion in the
standard solution
repeated
measurement
14.2.3.2.
Uncertainty of
dispersion in the
sample solution
repeated
measurement

Relative combined standard uncertainty	(b) (4,
Effective degree of freedom	
Coverage factor <i>k</i>	
Expanded uncertainty	
Results	

14.2. Uncertainty measurement

14.2.1. Standard preparation

14.2.1.1. Uncertainty in weight determination

1) Dispersion in repeated measurements

Type A uncertainty

Number of sample measurements	Measurement value (g)
1	(b) (4)
2	
3	
4	
5	
Measurement value	
standard deviation	
standard uncertainty	
relative standard uncertainty	
degree of freedom	
- Standard uncertainty =	(b) (4)
- Relative standard uncertainty =	(b) (4)
- A Type degree of freedom =	(b) (4)

2) Uncertainty of balance calibration result

Type B uncertainty

Balance	Mass (g)	Uncertainty	Standard uncertainty	Relative standard uncertainty
	0.10004	0.0005	(b) (4)	
Standard uncert	ainty		(b)) (4)
Relative standard un	ncertainty			
Degree of freed	dom			

(b) (4)

3) Relative combined standard uncertainty

4) Effective degree of freedom

14.2.1.2. Volumetric measuring

1) Dispersion in repeated measurements

Type A uncertainty

Number of sample measurements	Measurement value (g)
1	(b) (4)
2	(b) (4)

3	(b) (4)
4	(b) (4)
5	(b) (4)
Measurement value	(b) (4)
Standard deviation	(b) (4)
Standard uncertainty	(b) (4)
Relative standard uncertainty	(b) (4)
Degree of freedom	(b) (1
	(b) (4)

2) Uncertainty of balance calibration result

Type B uncertainty

Balance	Mass (g)	Uncertainty	Standard uncertainty	Relative standard uncertainty
	1246.33	0.0200	(b) (4)	(b) (4)
Standard uncertain	ty		(b) ((4)
Relative standard unce	rtainty			
Degree of freedor	n			
				(b) (

3) Uncertainty of 1000 mL volumetric flask calibration result

Type B uncertainty

Volumetric flask	Volume (mL)	Uncertainty	Standard uncertainty	Relative standard uncertainty
	1000	0.220	(b) (4)	(b) (4)
Standard uncertain	nty		(b) (4)
Relative standard unce	Relative standard uncertainty			
Degree of freedo	m			
			-	(b)

(b) (4)

(b) (4)

4) Relative combined standard uncertainty

5) Effective degree of freedom

14.2.1.4. Effective degree of freedom of standard preparation

(b) (4)

14.2.2. Sample preparation

14.2.2.1. Uncertainty in sample weight determination

1) Dispersion in repeated measurements

Type A uncertainty

Number of sample measurements	Measurement value (g)
1	(b) (4)
2	(b) (4)
3	(b) (4)
4	(b) (4)
5	(b) (4)
Measurement value	(b) (4)
Standard deviation	(b) (4)
Standard uncertainty	(b) (4)
Relative standard uncertainty	(b) (4)
Degree of freedom	(b)
	(b) (4)

2) Uncertainty of balance calibration result

Type B uncertainty

Balance	Mass (g)	Uncertainty	Standard uncertainty	Relative standard uncertainty
	0.10052	0.0005	(b) (4)	(b) (4)

Standard uncertainty	(b) (4)	
Relative standard uncertainty		
Degree of freedom		

(b) (4)

(b) (4)

3) Relative combined standard uncertainty

4) Effective degree of freedom

14.2.2.2. Volumetric measuring

1) Dispersion in repeated measurements

Type A uncertainty

Number of sample measurements	Measurement value (g)
1	(b) (4)
2	(b) (4)
3	(b) (4)
4	(b) (4)
5	(b) (4)
Measurement value	(b) (4)
Standard deviation	(b) (4)

2) Uncertainty of balance calibration result

Type B uncertainty

Balance	Mass (g)	Uncertainty	Standard uncertainty	Relative standard uncertainty
-	1246.33	0.0200	(b) (4)	(b) (4)
Standard uncertain	ity		(b) (4)	
Relative standard unce	rtainty			
Degree of freedor	n			
		_		

3) Uncertainty of 1000 mL volumetric flask calibration result

Type B uncertainty

Volumetric flask	Volume (mL)	Uncertainty	Standard uncertainty	Relative standard uncertainty
	1000.00	0.220	0.110	0.011
Standard uncertain	nty		(b) (4)	
Relative standard unce	ertainty		(b) (4)	

Degree of freedom

(b) (4)

(b) (4)

(b) (4)

(b) (4)

4) Relative combined standard uncertainty

5) Effective degree of freedom

14.2.2.4. Effective degree of freedom of sample preparation

14.2.3. Precision of the instrument

14.2.3.1. Uncertainty of dispersion in the standard solution repeated measurement

Type A uncertainty

Number of sample measurements

Peak area

(b) (4)

1	(b) (4)
2	(b) (4)
3	(b) (4)
4	(b) (4)
Measurement value	(b) (4)
Standard deviation	(b) (4)
Standard uncertainty	(b) (4)
Relative standard uncertainty	(b) (4)
Degree of freedom	(b) (1
	(b) (4

14.2.3.2. Uncertainty of dispersion in the sample solution repeated measurement

Type A uncertainty

Number of sample measurements	Peak area
1	(b) (4)
2	(b) (4)
3	(b) (4)
Measurement value	(b) (4)
Standard deviation	(b) (4)
Standard uncertainty	(b) (4)
Relative standard uncertainty	(b) (4)
Degree of freedom	(b) (4
	(b) (4)

14.2.3.3. Relative combined standard uncertainty of precision of the instrument

(b) (4)

(b) (4)

(b) (4)

(b) (4)

14.2.3.4. Effective degree of freedom of precision of the instrument

14.2.4. Relative combined standard uncertainty of valine analysis

14.2.5. Effective degree of freedom of valine analysis

14.2.6. Expanded uncertainty (U)

14.2.7. Result

(b) (4)

(b) (4)

15. Robustness

	(b) (4)
	(b) (4)
	(b) (4)
	(b) (4)
(b) (4)	
	(b) (4)

	(b) (4)

Table 15. Data of robustness test

Factor	L-valine (%)	Recovery (%)	Retention time of L-valine	Average peak area of standard	Average peak area of sample
Standard condition			(b) (4)	15915610	15782377
35°C				12291928	12330444
45°C				18942060	18912625
0.8 mL/min				26135362	26103728
1.2 mL/min				8381739	8388608
CH3CN 9%				14742519	14717692
CH ₃ CN 15%				15232148	15206820
рН 2.3				4614004	4589815
pH 2.7				19682457	19674538

(a) (b) (4) 4.00-3.00-> 2.00-1.00-0.00-2.00 4.00 8.00 10.00 12.00 6.00 14.00 0.00 Minutes (b) (b) (4) 4.00-3.00-> 2.00-1.00-0.00-2.00 4.00 10.00 12.00 6.00 8.00 0.00 14.00 Mnutes (b) (4) Figure 12.

16. Impurity identification

Validation report - Dried L-Valine Fermentation Product

(a) 3.00-(b) (4) 2.50 2.00-1.50-> 1.00-0.50 0.00 -0.50 2.50 Minutes 2.00 4.00 4.50 0.50 1.00 1.50 3.00 3.50 5.00 5.50 **(**b) 3.00 (b) (4) 2.50 2.00-1.50 > 1.00 0.50 0.00 -0.50 0.50 1.00 1.50 2.00 4.50 5.00 3.50 2.50 4.00 5.50 3.00 Minutes (c) 3.00 (b) (4) 2.50 2.00-1.50 > 1.00 0.50 0.00 -0.50 0.50 1.00 1.50 2.00 2.50 3.50 4.00 4.50 5.00 5.50 3.00 Minutes

page 44 / 47

17. Conclusion

Table 16. Summary of validation test

	(b) (4)	There is no
Specificity		interference to
		peak response
		by difuent.
System Suitability		\cdot %RSD < 1%
Homogeneity of sample		\cdot %RSD < 1%
		• Recovery 98% ~ 102%
Stability of the sample		
		\cdot %RSD < 1%
Linearity		$\cdot R^2 > 0.9990$
Limit of Detection and		-
Limit of Quantification		
Precision		\cdot %RSD < 1%
· · · · · · · · · · · · · · · · · · ·		$ \mathbf{E}_{n} < 1$
Accuracy		$ En \leq 1$
		· Recoverv 98%
Robustness		~ 102%
This validation regults and	firmed that all of the regults were guitable for the reference	as value and that
the analytical method could	the used for rapid and accurate I -value analysis	ice value and that
and analytical method could	a se asea for rupte and accurate L-vanite analysis.	

18. Raw data file

	Data file name	
Specificity		(b) (4
System Suitability		
Homogeneity of sample	-	
Stability of the sample		
Linearity		
Limit of Detection and Limit of Quantification		
Precision		
Accuracy		
Robustness		

Certificate of Analysis

150 17034 ANAB Cert# AB-1470

ISO/IEC 17025 Cert# AI-1467 ANAB

L-VALINE CERTIFIED REFERENCE MATERIAL

CERTIFIED PURITY: 98.9%, Ugm = ±0.07% k = 2.07 (Mass Balance/as is basis)

NOMINAL PACKAGE SIZE: 1g

CATALOG #: PHR1172

LOT #: LRAC2856

CERTIFICATE VERSION: LRAC2856.1

ISSUE DATE: 22 May 2019 Note: Certificates may be updated due to Pharmacopeial Lot changes or the availability of new data. (b) (4) for the most current version. Check our website at:

CRM EXPIRATION: 31 May 2023 (Proper Storage and Handling Required).

RECEIPT DATE: Note: this space is provided for convenience only and its use is not required.

STORAGE: Store at Room Temperature, keep container tightly closed. Attachment of a 20 mm aluminum crimp seal recommended for unused portions.

CHEMICAL FORMULA: C5H11NO2

MW: 117.15

PHYSICAL DESCRIPTION: White powder in amber vial CAS#: 72-18-4

HAZARDS: Read Safety Data Sheet before using. All chemical reference materials should be considered potentially hazardous and should be used only by qualified laboratory personnel.

(b) (4)

Page 1 of 8

INSTRUCTIONS FOR USE: Do not dry, use on the as is basis. The internal pressure of the container may be slightly different from the atmospheric pressure at the user's location. Open slowly and carefully to avoid dispersion of the material. This material is intended for Laboratory Use only. Not for drug, household or other uses.

(b) (4)

CONTENTS

1. L-Valine and moisture contents in 5 batches of 'VAL Pro', in g per 100 g (%) of the product
2. Nitrogen containing components in 5 batches of 'VAL Pro', in g per 100 g (%) of the product
3. Compositional analysis of the carbohydrates fraction in 5 batches of 'VAL Pro', in g per 100 g (%) of the product
4. Amino acid contents in 5 batches of 'VAL Pro', in g per 100 g (%) of the product
5. Hydrolyzed amino acids contents in insoluble part in 5 batches of 'VAL Pro', in g per 100 g (%) of the product 6
6. Compositional analysis of organic acids fraction in 5 batches of 'VAL Pro', in g per 100 g (%) of the product 7
7. Compositional analysis of inorganic components in 5 batches of 'VAL Pro', in g per 100 g (%) of the product 8
8. Overview of the quantifiable main components of 'VAL Pro', in g per 100 g (%) of the product
9. Results and methods of 'VAL Pro'
[Appendix] Certificate of analysis10

Prior to the compositional analysis, samples were dried at 105 °C for 3 hours. Therefore, analysed data of components in this report were provided as 'dry matter basis' (except 'Moisture').

1. L-Valine and moisture contents in 5 batches of 'VAL Pro', in g per 100 g (%) of the product

Component	Unit	GVAL200910	GVAL200911	GVAL200912	GVAL200916	GVAL200917
L-Valine	%					(b) (4
Moisture	%					
						(b) (4)

2. Nitrogen containing components in 5 batches of 'VAL Pro', in g per 100 g (%) of the product

Unit	GVAL200910	GVAL200911	GVAL200912	GVAL200916	GVAL200917
%					(b) (4
%					
%					
%					
	Unit % % %	Unit GVAL200910 % % % % %	Unit GVAL200910 GVAL200911 % -	Unit GVAL200910 GVAL200911 GVAL200912 % - <t< td=""><td>Unit GVAL200910 GVAL200911 GVAL200912 GVAL200916 % -</td></t<>	Unit GVAL200910 GVAL200911 GVAL200912 GVAL200916 % -

(4)
Component	Unit	GVAL200910	GVAL200911	GVAL200912	GVAL200916	GVAL200917
Trehalose	%					(b) (4)
Glucose	%					
Fructose	%					
Sucrose	%					
Isomaltose	%					
Maltose	%					
Sum of quantifiable sugars	%					
						(ђ) (4

3. Compositional analysis of the carbohydrates fraction in 5 batches of 'VAL Pro', in g per 100 g (%) of the product

4. Amino acid contents in 5 batches of 'VAL Pro', in g per 100 g (%) of the product

Component	Unit	GVAL200910	GVAL200911	GVAL200912	GVAL200916	GVAL200917
Phosphoserine	%					(b) (4)
Taurine	%					
Phosphoethanolamine	%					
Urea	%					
Aspartic acid	%					
Threonine	%					
Serine	%					
Glutamic acid	%					
Sarcosine	%					
α-Aminoadipic acid	%					
Glycine	%					
Alanine	%					

CJ BIO-RD form 100-01 REV.01

(b) (4)

Citrulline	%
α -Amino-n-butyric acid	%
Cystine	%
Methionine	%
Cysthathionine	%
Isoleucine	%
Leucine	%
Tyrosine	%
Phenylalanine	%
β-Alanine	%
β-Aminoisobutyric acid	%
γ-Amino-n-butyric acid	%
Ethanolamine	%
Hydroxylysine	%
Ornithine	%
Lysine	%
1-Methylhistidine	%
Histidine	%
3-methylhistidine	%
Asparagine	%
Carnosine	%
Arginine	%
Hydroxyproline	%
Proline	%
Sum of amino acids other than L-valine	%

(b) (4)

(b) (4)

5. Hydrolyzed amino acids contents in insoluble part in 5 batches of 'VAL Pro', in g per 100 g (%) of the product

Component	Unit	GVAL200910	GVAL200911	GVAL200912	GVAL200916	GVAL200917
Aspartic acid	%					(Б) (
Threonine	%					
Serine	%					
Glutamic acid	%					
Glycine	%					
Alanine	%					
Cystine	%					
Valine	%					
Methionine	%					
Isoleucine	%					
Leucine	%					
Tyrosine	%					
Phenylalanine	%					
Lysine	%					
Histidine	%					
Arginine	%					
Proline	%					
Tryptophan	%					
Sum of 'hydrolyzed	- ÷1					
amino acids' in insoluble part ¹	%					

(b) (4)

6. Compositional analysis of organic acids fraction in 5 batches of 'VAL Pro', in g per 100 g (%) of the product

Unit	GVAL200910	GVAL200911	GVAL200912	GVAL200916	GVAL200917
%					(b) (4)
%					
%					
%					
%					
%	0				
%					
	Unit % % % % %	Unit GVAL200910 %	Unit GVAL200910 GVAL200911 %	Unit GVAL200910 GVAL200911 GVAL200912 %	Unit GVAL200910 GVAL200911 GVAL200912 GVAL200916 %

- Organic acids

: Samples are extracted with water. The resulting extract is analyzed using cation exchange chromatography on

a HPLC with conductivity. (Korean Feed Standards Codex, 1 of chapter 14.)

Component	Unit	GVAL200910	GVAL200911	GVAL200912	GVAL200916	GVAL200917
Ash	%					(6) (4)
Sodium	%					
Potassium	%					
Calcium	%					
Magnesium	%					
Fluoride	%					
Bromide	%					
Chloride	%					
Phosphate	%					
Sulfate	%					
Sum of quantifiable inorganic anions and cations	%					

7. Compositional analysis of inorganic components in 5 batches of 'VAL Pro', in g per 100 g (%) of the product

8. Overview of the quantifiable main components of 'VAL Pro', in g per 100 g (%) of the product

Component	Unit	GVAL200910	GVAL200911	GVAL200912	GVAL200916	GVAL200917
L-Valine	%					(b) (4

CJ Research Institute of Biotechnology

CJ BIO-RD form 100-01 REV.01

Hydrolyzed amino acids (in insoluble biomass part)	%		ው) (
Free amino acids (other than L-valine)	%		
Moisture	%		
Ammonium, nitrates and betaine	%		
Sugars	%		
Organic acids	%		
Inorganic anions/cations	%		
Ash ¹	%	(b) (4)	

9. Results and methods of 'VAL Pro'

Component	Results ¹	Analytical method
L-Valine	72.38 %	HPLC-FLD (modified AOAC 999.13)
		AOAC 994.12
Hydrolyzed amino acids	9.12 %	AOAC 988.15
(in insolucie ciomass part)		AOAC 985.28
Free amino acids (other than L-valine)	0.81 %	AOAC 999.13
Moisture	0.82 %	AOAC 934.01
		ASTM D 4327-03
Ammonium, nitrates and betaine	2.68 %	ASTM D 6919-03
and the second second second		Korean Feed Standards Codex, 18 of chapter 21.
Sugars	0.39 %	AOAC 995.13
Organic acids	0.02 %	Korean Feed Standards Codex, 1 of chapter 14
•	5.00.0/	ASTM D 4327-03
inorganic anions/cations	1.82 %	ASTM D 6919-03
Ash	1.50 %	AOAC 942.05

¹Results are mean value of five batches

[Appendix] Certificate of analysis

55, Gwanggyo-ro 42beon-gil, Yeongtong-gu, Suwon-si,

Gyeonggi-do, 16495, Korea

www.cj.co.kr

TEL: 031) 8099-2450 FAX: 031) 8099-2918

Certificate of analysis

Certificate No.	202	1-PR-124	Receipt	No.	2021-AN-092
Client			Date of Re	eceipt	2020.11.19.
Client Name			Date of	Test	2020.11.22.
Client Tel		-	Use of Re	port	Reference test
Client Address				-	
Test Sampl	e	L-Valine (Val	l pro)		
Manuf. Dat	te	2020.09.10.			
Lot. No	221	GVAL200910			
Quantity (k	g)	-			
Test Item(s)		lot number		Test Result	Test method used
L-Valine(dry base)		Not less than 72 %		(6)	HPLC
Moisture (Loss on drying)		Not more than 5 %			AOAC 934.01
Ash		Not more than 5 %			AOAC 942.05
* Information					
* Temperature : (20	0~28) ℃,	Relative Hum	idity : (30~60)	%	
* The results show	n in this t	test report ref	er only to the s	ample tested uni	less otherwise stated.
The Test Report ca	annot be i	reproduced, ex	cept in full.		
The Test Report ca	innot be i	reproducea, ex	cept in full.	(b) (4)	

Oct, 07, 2021

CJ Research Institute of Biotechnology

55, Gwanggyo-ro 42beon-gil, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16495, Korea

www.cj.co.kr

TEL: 031) 8099-2450 FAX: 031) 8099-2918

Certificate of analysis

Certificate No.	2021-PR-125		Recei	Receipt No.		2021-AN-093			
Client		-	Date o	Date of Receipt 2020.11.19		2020.11.19.			
Client Name		-	Date	of Test		2020.11.22.			
Client Tel		-	Use of	f Report	R	eference test			
Client Address				-					
Test Samı	ple	L-Valine (Val p	ro)						
Manuf. Da	Manuf. Date 2020.09.11.								
Lot. No)	GVAL200911	200911						
Quantity ((kg)	-							
Test Item	(s)	Specificat	ion	Test I	Result	Test method used			
L-Valine(dry	base)	Not less thar	n 72 %		(b) (4)	HPLC			
Moisture (Loss c	on drying)	ying) Not more that				AOAC 934.01			
Ash		Not more that	Not more than 5 % AOAC						
* Information									
* Temperature : ((20~28) °C,	Relative Humid	ity : (30~	60) %					

* The results shown in this test report refer only to the sample tested unless otherwise stated.

(b) (4)

The Test Report cannot be reproduced except in full

Oct, 07, 2021

CJ Research Institute of Biotechnology

55, Gwanggyo-ro 42beon-gil, Yeongtong-gu, Suwon-si,

Gyeonggi-do, 16495, Korea

www.cj.co.kr

TEL: 031) 8099-2450 FAX: 031) 8099-2918

Certificate of analysis

Certificate No.	202	1-PR-126	Receipt No) .	2021-AN-094	
Client			Date of Rece	ipt	2020.11.19.	
Client Name		÷	Date of Tes	st	2020.11.22.	
Client Tel		-	Use of Repo	ort	Reference test	
Client Address						
Test Samp	ble	L-Valine (Val	L-Valine (Val pro)			
Manuf. Da	ate	2020.09.12.				
Lot. No	5	GVAL200912				
Quantity (kg)	8				
Test Item	(s)	Specific	ation	Test Result	Test method used	
L-Valine(dry	base)	Not less th	nan 72 %	(0) (4	HPLC	
Moisture (Loss o	n drying)	Not more	than 5 %		AOAC 934.01	
Ash		Not more	than 5 %		AOAC 942.05	
* Information						
* Temperature : (20~28) °C	, Relative Hun	nidity : (30~60) %			
* The results sho	wn in this	test report re	fer only to the sa	mple tested un	less otherwise stated	
The Test Report	cannot be	reproduced.	except in full.			
				(b) (4)		

CJ Research Institute of Biotechnology

55, Gwanggyo-ro 42beon-gil, Yeongtong-gu, Suwon-si,

Gyeonggi-do, 16495, Korea

www.cj.co.kr

TEL: 031) 8099-2450 FAX: 031) 8099-2918

Certificate of analysis

Certificate No.	202	1-PR-127	Receipt	No.	2021-AN-095		
Client		9 9 9	Date of Re	eceipt	20	020.11.19.	
Client Name		4	Date of	Test	20	020.11.22.	
Client Tel			Use of Re	port	Ref	erence test	
Client Address							
Test Sampl	Sample L-Valine (Val pro)						
Manuf. Dat	e	2020.09.16.					
Lot. No		GVAL200916					
Quantity (k	g)	140 m					
Test Item(s)	Specification		Test Result	0.200	Test method use	
L-Valine(dry b	ase)	e) Not less than 72 %			(0) (4)	HPLC	
Moisture (Loss on drying)		Not more than 5 %				AOAC 934.01	
Ash	č	Not more	than 5 %			AOAC 942.05	
* Information							
* Temperature : (20	0~28) ℃,	Relative Hun	nidity : (30~60)	%		· / · · · · ·	
* The results show	n in this	test report re	fer only to the	sample tested	unles	s otherwise state	

Oct, 07, 2021

CJ Research Institute of Biotechnology

55, Gwanggyo-ro 42beon-gil, Yeongtong-gu, Suwon-si,

Gyeonggi-do, 16495, Korea

www.cj.co.kr

TEL: 031) 8099-2450 FAX: 031) 8099-2918

Certificate of analysis

Certificate No.	202	1-PR-128 Rec		t No.	2	021-AN-096
Client			Date of	Receipt	2020.11.19.	
Client Name		÷	Date o	f Test	2020.11.22.	
Client Tel			Use of	Report	R	eference test
Client Address						
Test Sample		L-Valine (Val pro)				
Manuf. Date	a l	2020.09.17.				
Lot. No		GVAL200917				
Quantity (kg	I)	14 State 19				
Test Item(s)	(C)	Specific	Specification Test Re		ult	Test method used
L-Valine(dry ba	ase)	Not less than 72 % Not more than 5 % Not more than 5 %		(((0)(4)	HPLC
Moisture (Loss on	drying)					AOAC 934.01
Ash						AOAC 942.05
* Information		2				
* Temperature : (20)~28) ℃,	Relative Hum	nidity : (30~6	0) %		1.1
		and the second second	- 0 i	and the second		

Oct, 07, 2021

CJ Research Institute of Biotechnology

55, Gwanggyo-ro 42beon-gil, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16495, Korea

.

www.cj.co.kr

TEL: 031) 8099-2450 FAX: 031) 8099-2918

				-		
Certificate No.	202	1-PR-129	Rec	eipt No.		2021-AN-097
Client		-	Date	of Receipt		2020.11.19.
Client Name		-	Dat	e of Test		2020.11.26.
Client Tel		-	Use	of Report		Reference test
Client Address				-		
Test Sam	ple	L-Valine (Val pro)			
Manuf. D	ate	2020.09.10.				
Lot. No	ט	GVAL200910				
Quantity	(kg)	-				
Test Item	n(s)	Specificatio	n	Test Res	ult (%)	Test method used
Citric Ac	cid	-			(b) (4)	
Malic Ac	cid	-				
Succinic A	Acid	-				Korean Feed Standards
Lactic Ac	cid	-				Codex, 1 of chapter 14
Formic A	cid	-				
Acetic Ac	cid	-				
Trehalos	se	-				
Glucose	e	-				
Fructos	e	-				AOAC 005 12
Sucrose	e	-				AUAC 995.15
Isomalto	se	-				
Maltose	e	-				
* Information						

CJ Research Institute of Biotechnology

55, Gwanggyo-ro 42beon-gil, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16495, Korea

o, Rorea

www.cj.co.kr

TEL: 031) 8099-2450 FAX: 031) 8099-2918

				-		
Certificate No.	202	1-PR-130	Red	eipt No.		2021-AN-098
Client		-	Date	of Receipt		2020.11.19.
Client Name		-	Dat	e of Test		2020.11.26.
Client Tel		-	Use	of Report	I	Reference test
Client Address				-		
Test Sam	ple	L-Valine (Val pro))			
Manuf. D	ate	2020.09.11.				
Lot. No	D	GVAL200911				
Quantity	(kg)	-				
Test Item	n(s)	Specificatio	n	Test Res	ult (%)	Test method used
Citric Ac	cid	-			(b) (4)	
Malic Ac	cid	-				
Succinic A	Acid	-				Korean Feed Standards
Lactic Ac	cid	-				Codex, 1 of chapter 14
Formic A	cid	-				
Acetic Ac	cid	-				
Trehalos	se	-				
Glucose	e	-				
Fructos	e	-				AOAC 005 12
Sucrose	e	-				AUAC 995.15
Isomalto	se	-				
Maltose	e	-				
* Information						

CJ Research Institute of Biotechnology

55, Gwanggyo-ro 42beon-gil, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16495, Korea

5, Roica

www.cj.co.kr

TEL: 031) 8099-2450 FAX: 031) 8099-2918

Certificate No.	202	1-PR-131	Red	eipt No.		2021-AN-099
Client		-	Date	of Receipt		2020.11.19.
Client Name		-	Dat	e of Test		2020.11.26.
Client Tel		-	Use	of Report		Reference test
Client Address				-		
Test Sam	ple	L-Valine (Val pro)			
Manuf. D	ate	2020.09.12.				
Lot. No	C	GVAL200912				
Quantity	(kg)	-				
Test Item	n(s)	Specificatio	on	Test Res	ult (%)	Test method used
Citric Ac	cid	-			(0) (4)	
Malic Ac	cid	-				
Succinic A	Acid	-				Korean Feed Standards
Lactic Ac	cid	-				Codex, 1 of chapter 14
Formic A	.cid	-				
Acetic Ac	cid	-				
Trehalos	se	-				
Glucos	e	-				
Fructos	e	-				
Sucrose	e	-				AUAC 995.15
Isomalto	ose	-				
Maltos	e	-				
* Information						

55, Gwanggyo-ro 42beon-gil, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16495, Korea

.

www.cj.co.kr

TEL: 031) 8099-2450 FAX: 031) 8099-2918

Certificate No.	202	1-PR-132	Rec	eipt No.		2021-AN-100
Client		-	Date	of Receipt		2020.11.19.
Client Name		-	Dat	e of Test		2020.11.26.
Client Tel		-	Use	of Report	l	Reference test
Client Address				-		
Test Sam	ple	L-Valine (Val pro))			
Manuf. Da	ate	2020.09.16.				
Lot. No)	GVAL200916				
Quantity ((kg)	-				
Test Item	(s)	Specificatio	n	Test Res	ult (%)	Test method used
Citric Ac	id	-			(b) (4 ₎	
Malic Ac	id	-				
Succinic A	vcid	-				Korean Feed Standards
Lactic Ac	id	-				Codex, 1 of chapter 14
Formic A	cid	-				
Acetic Ac	cid	-				
Trehalos	se	-				
Glucose	9	-				
Fructos	e	-				
Sucrose	2	-				AUAC 995.13
Isomalto	se	-				
Maltose	9	-				
* Information						

CJ Research Institute of Biotechnology

55, Gwanggyo-ro 42beon-gil, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16495, Korea

.

www.cj.co.kr

TEL: 031) 8099-2450 FAX: 031) 8099-2918

				-		
Certificate No.	202	1-PR-133	Rec	eipt No.		2021-AN-101
Client		-	Date	of Receipt		2020.11.19.
Client Name		-	Dat	e of Test		2020.11.26.
Client Tel		-	Use	of Report		Reference test
Client Address				-		
Test Sam	ple	L-Valine (Val pro)			
Manuf. D	ate	2020.09.17.				
Lot. No	C	GVAL200917				
Quantity	(kg)	-				
Test Item	n(s)	Specificatio	on	Test Res	sult (%)	Test method used
Citric Ac	cid	-			(b) (4)	
Malic Ac	cid	-				
Succinic A	Acid	-				Korean Feed Standards
Lactic Ad	cid	-				Codex, 1 of chapter 14
Formic A	.cid	-				
Acetic A	cid	-				
Trehalos	se	-				
Glucos	e	-				
Fructos	e	-				AOAC 005 12
Sucros	e	-				AUAC 995.15
Isomalto	ose	-				
Maltos	e	-				
* Information						

(b) (4)

* N.D. : not detected (not quantifiable)

* The results shown in this test report refer only to the sample tested unless otherwise stated.

The Test Report cannot be reproduced, except in full.

Oct, 07, 2021

CJ Research Institute of Biotechnology

55, Gwanggyo-ro 42beon-gil, Yeongtong-gu, Suwon-si,

Gyeonggi-do, 16495, Korea

www.cj.co.kr

TEL: 031) 8099-2450 FAX: 031) 8099-2918

				-		
Certificate No.	2021	I-PR-134	Rec	eipt No.	2	021-AN-102
Client		-	Date	of Receipt		2020.11.19.
Client Name		-	Date	te of Test		2020.11.27.
Client Tel		-	Use	of Report	R	eference test
Client Address				-		
Test Sam	ple	L-Valine (Val p	ro)			
Manuf. D	ate	2020.09.10.				
Lot. No	C	GVAL200910				
Quantity	(kg)	-				
Test Item	ו(s)	Specificatio	on	Test Res	ult (%)	Test method used
Potassiu	ım	-			(b) (4)	
Calciur	n	-				ASTM D 6919–03
Magnesi	um	-				
Nitrate (as	NO ₃)	-				
Fluorid	е	-				
Bromid	le	-				ASTM D 4327-03
Chlorid	le	-				
Phospha	ate	-				
Phosphose	erine	-				
Taurine	e	-				
Phospho ethar	nol amine	-				
Urea		-				
Aspartic a	acid	-				AOAC 999.13
Threoni	ne	-				
Serine	2	-				
Glutamic	acid	-				
Sarcosir	ne	-				

CJ Research Institute of Biotechnology

a-Amino adipic acid	•	120.000	
Glycine	· · · · · · · · · · · · · · · · · · ·		
Alanine			
Citrulline	÷		
a-Amino-n-butyric acid	-		
Cystine	-		
Methionine			
Cysthathionine			
Isoleucine			
Leucine			
Tyrosine			
Phenylalanine			
β-Alanine			
β-Amino isobutyric acid	· · · · · · · · · · · · · · · · · · ·		
γ-Amino-n-butyric acid	• • • • •		
Ethanol amine	-		
Hydroxy lysine	· · · · ·		
Ornithine	· · · · · · · · · · · · · · · · · · ·		
Lysine	-		
1-Methylhistidine	(
Histidine			
3-methylhistidine			
Asparagine	· · · · · · · · · · · · · · · · · · ·		
Carnosine			
Arginine			
Hydroxy proline			
Proline			
Information			

Oct, 07, 2021

CJ Research Institute of Biotechnology

55, Gwanggyo-ro 42beon-gil, Yeongtong-gu, Suwon-si,

Gyeonggi-do, 16495, Korea

www.cj.co.kr

TEL: 031) 8099-2450 FAX: 031) 8099-2918

Certificate No.	2021	I-PR-135	Rec	eipt No.	2	2021-AN-103
Client		-	Date	of Receipt		2020.11.19.
Client Name		-	Dat	e of Test		2020.11.27.
Client Tel		-	Use	of Report	R	eference test
Client Address				-		
Test Sam	ple	L-Valine (Val p	ro)			
Manuf. D	Date	2020.09.11.				
Lot. N	0	GVAL200911				
Quantity	(kg)	-				
Test Iten	n(s)	Specificatio	on	Test Res	ult (%)	Test method used
Potassiu	ım	-			(b) (4)	
Calciur	n	-				ASTM D 6919–03
Magnesi	um	-				
Nitrate (as	NO ₃)	-				
Fluorid	le	-				
Bromic	le	-				ASTM D 4327-03
Chloric	le	-				
Phospha	ate	-				
Phosphos	erine	-				
Taurin	e	-				
Phospho ethar	nol amine	-				
Urea		-				
Aspartic	acid	-				AOAC 999.13
Threoni	ne	-				
Serine	5	-				
Glutamic	acid	-				
Sarcosii	ne	-				

CJ Research Institute of Biotechnology

CJ BIO-RD form 100-01 REV.01

	-	
a-Amino adipic acid	-	(b) (4)
Glycine	-	
Alanine	-	
Citrulline	-	
a-Amino-n-butyric acid	-	
Cystine	-	
Methionine	-	
Cysthathionine	-	
Isoleucine	-	
Leucine	-	
Tyrosine	-	
Phenylalanine	-	
β-Alanine	-	
β-Amino isobutyric acid	-	
γ-Amino-n-butyric acid	-	
Ethanol amine	-	
Hydroxy lysine	-	
Ornithine	-	
Lysine	-	
1-Methylhistidine	-	
Histidine	-	
3-methylhistidine	-	
Asparagine	-	
Carnosine	-	
Arginine	-	
Hydroxy proline	-	
Proline	-	

* Information

* Temperature : (20~28) °C, Relative Humidity : (30~60) %

* N.D. : not detected (not quantifiable)

* The results shown in this test report refer only to the sample tested unless otherwise stated.

The Test Report cannot be reproduced except in full

(b) (4)

Oct, 07, 2021

CJ Research Institute of Biotechnology

55, Gwanggyo-ro 42beon-gil, Yeongtong-gu, Suwon-si,

Gyeonggi-do, 16495, Korea

www.cj.co.kr

TEL: 031) 8099-2450 FAX: 031) 8099-2918

Certificate No.2021-FR-136Re-ip No.Z-UI-N-104Client AddresIDate - FreeceZ-UI-N-104Client AddressIVYYClient AddressC-VI-N-104VYClient AddressC-VI-N-104VYTest Sar-YCVI-N-104VYManuf J-YCVI-N-104CVI-N-104VManuf J-YCVI-N-104CVI-N-104VManuf J-YCVI-N-104CVI-N-104VQuantityCVI-N-104SecrificationTest RestrictionPotasiumSpecificationSecrificationSecrificationPotasiumSpecificationSecrificationSecrificationPotasiumSpecificationSecrificationSecrificationPotasiumSpecificationSecrificationSecrificationPotasiumSpecificationSecrificationSecrificationPotasiumSecrificationSecrificationSecrificationPotasiumSecrificationSecrificationSecrificationPhosphoreSecrificationSecrificationSecrificationPhosphoreSecrificationSecrificationSecrificationPotasiumSecrificationSecrificationSecrificationPhosphoreSecrificationSecrificationSecrificationPhosphoreSecrificationSecrificationSecrificationPhosphoreSecrificationSecrificationSecrificationPhosphoreSecrificationSecrificationSecri								
Client NameImage: Part of the second of the sec	Certificate No.	2021	I-PR-136	Receipt No.		2021-AN-104		
Client NameDa - Test SampleQaue Test SampleQaue Test SampleLeVaine VariableTest SampleLeVaine VariableTest SampleSam	Client		-	Date of Receipt		2020.11.19.		
Client 7el	Client Name	Client Name		Date of Test		2020.11.27.		
Client AddressI-Valine (Val pro)Manuf. Dat2020.09.12.Lot. NoGVAL200912QuantityGQuantitySpecificationTest Result (%)PotassiumSpecificationTest Result (%)PotassiumSpecificationTest Result (%)PotassiumSpecificationASTM D 6919-03GalciumGSecondationNitrate (as NO3)GASTM D 6919-03FluoriderGSecondationFluoriderGSecondationPhosphoserineGSecondationPhospho etimeGSecondationPhospho etimeGSecondationMapareticationGSecondationSecondationGSecondationGlutamicationGSecondationSarcosiveGSecondationSarcosiveGSecondationSarcosiveGSecondationSarcosiveSecondationSarcosiveSecondationSarcosiveSecondationSarcosiveSecondationSarcosiveSecondationSarcosiveSecondationSarcosiveSecondationSarcosiveSecondationSarcosiveSecondationSarcosiveSecondationSarcosiveSecondationSarcosiveSecondationSarcosiveSecondationSarcosiveSecondationSarcosiveSecondationSarcosiveSecondationSarcosiveSecondatio	Client Tel		-	Use of Report		R	Reference test	
Test SampleL-Valine (Val pro)Manuf. Date2020.09.12.Lot. NoGVAL200912Quantity (kg)-Test Item(s)SpecificationTest Result (%)Potassium-Calcium0Magnesium-Nitrate (as NO ₃)0Fluoride0Phosphate0Phosphate0Taurine0Phospho ethanol amine-Virea0Mapartic acid0Glutamic acid-Serine0Glutamic acid-Sarcosine0	Client Address				-			
Manuf. Date2020.09.12.Lot. NoGVAL200912Quantity (kg)-Test Item(s)SpecificationTest Result (%)Potassium1-Calcium1Calcium1Magnesium1Nitrate (as NO3)1Fluoride1Fluoride1Phosphate1Phosphoserine1Phospho ethanol amine-Threonine1Serine1Glutamic acid-Sarcosine1	Test Sam	ple	L-Valine (Val pro)					
Lot. NoGVAL200912Quantity (kg)-Test Item(s)SpecificationTest Result (%)Test method usedPotassium-Potassium10-0Calcium0Magnesium10-0Nitrate (as NO3)10-0Fluoride10-0Bromide10-0Chloride10-0Phosphate10-0Phosphoetine0-0Phospho ethanol amine0-0Nitreonine0-0Aspartic acid0-0Serine00Glutamic acid0-0Sarcosine00	Manuf. D	Date	2020.09.12.					
Quantity (kg)-Test Item(s)SpecificationTest Result (%)Test method usedPotassium-Calcium1Magnesium0-Nitrate (as NO3)-Fluoride0-Bromide0-Phosphate0-PhosphoserineTaurine0-Phospho ethanol amine0-Aspartic acid0-Serine0Glutamic acid0-Sarcosine0Sarcosine0Sarcosine0Sarcosine0Sarcosine0Sarcosine0Sarcosine0Sarcosine0Sarcosine0Sarcosine0Sarcosine0Sarcosine0Sarcosine0 <td colspan="2">Lot. No</td> <td>GVAL200912</td> <td></td> <td></td> <td></td> <td></td>	Lot. No		GVAL200912					
Test Item(s)SpecificationTest Result (%)Test method usedPotassium-ASTM D 6919-03Magnesium-ASTM D 6919-03MagnesiumNitrate (as NO ₃)-ASTM D 4927-03Fluoride-ASTM D 4327-03BromideChloridePhosphateTaurinePhospho ethanol amine-UreaAspartic acid-Serine-Glutamic acid-Sarcosine-	Quantity (kg)		-					
Potassium	Test Item(s)		Specificatio	on	Test Result (%)		Test method used	
Calcium-ASTM D 6919-03MagnesiumNitrate (as NO3)	Potassiu	um	-		(b) (4)			
Magnesium-Nitrate (as NO3)-Fluoride-Bromide-Bromide-Chloride-Phosphate-Phosphoserine-Taurine-Phospho ethanol amine-Urea-Aspartic acid-Serine-Glutamic acid-Sarcosine-	Calciur	n	-				ASTM D 6919–03	
Nitrate (as NO3)-Fluoride-Bromide-Bromide-Chloride-Phosphate-Phosphoserine-Taurine-Phospho ethanol amine-Urea-Aspartic acid-Serine-Glutamic acid-Sarcosine-	Magnesi	um	-					
Fluoride-Bromide-Chloride-Phosphate-Phosphoserine-Taurine-Taurine-Urea-Urea-Aspartic acid-Serine-Glutamic acid-Sarcosine-	Nitrate (as NO ₃)		-					
Bromide-ASTM D 4327-03Chloride-Phosphate-Phosphoserine-Taurine-Phospho ethanol amine-Urea-Aspartic acid-Serine-Glutamic acid-Sarcosine-	Fluoride		-					
Chloride-Phosphate-Phosphoserine-Taurine-Phospho ethanol amine-Urea-Aspartic acid-Threonine-Serine-Glutamic acid-Sarcosine-	Bromide		-				ASTM D 4327-03	
Phosphate-Phosphoserine-Taurine-Phospho ethanol amine-Urea-Aspartic acid-Threonine-Serine-Glutamic acid-Sarcosine-	Chloride		-					
Phosphoserine-Taurine-Phospho ethanol amine-Urea-Aspartic acid-Threonine-Serine-Glutamic acid-Sarcosine-	Phosphate		-					
Taurine-Phospho ethanol amine-Urea-Aspartic acid-Threonine-Serine-Glutamic acid-Sarcosine-	Phosphoserine		-					
Phospho ethanol amine-Urea-Aspartic acid-Threonine-Serine-Glutamic acid-Sarcosine-	Taurine		-					
Urea-Aspartic acid-Threonine-Serine-Glutamic acid-Sarcosine-	Phospho ethanol amine		-					
Aspartic acid-AOAC 999.13Threonine-Serine-Glutamic acid-Sarcosine-	Urea		-					
Threonine-Serine-Glutamic acid-Sarcosine-	Aspartic acid						AOAC 999.13	
Serine-Glutamic acid-Sarcosine-	Threoni	ne	-					
Glutamic acid-Sarcosine-	Serine	5	-					
Sarcosine -	Glutamic acid		-					
	Sarcosine		-					

CJ Research Institute of Biotechnology

a-Amino adipic acid	-	1410
Glycine	· · · · · · · · · · · · · · · · ·	
Alanine	•	
Citrulline		
a-Amino-n-butyric acid	-	
Cystine		
Methionine	-	
Cysthathionine	-	
Isoleucine	· · · · · · · · · · · · · · · · · · ·	
Leucine		
Tyrosine		
Phenylalanine		
β-Alanine		
β-Amino isobutyric acid	-	
γ-Amino-n-butyric acid	· · · · · · · · ·	
Ethanol amine	2000	
Hydroxy lysine		
Ornithine		
Lysine	-	
1-Methylhistidine	-	
Histidine		
3-methylhistidine	-	
Asparagine		
Carnosine	-	
Arginine	· · · · · · · · · · · · · · · · · · ·	
Hydroxy proline	· · · · · · · · · · · · · · · · · · ·	
Proline		

Oct, 07, 2021

CJ Research Institute of Biotechnology

55, Gwanggyo-ro 42beon-gil, Yeongtong-gu, Suwon-si,

Gyeonggi-do, 16495, Korea

www.cj.co.kr

TEL: 031) 8099-2450 FAX: 031) 8099-2918

Certificate No.	202	-PR-137 Receip		eipt No.	, ,	2021-AN-105	
Client		-	Date of Receipt			2020.11.19.	
Client Name		-	Date of Test		2020.11.27.		
Client Tel		-	Use of Report		F	Reference test	
Client Address				-			
Test Sam	ple	L-Valine (Val pro)					
Manuf. D	Date	2020.09.16.					
Lot. No		GVAL200916					
Quantity (kg)		-					
Test Item(s)		Specificatio	on	Test Result (%)		Test method used	
Potassium		-		(b) (4)			
Calciur	n	-				ASTM D 6919–03	
Magnesium		-					
Nitrate (as	NO ₃)	-					
Fluoride		-					
Bromic	le	-				ASTM D 4327-03	
Chloride		-					
Phosphate		-					
Phosphoserine		-					
Taurine		-					
Phospho ethanol amine		-					
Urea		-					
Aspartic acid		-				AOAC 999.13	
Threoni	ne	-					
Serine	9	-					
Glutamic acid		-					
Sarcosine		-					

CJ Research Institute of Biotechnology

CJ BIO-RD form 100-01 REV.01

a-Amino adipic acid		ACC 2.94	
Glycine			
Alanine	•		
Citrulline	÷.		
a-Amino-n-butyric acid			
Cystine			
Methionine			
Cysthathionine	10 A		
Isoleucine			
Leucine	-		
Tyrosine			
Phenylalanine			
β-Alanine			
β-Amino isobutyric acid			
γ-Amino-n-butyric acid	÷.		
Ethanol amine			
Hydroxy lysine			
Ornithine			
Lysine	-		
1-Methylhistidine			
Histidine			
3-methylhistidine	A.		
Asparagine			
Carnosine			
Arginine			
Hydroxy proline			
Proline			
[*] Information			
* Temperature : (20~28) °C, R	elative Humidity : (30)~60) %	
N.D. : not detected (not qua	ntifiable)		
* The results shown in this te	t report refer only to	the sample tested unless otherwise sta	ated.
The Test Report cannot be rep	produced except in f	ull.	
and and the second		(6) (4)	
Approved by Technical Manag	jer		

Oct, 07, 2021

CJ Research Institute of Biotechnology

55, Gwanggyo-ro 42beon-gil, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16495, Korea

, Korea

www.cj.co.kr

TEL: 031) 8099-2450 FAX: 031) 8099-2918

				•			
Certificate No.	2021	I-PR-138	Receipt No.		2021-AN-106		
Client		-	Date of Receipt		2020.11.19.		
Client Name		-	Date of Test		2020.11.27.		
Client Tel		-	Use	of Report	R	eference test	
Client Address				-			
Test Sam	nple	L-Valine (Val pro)					
Manuf. D	Date	2020.09.17.					
Lot. No		GVAL200917					
Quantity (kg)		-					
Test Item(s)		Specificatio	on	Test Result (%)		Test method used	
Potassium		-		(b) (4)			
Calciur	m	-				ASTM D 6919–03	
Magnesium		-					
Nitrate (as NO ₃)		-					
Fluoride		-					
Bromide		-				ASTM D 4327-03	
Chloride							
Phosphate		-					
Phosphoserine		-					
Taurine		-					
Phospho ethanol amine		-					
Urea		-					
Aspartic acid		-				AOAC 999.13	
Threoni	ne	-					
Serine	9	-					
Glutamic acid		-					
Sarcosine		-					

CJ Research Institute of Biotechnology

Glycine	· · · · · · · · · · · · · · · · · · ·	
Alanine	-	
Citrulline		
a-Amino-n-butyric acid		
Cystine	-	
Methionine		
Cysthathionine	-	
Isoleucine		
Leucine		
Tyrosine	-	
Phenylalanine		
β-Alanine		
β-Amino isobutyric acid		
γ-Amino-n-butyric acid	· · · · · · · · · · · · · · · · · · ·	
Ethanol amine	-	
Hydroxy lysine	-	
Ornithine	· · · · · · · · ·	
Lysine	-	
1-Methylhistidine	i na ser a la composición de	
Histidine		
3-methylhistidine		
Asparagine	-	
Carnosine	-	
Arginine	······	
Hydroxy proline		
Proline	-	
Information		
Oct, 07, 2021

CJ Research Institute of Biotechnology

55, Gwanggyo-ro 42beon-gil, Yeongtong-gu, Suwon-si,

Gyeonggi-do, 16495, Korea

www.cj.co.kr

TEL: 031) 8099-2450 FAX: 031) 8099-2918

Certificate of analysis Certificate No. 2021-PR-139 Receipt No. 2021-AN-107 Client Date of Receipt 2020.11.19. **Client Name** Date of Test 2020.12.01. Client Tel Reference test -Use of Report Client Address Test Sample L-Valine (Val pro) 2020.09.10. Manuf. Date Lot. No GVAL200910 2 Quantity (kg) Test Item(s) Specification Test Result (%) Test method used (b) (4 Ammonium (as NH₄) -ASTM D 6919-03 Sodium -Sulfate ASTM D 4327-03 -* Information * Temperature : (20~28) °C, Relative Humidity : (30~60) % * N.D. : not detected (not quantifiable)

* The results shown in this test report refer only to the sample tested unless otherwise stated.

(b) (4)

The Test Report cannot be reproduced, except in full.

Approved by Technical Manager

Oct, 07, 2021

CJ Research Institute of Biotechnology

55, Gwanggyo-ro 42beon-gil, Yeongtong-gu, Suwon-si,

Gyeonggi-do, 16495, Korea

www.cj.co.kr

TEL: 031) 8099-2450 FAX: 031) 8099-2918

Certificate of analysis

Certificate No.	202	21-PR-140	Receipt No.	2	021-AN-108
Client		4	Date of Receipt	· · · · · ·	2020.11.19.
Client Name		. . .	Date of Test		2020.12.01.
Client Tel		-	Use of Report	R	eference test
Client Address					
Test Sam	ple	L-Valine (Va	l pro)		
Manuf, D	ate	2020.09.11.			
Lot. No)	GVAL20091	1		
Quantity ((kg)	-			
Test Item	i(s)	Specific	ation Test Res	ult (%)	Test method used
Ammonium (a	as NH ₄)			(b) (4)	46TM D 6010 02
Sodium		-			ASIM D 6919-03
Sulfate -		-			ASTM D 4327-03
* Information					
* Temperature : (* N.D. : not deter * The results sho The Test Report	(20~28) °C cted (not o own in this cannot be	C, Relative Hun quantifiable) test report re reproduced, e س)	nidity : (30~60) % fer only to the sample except in full.	tested unl	ess otherwise stated
	hnical Ma	nager		(b) (4)	
Approved by Tec					

CJ BIO-AD form 100-01 REV.01

I

55, Gwanggyo-ro 42beon-gil, Yeongtong-gu, Suwon-si,

Gyeonggi-do, 16495, Korea

www.cj.co.kr

TEL: 031) 8099-2450 FAX: 031) 8099-2918

Certificate of analysis Certificate No. 2021-PR-141 Receipt No. 2021-AN-109 Client Date of Receipt 2020.11.19. **Client Name** Date of Test 2020.12.01. Client Tel Reference test -Use of Report Client Address L-Valine (Val pro) Test Sample Manuf. Date 2020.09.12. Lot. No GVAL200912 Quantity (kg) _ Test Item(s) Specification Test Result (%) Test method used (b) (4) Ammonium (as NH₄) -ASTM D 6919-03 Sodium -Sulfate ASTM D 4327-03 -* Information

* Temperature : (20~28) °C, Relative Humidity : (30~60) %

* N.D. : not detected (not quantifiable)

* The results shown in this test report refer only to the sample tested unless otherwise stated. The Test Report cannot be reproduced, except in full.

(b) (4)

Approved by Technical Manager

Oct, 07, 2021

CJ Research Institute of Biotechnology

55, Gwanggyo-ro 42beon-gil, Yeongtong-gu, Suwon-si,

Gyeonggi-do, 16495, Korea

www.cj.co.kr

TEL: 031) 8099-2450 FAX: 031) 8099-2918

Certificate of analysis Certificate No. 2021-PR-142 Receipt No. 2021-AN-110 Client Date of Receipt 2020.11.19. **Client Name** Date of Test 2020.12.01. Client Tel Reference test -Use of Report Client Address Test Sample L-Valine (Val pro) Manuf, Date 2020.09.16. Lot. No GVAL200916 Quantity (kg) -Specification Test Result (%) Test method used Test Item(s) (b) (4 Ammonium (as NH₄) -ASTM D 6919-03 Sodium -Sulfate ASTM D 4327-03 4 * Information * Temperature : (20~28) °C, Relative Humidity : (30~60) %

* N.D. : not detected (not quantifiable)

* The results shown in this test report refer only to the sample tested unless otherwise stated. The Test Report cannot be reproduced, except in full.

Approved by Technical Manager

(b) (4)

Oct, 07, 2021

CJ Research Institute of Biotechnology

55, Gwanggyo-ro 42beon-gil, Yeongtong-gu, Suwon-si,

Gyeonggi-do, 16495, Korea

www.cj.co.kr

TEL: 031) 8099-2450 FAX: 031) 8099-2918

Certificate of analysis

Certificate No.	2021-PR-143	Receipt No.	2021-AN-111
Client	-	Date of Receipt	2020.11.19.
Client Name	4.	Date of Test	2020.12.01.
Client Tel	5 1 .	Use of Report	Reference test
Client Address			
Test Sample	L-Valine (Va	al pro)	
Manuf. Date	2020.09.17.		
Lot. No	GVAL20091	7	
Quantity (kg) -		
Test Item(s) Specificat		ation Test Result	(%) Test method used
Ammonium (as	NH4) -		(b) (4)
Sodium			ASTM D 6919-03
Sulfate			ASTM D 4327-03
* Information			
* Temperature : (20	~28) °C, Relative Hur	midity : (30~60) %	
* N.D. : not detecte	d (not quantifiable)		
* The results shown	n in this test report re	efer only to the sample te	sted unless otherwise stated
The Test Report car	not be reproduced	except in full.	
	(0)		(b) (4)
Approved by Techn	ical Manager		
			Oct, 07, 20

CJ Research Institute of Biotechnology

55, Gwanggyo-ro 42beon-gil, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16495, Korea

, Rorea

www.cj.co.kr

TEL: 031) 8099-2450 FAX: 031) 8099-2918

Certificate of analysis

	1						
Certificate No.	2021	-PR-144	Rec	eipt No.	2	021-AN-112	
Client		-	Date	of Receipt		2020.11.19.	
Client Name		-	Dat	e of Test		2020.12.07.	
Client Tel		-	Use	of Report	R	eference test	
Client Address				-			
Test Sam	nple	L-Valine (Val p	ro)				
Manuf. D	Date	2020.09.10.	2020.09.10.				
Lot. N	0	GVAL200910					
Quantity	(kg)	-					
Test Iten	n(s)	Specificatio	on	Test Res	ult (%)	Test method used	
(hydrolyzed) As	partic acid	-			(b) (4)	AOAC 994.12	
(hydrolyzed) T	hreonine	-				AOAC 994.12	
(hydrolyzed)	Serine	-				AOAC 994.12	
(hydrolyzed) Glu	utamic acid	-				AOAC 994.12	
(hydrolyzed)	Glycine	-				AOAC 994.12	
(hydrolyzed)	Alanine	-				AOAC 994.12	
(hydrolyzed)	Cystine	-				AOAC 985.28	
(hydrolyzed)	Valine	-				AOAC 994.12	
(hydrolyzed) M	lethionine	-				AOAC 985.28	
(hydrolyzed) Is	soleucine	-				AOAC 994.12	
(hydrolyzed)	Leucine	-				AOAC 994.12	
(hydrolyzed)	Tyrosine	-				AOAC 994.12	
(hydrolyzed) Phe	enylalanine	-				AOAC 994.12	
(hydrolyzed)	Lysine	-				AOAC 994.12	
(hydrolyzed) I	Histidine	-				AOAC 994.12	
(hydrolyzed)	Argnine	-				AOAC 994.12	
(hydrolyzed)	Proline	-				AOAC 994.12	

VAL Pro

* Information			
* Temperature : (20~28) °C, Relativ	ve Humidity : (30~60) %	
* N.D. : not detected (not quantifia	able)		
* The results shown in this test rep	port refer only to the	sample tested u	nless otherwise stated.
The Test Report cannot be reprodu Approved by Technical Manager	uced, except in full. (b) (4)	(b) (4)	
			Oct, 07, 2021
CJ Researc	h Institute of	Biotechnolo	у

55, Gwanggyo-ro 42beon-gil, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16495, Korea

, Rorea

www.cj.co.kr

TEL: 031) 8099-2450 FAX: 031) 8099-2918

Certificate of analysis

Certificate No.	2021	-PR-145	Rec	Receipt No.		2021-AN-113	
Client		-	Date	Date of Receipt		2020.11.19.	
Client Name		-	Dat	e of Test		2020.12.07.	
Client Tel		-	Use	of Report	R	eference test	
Client Address				-			
Test Sam	ple	L-Valine (Val p	ro)				
Manuf. D	Date	2020.09.11.					
Lot. N	0	GVAL200911	GVAL200911				
Quantity	(kg)	-					
Test Iten	n(s)	Specificatio	on	Test Res	ult (%)	Test method used	
(hydrolyzed) As	drolyzed) Aspartic acid -				(b) (4)	AOAC 994.12	
(hydrolyzed) T	hreonine	-				AOAC 994.12	
(hydrolyzed) Serine		-				AOAC 994.12	
(hydrolyzed) Glu	rolyzed) Glutamic acid		-			AOAC 994.12	
(hydrolyzed)	Glycine	-				AOAC 994.12	
(hydrolyzed)	Alanine	-				AOAC 994.12	
(hydrolyzed)	Cystine	-				AOAC 985.28	
(hydrolyzed)	Valine	-				AOAC 994.12	
(hydrolyzed) M	lethionine	-				AOAC 985.28	
(hydrolyzed) Is	soleucine	-				AOAC 994.12	
(hydrolyzed)	Leucine	-				AOAC 994.12	
(hydrolyzed)	Tyrosine	-				AOAC 994.12	
(hydrolyzed) Phe	enylalanine	-				AOAC 994.12	
(hydrolyzed)	Lysine	-				AOAC 994.12	
(hydrolyzed) I	Histidine	-				AOAC 994.12	
(hydrolyzed)	Argnine	-				AOAC 994.12	
(hydrolyzed)	Proline	-				AOAC 994.12	

VAL Pro

*	Information
	mornation

* Temperature : (20~28) °C, Relative Humidity : (30~60) %

* N.D. : not detected (not quantifiable)

* The results shown in this test report refer only to the sample tested unless otherwise stated.

(b) (4)

The Test Report cannot be reproduced, except in full. ${}^{(b)(4)}$

Approved by Technical Manager

Oct, 07, 2021

CJ Research Institute of Biotechnology

55, Gwanggyo-ro 42beon-gil, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16495, Korea

, Rorea

www.cj.co.kr

TEL: 031) 8099-2450 FAX: 031) 8099-2918

Certificate of analysis

Certificate No.	2021	I-PR-146	Rec	Receipt No.		2021-AN-114
Client		-	Date	Date of Receipt		2020.11.19.
Client Name		-	Date	e of Test		2020.12.07.
Client Tel		-	Use	of Report	R	eference test
Client Address				-		
Test Sam	nple	L-Valine (Val p	ro)			
Manuf. D	Date	2020.09.12.				
Lot. N	0	GVAL200912				
Quantity	(kg)	-				
Test Item(s)		Specification		Test Res	ult (%)	Test method used
(hydrolyzed) As	(hydrolyzed) Aspartic acid		-		(b) (4)	AOAC 994.12
(hydrolyzed) Threonine		-				AOAC 994.12
(hydrolyzed) Serine		-				AOAC 994.12
(hydrolyzed) Glu	zed) Glutamic acid		-			AOAC 994.12
(hydrolyzed)	Glycine	-				AOAC 994.12
(hydrolyzed)	Alanine	-				AOAC 994.12
(hydrolyzed)	Cystine	-				AOAC 985.28
(hydrolyzed)	Valine	-				AOAC 994.12
(hydrolyzed) M	lethionine	-				AOAC 985.28
(hydrolyzed) Is	soleucine	-				AOAC 994.12
(hydrolyzed)	Leucine	-				AOAC 994.12
(hydrolyzed)	Tyrosine	-				AOAC 994.12
(hydrolyzed) Phe	enylalanine	-				AOAC 994.12
(hydrolyzed)	Lysine	-				AOAC 994.12
(hydrolyzed) I	Histidine	-				AOAC 994.12
(hydrolyzed)	Argnine	-				AOAC 994.12
(hydrolyzed)	Proline	-				AOAC 994.12

VAL Pro

55, Gwanggyo-ro 42beon-gil, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16495, Korea

, Korea

www.cj.co.kr

TEL: 031) 8099-2450 FAX: 031) 8099-2918

Certificate of analysis

				•			
Certificate No.	2021	-PR-147	Rec	Receipt No. 2		2021-AN-115	
Client		-	Date	of Receipt		2020.11.19.	
Client Name		-	Date	e of Test		2020.12.07.	
Client Tel		-	Use	of Report	R	eference test	
Client Address				-			
Test Sam	ple	L-Valine (Val p	ro)				
Manuf. D	Date	2020.09.16.					
Lot. N	0	GVAL200916					
Quantity	(kg)	-					
Test Iten	n(s)	Specificatio	on	Test Res	ult (%)	Test method used	
(hydrolyzed) As	partic acid	-			(b) (4)	AOAC 994.12	
(hydrolyzed) T	hreonine	-				AOAC 994.12	
(hydrolyzed)	Serine	-				AOAC 994.12	
(hydrolyzed) Glu	utamic acid	-				AOAC 994.12	
(hydrolyzed)	Glycine	-				AOAC 994.12	
(hydrolyzed)	Alanine	-				AOAC 994.12	
(hydrolyzed)	Cystine	-				AOAC 985.28	
(hydrolyzed)	Valine	-				AOAC 994.12	
(hydrolyzed) M	lethionine	-				AOAC 985.28	
(hydrolyzed) Is	soleucine	-				AOAC 994.12	
(hydrolyzed)	Leucine	-				AOAC 994.12	
(hydrolyzed)	Tyrosine	-				AOAC 994.12	
(hydrolyzed) Phe	enylalanine	-				AOAC 994.12	
(hydrolyzed)	Lysine	-				AOAC 994.12	
(hydrolyzed) l	Histidine	-				AOAC 994.12	
(hydrolyzed)	Argnine	-				AOAC 994.12	
(hydrolyzed)	Proline	-				AOAC 994.12	

VAL Pro

55, Gwanggyo-ro 42beon-gil, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16495, Korea

, Rorea

www.cj.co.kr

TEL: 031) 8099-2450 FAX: 031) 8099-2918

Certificate of analysis

Certificate No.	2021	I-PR-148	Rec	eipt No.	2	021-AN-116	
Client		-	Date	of Receipt		2020.11.19.	
Client Name		-	Date	e of Test		2020.12.07.	
Client Tel		-	Use	of Report	R	eference test	
Client Address				-			
Test Sam	nple	L-Valine (Val p	ro)				
Manuf. D	Date	2020.09.17.					
Lot. N	0	GVAL200917	GVAL200917				
Quantity	(kg)	-					
Test Iten	n(s)	Specificatio	on	Test Res	ult (%)	Test method used	
(hydrolyzed) As	zed) Aspartic acid -				(b) (4)	AOAC 994.12	
(hydrolyzed) T	hreonine	-				AOAC 994.12	
(hydrolyzed)	(hydrolyzed) Serine		-			AOAC 994.12	
(hydrolyzed) Glu	utamic acid	-				AOAC 994.12	
(hydrolyzed)	Glycine	-				AOAC 994.12	
(hydrolyzed)	Alanine	-				AOAC 994.12	
(hydrolyzed)	Cystine	-				AOAC 985.28	
(hydrolyzed)) Valine	-				AOAC 994.12	
(hydrolyzed) M	lethionine	-				AOAC 985.28	
(hydrolyzed) Is	soleucine	-				AOAC 994.12	
(hydrolyzed)	Leucine	-				AOAC 994.12	
(hydrolyzed)	Tyrosine	-				AOAC 994.12	
(hydrolyzed) Phe	enylalanine	-				AOAC 994.12	
(hydrolyzed)) Lysine	-				AOAC 994.12	
(hydrolyzed) I	Histidine	_				AOAC 994.12	
(hydrolyzed)	Argnine	-				AOAC 994.12	
(hydrolyzed)	Proline	-				AOAC 994.12	

VAL Pro

55, Gwanggyo-ro Gyeonggi-do, 164 TEL : 031)	42beor 495, Ko <u>ww</u> 8099-24	n-gil, Yeongt rea <mark>w.cj.co.kr</mark> I50 FAX : 031)	ong-gu, Si 8099-2918	uwon-si,	сј	CHEILJEDANG	
		Certific	cate of	analysi	s		
Certificate No.	202	1-PR-149	Recei	pt No.	2	021-AN-117	
Client		-	Date of	f Receipt		2020.11.19.	
Client Name		14 <u>1</u>	Date	of Test		2020.12.03.	
Client Tel		-	Use of	Report	eference test		
Client Address							
Test Sample	9	L-Valine (Val pro)					
Manuf. Date	9	2020.09.10.					
Lot. No	Lot. No GVAL200910						
Quantity (kg	J)						
Test Item(s)	í.	Specific	ation Test Result (%)		Test method used		
(hydrolyzed) Tryptophan			(6)		(b) (4)	AOAC 988.15	
* Information		č					
* Temperature : (20 * N.D. : not detecte * The results shown The Test Report ca Approved by Techr	0~28) °C, ed (not q n in this nnot be nical Mar	, Relative Hun Juantifiable) test report re reproduced g nager	fer only to t	60) % :he sample t I.	ested unle	ess otherwise stated.	
						Oct, 07, 2021	

1

Certific 021-PR-150 - - - - - - 2020.09.11. GVAL200917 -	Cate of analysi Receipt No. Date of Receipt Date of Test Use of Report	S 2021-AN-118 2020.11.19. 2020.12.03. Reference test
021-PR-150 - - - L-Valine (Va 2020.09.11. GVAL20091 ² -	Receipt No. Date of Receipt Date of Test Use of Report - I pro)	2021-AN-118 2020.11.19. 2020.12.03. Reference test
- - - L-Valine (Va 2020.09.11. GVAL20091 ² -	Date of Receipt Date of Test Use of Report - I pro)	2020.11.19. 2020.12.03. Reference test
- L-Valine (Va 2020.09.11. GVAL20091 ² -	Date of Test Use of Report - I pro)	2020.12.03. Reference test
- L-Valine (Va 2020.09.11. GVAL20091 -	Use of Report - I pro) 1	Reference test
L-Valine (Va 2020.09.11. GVAL200917 -	- I pro) 1	
L-Valine (Va 2020.09.11. GVAL200917 -	l pro) 1	
2020.09.11. GVAL200917 -	1	
GVAL200917	1	
-		
Specifica	ation Test Resul	It (%) Test method used
n -		(b) (4) AOAC 988.15
°C, Relative Hum t quantifiable) his test report ref be reproduced e (b)	nidity : (30~60) % fer only to the sample t except in full.	ested unless otherwise stated.
		Oct, 07, 2021
	°C, Relative Hun ot quantifiable) his test report re be reproduced Manager Research In	°C, Relative Humidity : (30~60) % of quantifiable) his test report refer only to the sample t be reproduced except in full. Manager Research Institute of Biotec

55, Gwanggyo-ro Gyeonggi-do, 164 TEL : 031)	42beor 495, Ko <u>ww</u> 8099-24	n-gil, Yeongt rea <u>w.cj.co.kr</u> 150 FAX : 031)	ong-gu, Suwa	on-si,	CI	CHEILJEDANG
		Certific	cate of a	nalysis		
Certificate No.	202	1-PR-151	Receipt	No.	2	021-AN-119
Client	- 00. ¹¹ .24	-	Date of Receipt		2020.11.19.	
Client Name		4	Date of	Test		2020.12.03.
Client Tel			Use of Re	port	Re	eference test
Client Address				-		
Test Sample	e	L-Valine (Va	l pro)			
Manuf. Date	e	2020.09.12.				
Lot. No		GVAL20091	2			
Quantity (kg) -						
Test Item(s)	Specification		Test Result (%)		Test method used
(hydrolyzed) Tryptophan		-			(b) (4) ⁻	AOAC 988.15
* Information						
* Temperature : (20 * N.D. : not detecto * The results show The Test Report ca	0~28) ℃ ed (not q n in this nnot be	, Relative Hun Juantifiable) test report re reproduced e	nidity : (30~60) fer only to the axcept in full.	% sample te	sted unle	ess otherwise stated.
Approved by Tech	nical Mar	nager			b) (4)	0
	CJ Re	search In	stitute of	Biotech	nolog	Oct, 07, 2021 y

55, Gwanggyo-ro Gyeonggi-do, 164 TEL : 031)	42beor 195, Ko <u>ww</u> 8099-24	n-gil, Yeongt rea <u>w.cj.co.kr</u> 150 FAX : 031)	ong-gu, Suwo 8099-2918	^{n-si,} CJ		CHEILJEDANG
		Certific	cate of ar	alysis		
Certificate No.	202	1-PR-152	Receipt I	No.	20	21-AN-120
Client		-	Date of Re	ceipt	2	020.11.19.
Client Name		4	Date of 1	est	2	020.12.03.
Client Tel		0 3 2	Use of Re	port	Re	ference test
Client Address						
Test Sample	Test Sample L-Valine (Val pro)					
Manuf. Date	Manuf. Date 2020.09.16					
Lot. No		GVAL20091	6			
Quantity (kg	1)	-				
Test Item(s)	Ê.	Specific	ation T	est Result (%))	Test method used
(hydrolyzed) Trypt	tophan				(ъ) (4)	AOAC 988.15
* Information						
* Temperature : (20 * N.D. : not detecte * The results shown The Test Report ca)∼28) °C ed (not c n in this nnot be	, Relative Hun juantifiable) test report re reproduced, e (b)(4	nidity : (30~60) fer only to the except in full.	% sample tested	d unles	ss otherwise stated.
		-		(b) (4)		
Approved by Techr	nical Mar	nager				
				_		Oct, 07, 2021

55, Gwanggyo-ro Gyeonggi-do, 164 TEL : 031)	42beor 195, Ko <u>ww</u> 8099-24	n-gil, Yeongt rea <u>w.cj.co.kr</u> 50 FAX : 031)	ong-gu, Suwo 8099-2918	^{in-si,} C		CHEILJEDANG	
		Certific	cate of an	nalysis			
Certificate No.	202	1-PR-153	Receipt	No.	2	021-AN-121	
Client		-	Date of Re	ceipt	3	2020.11.19.	
Client Name		4.1	Date of T	est		2020.12.03.	
Client Tel		· •	Use of Re	port	Re	eference test	
Client Address							
Test Sample	•	L-Valine (Va	l pro)				
Manuf. Date 2020.0			2020.09.17.				
Lot. No		GVAL20091	7				
Quantity (kg	I)	4					
Test Item(s)	6	Specifica	ation T	est Result (%	o)	Test method used	
(hydrolyzed) Trypt	ophan				(b) (4)	AOAC 988.15	
* Information						1	
* Temperature : (20 * N.D. : not detecte * The results show The Test Report ca)~28) ℃, ed (not q n in this nnot be	Relative Hum uantifiable) test report ref reproduced, e (b)(4)	nidity : (30~60) fer only to the except in full.	% sample teste	d unle	ess otherwise stated.	
Approved by Techr	nical Mar	nager		(b) (4		Oct 07 202	
	CJ Re	search In	stitute of I	Biotechn	olog	у	

55, Gwanggyo-ro 42beon-gil, Yeongtong-gu, Suwon-si,

Gyeonggi-do, 16495, Korea

www.cj.co.kr

TEL: 031) 8099-2450 FAX: 031) 8099-2918

Certificate of analysis

Certificate No.	2021-	PR-154	Receip	t No.	2	2021-AN-122	
Client			Date of	Receipt		2020.11.19.	
Client Name			Date o	f Test		2020.12.08.	
Client Tel	1. 1 .		Use of I	Report	R	eference test	
Client Address				1.00			
Test Sample	e l	Valine (Va	al pro)				
Manuf. Dat	e 2	2020.09.10.					
Lot. No	(GVAL20091	0				
Quantity (kg	g) -	51 m					
Test Item(s)	Specific	ation	Test Result (%)		Test method used	
Betaine		-			(b) (4)	Korean Feed Standards Codex, 18 of chapter 21.	
* Information							
* Temperature : (20 * N.D. : not detector * The results show The Test Report ca	0∼28) °C, R ed (not qua in in this tes innot be res	elative Hun ntifiable) st report re produced. e	nidity : (30~6 fer only to th except in full.	0) % e sample 1	tested unl	ess otherwise stated.	
Approved by Tech	nical Manag	ger					
						Oct, 07, 2021	
	CJ Rese	earch In	stitute of	Biotec	hnolog	у	

55, Gwanggyo-ro 42beon-gil, Yeongtong-gu, Suwon-si,

Gyeonggi-do, 16495, Korea

www.cj.co.kr

TEL: 031) 8099-2450 FAX: 031) 8099-2918

Certificate of analysis Certificate No. 2021-PR-155 2021-AN-123 Receipt No. Client Date of Receipt 2020.11.19. **Client Name** Date of Test 2020.12.08. ۰. Client Tel Reference test -Use of Report Client Address Test Sample L-Valine (Val pro) Manuf. Date 2020.09.11. Lot. No GVAL200911 Quantity (kg) 9 Test method used Test Item(s) Specification Test Result (%) (b) (4) Korean Feed Betaine Standards Codex, 18 of chapter 21. * Information

* Temperature : (20~28) °C, Relative Humidity : (30~60) %

* N.D. : not detected (not quantifiable)

* The results shown in this test report refer only to the sample tested unless otherwise stated.

(b) (4)

The Test Report cannot be reproduced, except in full.

Approved by Technical Manager

Oct, 07, 2021

CJ Research Institute of Biotechnology

55, Gwanggyo-ro 42beon-gil, Yeongtong-gu, Suwon-si,

Gyeonggi-do, 16495, Korea

www.cj.co.kr

TEL: 031) 8099-2450 FAX: 031) 8099-2918

Certificate of analysis

Certificate No.	2021-PR-156	2021-PR-156 Receipt No.		2021-AN-124	
Client	-	Date of Rece	eipt	2020.11.19.	
Client Name	÷.	Date of Te	st	2020.12.08.	
Client Tel		Use of Repo	ort	Reference test	
Client Address			a section and the		
Test Sample	e L-Valine (Val pro)			
Manuf. Dat	e 2020.09.12	2.			
Lot. No	GVAL2009	912			
Quantity (kg	g) -				
Test Item(s) Specif	ication Tes	st Result (%)	Test method used	
Betaine		-	(b) (⁴⁾ Korean Feed Standards Codex, 18 of chapter 21.	
* Information				Contraction of the second second	
* Temperature : (20 * N.D. : not detector * The results show The Test Report ca	0∼28) °C, Relative Hu ed (not quantifiable) n in this test report n nnot be reproduced,	umidity : (30~60) % refer only to the sa , except in full. (6) (4)	ش mple tested ui ه) ه)	nless otherwise stated.	
Approved by Tech	nical Manager			Oct 07 2021	
	CJ Research I	nstitute of Bi	iotechnolo	9у	

55, Gwanggyo-ro 42beon-gil, Yeongtong-gu, Suwon-si,

Gyeonggi-do, 16495, Korea

www.cj.co.kr

TEL: 031) 8099-2450 FAX: 031) 8099-2918

Certificate of analysis

Certificate No.	2021-PR-157	Receipt N	O .	2021-AN-125
Client	-	Date of Rec	eipt	2020.11.19.
Client Name	÷.	Date of Te	est	2020.12.08.
Client Tel	1. 1 .	Use of Rep	ort	Reference test
Client Address			a an fair ann	
Test Sample	e L-Valine (Val pro)		
Manuf. Date	e 2020.09.1	6.		
Lot. No	GVAL2009	916		
Quantity (kg	g) -			
Test Item(s) Specif	fication Te	st Result (%)	Test method used
Betaine			0.21 %	Korean Feed Standards Codex, 18 of chapter 21.
* Information				
* Temperature : (20 * N.D. : not detecte * The results show The Test Report ca	0∼28) °C, Relative Hu ed (not quantifiable) n in this test report nnot be reproduced	umidity : (30~60) 9 refer only to the sa , except in full. (6) (4)	% ample tested u	nless otherwise stated.
Approved by Tech	nical Manager		(6) (4)	Oct, 07, 2021
	CJ Research I	nstitute of B	iotechnolo	ogy

55, Gwanggyo-ro 42beon-gil, Yeongtong-gu, Suwon-si,

Gyeonggi-do, 16495, Korea

www.cj.co.kr

TEL: 031) 8099-2450 FAX: 031) 8099-2918

Certificate of analysis

Certificate No.	202	21-PR-158	Recei	ot No.		2021-AN-126
Client		· ·	Date of	Date of Receipt		2020.11.19.
Client Name			Date o	Date of Test		2020.12.08.
Client Tel		6 8 .	Use of	Report		Reference test
Client Address						
Test Sampl	le	L-Valine (Va	l pro)			
Manuf. Dat	te	2020.09.17.				
Lot. No		GVAL20091	7			
Quantity (k	g)	-				
Test Item(s	5)	Specific	ation	Test Resu	lt (%)	Test method used
Betaine	Betaine -					Korean Feed Standards Codex, 18 of chapter 21.
* Information						
* Temperature : (2 * N.D. : not detect * The results show The Test Report ca	0~28) ℃ ted (not) vn in this annot be	C, Relative Hun quantifiable) test report re reproduced, e (b)(nidity : (30~(fer only to t except in full	50) % ne sample t	tested un	less otherwise stated.
Approved by Tech	inical Ma	nager		-		Oct, 07, 2021
	CJ Re	esearch In	stitute o	f Biotec	hnolo	ду

CONFIDENTIAL REPORT

Determination of viable cells of the production strain in Dried L-Valine Fermentation Product

Version 1.1

TITLE

Determination of viable cells of the production strain in Dried L-Valine Fermentation Product

OBJECTIVE OF THE STUDY

This study was conducted to determine the viable cells of the production strain Corynebacterium glutamicum KCCM 80240 in the final product and manufacturing process.

SCHEDULE OF THE STUDY

Initiation of experiment: October 23, 2020 Termination of experiment: November 5, 2020 Submission of final report: December 31, 2020 Submission of revised report: October 7, 2021

TESTING FACILITY

R&BD)Regulatory Affairs, CJ CheilJedang 55, Gwanggyo-ro 42beon-gil, Yeongtong-gu, Suwon-si, Gyeonggi-do 16495, Korea

RESPONSIBLE STAFFS

Analyst and Author

Taeyeon Kim

Report approved by

Yang Hee Kim

yonfle

CONTENTS

INTRODUCTION4
MATERIALS AND METHODS5
Test sample5
Limit of detection test5
Sample analysis5
Control test6
Spike test6
RESULTS7
Determination of limit of detection of analysis7
Viable cell test
REFERENCES
[APPENDIX 1] Certificate of Analysis13
[APPENDIX 2] Manufacturing Process and Sampling Point16

INTRODUCTION

Corynebacterium glutamicum KCCM 80240 is a production microorganism to produce L-valine as a fermentation product. In accordance with EFSA guidance on microorganism used as feed additives or as production organisms, the absence of the production strain in the final product should be investigated for safety aspects [1]. In order to confirm the absence of viable cells in the final products, the membrane filtration method was used.

MATERIALS AND METHODS

Test sample

(A) Detection of viable cells in the final product

Three independent batches of Dried L-Valine Fermentation Product were tested to analyse the existence of viable cell. The certificate of analysis of test samples are attached as Appendix 1.

- Batch No. : GVAL200910, GVAL200911, GVAL200912

(B) Detection of viable cells in the manufacturing process

Samples were taken from the representative step of manufacturing process to determine the existence of viable cells. The sampling point from the manufacturing process is divided into five steps: fermentation, pH adjustment, biomass inactivation, concentration and final product. Details of sampling point is marked in Appendix 2 of this report.

Limit of detection test

Sample analysis

(b) (4)

(6) (4)

Control test

(1	b) (4)

Spike test

RESULTS

Determination of limit of detection of analysis

Strain	Dilution fold	Number of viable cells(CFU mL ⁻¹
C. glutamicum KCCM 80240		

(b) (4)

Viable cell test

(A) Detection of viable cells in the final product

Table 2. Number	of viable	cells in Dried	L-Valine	Fermentation	Product

Product	Batch number	Number of viable cell (CFU g ⁻¹)		
		1 st analysis	2 nd analysis	3 rd analysis
Dried L-Valine Fermentation Product	GVAL200910			(b) (4)
	GVAL200911			
	GVAL200912			

PAGE 8 / 16

(b) (4)

(b) (4)

(b) (4)

(B) Detection of viable cells in the manufacturing process

Table 3. Number of viable cells in Dried L-Valine Fermentation Product manufacturing process

	Number of viable cell (CFU mL ⁻¹)				
	1 st analysis	2 nd analysis	3 rd analysis		
Fermentation			(b) (4)		
pH adjustment					
Cell inactivation					
Concentration					
Product (CFU g ⁻¹)					

(b) (4)

REFERENCES

[1] EFSA FEEDAP Panel (EFSA Panel on Additives and Products or Substances used in Animal Feed), 2018. Guidance on the characterisation of microorganisms used as feed additives or as production. EFSA Journal, 16(3), 5206. DOI: 10.2903/j.efsa.2018.5206. Available online: <u>https://efsa.onlinelibrary.wiley.com/doi/full/10.2903/j.efsa.2018.5206</u>.

[APPENDIX 1] Certificate of Analysis

GVAL200910

55, Gwanggyo-ro Gyeonggi-do, 16 TEL : 031	42beo 495, Kor <u>ww</u>) 8099-24	n-gil, Yeongt rea <u>ww.cj.co.kr</u> 450 FAX : 031)	ong-gu, Su 8099-2918	won-si,	cj	CHEILJEDANG
		Certifi	cate of	analysis	6	
Certificate No.	202	0-PR-132	Recei	ot No.	2	020-AN-106
Client		191	Date of	Receipt		2020.11.19.
Client Name			Date o	of Test		2020.11.23.
Client Tel		÷	Use of	Report	Re	eference test
Client Address				-		
Test Sampl	е	L-Valine (Va	l pro)			
Manuf. Dat	e	2020.09.10.				
Lot. No	1	GVAL200910)			
Quantity (kg	g)	2	3			
Test Item(s)	Specifi	cation	Test Re:	sult	Test method used
L-Valine(dry b	ase)	Not less th	nan 72 %		(6) (4)	HPLC
Moisture (Loss on	drying)	Not more	than 5 %			AOAC 934.01
* Information						
* Temperature : (20 * The results show The Test Report Tested by Approved by Teo	0~28) ℃, n in this cannot b chnical M	Relative Hum test report ref e reproduced (%) anager	idity : (30~6) er only to th except in fu	0) % e sample tes II. (6)	ted unles (4)	s otherwise stated. Dec, 23, 202

CJ BIO-AD form 100-01 REV.01

GVAL200911

55, Gwanggyo-i Gyeonggi-do, 1 TEL : 03	ro 42beor 6495, Kor <u>ww</u> (1) 8099-24	n-gil, Yeong ea <u>w.cj.co.kr</u> 450 FAX : 031)	tong-gu, Si) 8099-2918	uwon-si,		CHEILJEDANG
		Certifi	cate of	analysis	1	
Certificate No.	202	0-PR-133	Recei	pt No.	2	2020-AN-107
Client		4	Date of	Receipt		2020.11.19.
Client Name		÷	Date	of Test		2020.11.23.
Client Tel		-	Use of	Report	R	leference test
Client Address						
Test Samp	ole	L-Valine (Va	l pro)			
Manuf. Da	ate	2020.09.11.	17.7			
Lot. No		GVAL20091	1			
Quantity (kg)	-				
Test Item	(s)	Specifi	cation	Test Resu	ilt	Test method used
L-Valine(dry	base)	Not less t	han 72 %		(b) (4)	HPLC
Moisture (Loss o	n drying)	Not more	than 5 %			AOAC 934.01
* Information						
* Temperature : (2 * The results show The Test Repor Tested by Approved by Te	20~28) ℃, wn in this t t cannot b echnical M	Relative Hum test report ref e reproduced (t anager	hidity : (30~6 fer only to th except in fu	0) % le sample test ill. (9)	ed unles ⑷	ss otherwise stated. Dec, 23, 2020

CJ BIO-AD form 100-01 REV.01

GVAL200912

CJ Research Institute of Biotechnology

55, Gwanggyo-ro 42beon-gil, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16495, Korea

www.cj.co.kr

TEL : 031) 8099-2450 FAX : 031) 8099-2918

		Certin	cate of	analysis		
Certificate No.	202	0-PR-134	Receip	ot No.	2	020-AN-108
Client		-	Date of	Receipt		2020.11.19.
Client Name		÷	Date of	of Test		2020.11.23.
Client Tel		-	Use of	Report	R	eference test
Client Address			<i>X</i>			
Test Sam	ple	L-Valine (Val	pro)			
Manuf, D	ate	2020.09.12.				
Lot. No	0	GVAL200912	1			
Quantity ((kg)	-				
Test Item	(S)	Specific	ation	Test Resu	lt	Test method used
L-Valine(dry	base)	Not less th	nan 72 %		(6) (4)	HPLC
Moisture (Loss o	on drying)	Not more	than 5 %			AOAC 934.01
* Information						
* Temperature : (* The results sho The Test Repor Tested by Approved by T	20~28) ℃, wn in this t t cannot b èchnical M	Relative Hum test report refe e reproduced mager	idity : (30~60 er only to th except in fu	0) % e sample teste II. (b)	ed unles: 4)	s otherwise stated. Dec. 23, 2020
					1.1	Dec, 25, 2020

CJ BIO-AD form 100-01 REV.01

REVISED APPENDIX 2_ATTACHMENT 4_WHOLE GENOME SEQUENCE ANALYSIS (CONFIDENTIAL).

CONFIDENTIAL REPORT

Whole genome sequence analysis of *Corynebacterium glutamicum* KCCM 80240

Version 2.0

TITLE

Whole genome sequence analysis of Corynebacterium glutamicum KCCM 80240

OBJECTIVE OF THE STUDY

This study was conducted to analyse the genomic features of production strain, *Corynebacterium glutamicum* KCCM 80240.

SCHEDULE OF THE STUDY

Initiation of experiment: 7 September 2020 Termination of experiment: 10 December 2020 Submission of final report (Version 1.0): 15 December 2020 Submission of final report (Version 2.0): 29 April 2021

TESTING FACILITY

Institute of Biotechnology) Data Science Team, CJ CheilJedang 55, Gwanggyo-ro 42beon-gil, Yeongtong-gu, Suwon-si, Gyeonggi-do 16495, Korea

RESPONSIBLE STAFFS

Analyst

Sang Jun Kim

SC.

Author

Su Jin Kim

Report approved by

Sung Gun Lee

m

CONTENTS

INTRODUCTION4
MATERIALS AND METHODS
1. Whole genome sequencing5
1-1. PacBio library construction and sequencing5
1-2. <i>De novo</i> genome assembly5
2. Bioinformatics analysis6
2-1. Genome annotation6
2-2. Bacterial identification6
2-3. Identification of antimicrobial resistance (AMR) genes6
2-4. Identification of pathogen associated genes6
RESULTS7
1. Overview on construction of production strain7
2. WGS analysis of parental strain <i>C. glutamicum</i> CA08-00128
2-1. Genome properties of parental strain <i>C. glutamicum</i> CA08-00128
3. WGS analysis of the production strain <i>C. glutamicum</i> KCCM 8024011
3-1. Sequencing quality evaluation11
3-2. Genome properties of production strain <i>C. glutamicum</i> KCCM 8024011
4. Identification of microorganism23
5. Identification of antimicrobial resistance gene23
6. Identification of pathogen associated genes25
REFERENCES
SUPPLEMENTARY DATA

INTRODUCTION

L-Valine is produced by fermentation with *Corynebacterium glutamicum* KCCM 80240. The genome sequence analysis of the production strains should be performed for safety aspects in accordance with EFSA guidance on the characterisation of microorganisms used as feed additives or as production organisms [1]. This study provide the information about the analysis method and WGS-based charaterisation of the production strain *C. glutamicum* KCCM 80240.

MATERIALS AND METHODS

2. Bioinformatics analysis

2-1. Genome annotation

2-2. Bacterial identification

2-3. Identification of antimicrobial resistance (AMR) genes

2-4. Identification of pathogen associated genes

STUDY NO: WGS-09-2020

(b) (4)

(b) (4)

(b) (4)

RESULTS

1. Overview on construction of production strain

(b) (4)

(b) (4)

(b) (4)

Table 1. Genome features of three C. glutamicum strains

	C. glutamicum strains	le la		
Feature	Wild-type strain ATCC 14067	Parental strain CA08-0012	Production strain KCCM 80240	
Genome size (bp)				(b) (4)
G+C content (%)				
ORFs*				
tRNA				
rRNA	Contraction of the local sector			

* The number of ORFs was counted except the pseudogene.

2. WGS analysis of parental strain C. glutamicum CA08-0012

1.0 . .

eature	C. glutamicum ATCC 14067	C. glutamicum CA08-0012	1
Genome length (bp)			(6) (4)
G+C contents (%)			
Predicted ORFs			
Predicted tRNAs			
Predicted rRNAs			
			(b)
	(b) (4)		ſh
			(u
			G

(b) (4)

Table 6. General features of C. glutamicum CN08-0012 and C. glutamicum KCCM 80240 genomes

ltems	Parental strain <i>C. glutamicum</i> CN08-0012	Production strain C. glutamicum KCCM 80240	3
Genome length (bp)			(b) (4)
G+C contents (%)			
Predicted ORFs			
Predicted tRNAs			
Predicted rRNAs			

(b) (4)

(b) (4)

No.	Parental stain _C. glutamicum CA08-0012	Production strain C. glutamicum KCCM 80240	Involved genes*	
	Position	Modification type		
1				(b) (4)
2	-			

PAGE 13 / 61

3	(6) (4)
4	
5	-
7	_
8	
Terrare and the second s	(b) (4
	(h) (4

No	Genetic modification	Name	Types of structural element	Type of genetic modification	Location	Purpose and function	
1							(6) (
2							
ī							
3							
4							
-							
5							
							(b)
6							
-							
STU	DY NO: WGS-09-20	20	-		-	PAGE 21 / 61	

Table 8. Modified structural elements of C. glutamicum KCCM 80240 chromosome

4. Identification of microorganism

Table 9. ANI for C. glutamicum KCCM 80240 with wild-type Corynebacterium species

Rank	Species		GenBank accession no.	ANI value (%)
1		(б) (4)	GCA_002243555.1	99.9
2			GCA_000550785.1	83.0
3			GCA_001941425.1	81.2
4			GCA_000011325.1.	79.5
5			GCA_006539465.1.	77.7

5. Identification of antimicrobial resistance gene

Table 10. Screening for antimicrobial resistance genes using ResFinder data base

(b) (4)

(b) (4)

Table 11. Screening for antimicrobial resistance genes using ARG-ANNOT data base

Gene ID of <i>C. glutamicum</i> KCCM 80240		Gene ID in ARG-ANNO	Identity		Coverage	
Name	Length	Name	Length	(/)	(%)	(%)

6. Identification of pathogen associated genes

Sec. 19 Sec. 1	C. glutamicum ATCC 14067				C. glutamicum KCCM 80240			
Gene ID in VFDB	Gene ID	ldentity (/)	Identity (%)	Coverage (%)	Gene ID	Identity (/)	Identity (%)	Coverage (%) (b) (4

Table 12. Screening of pathogen associated genes using VFDB data base

REFERENCES

SUPPLEMENTARY DATA

	C. glutamicum ATCC 14067			C. glutamicum CA08-0012			
No	type	Ref. Position	Ref. Seq. Nuc.	Var. Nuc	Var. Position	Var. ORF Name	
1							(b) (4)
2							
3							
4							
5							
6							
7							
8							
9							
10							
12							
13							
14							
15							
10							
1/							
10							
20							
20							
21							
23							
24							
25							
26							
27							
28							
29							
30							
31							
32							
33							
34							
35							
36							
37							
38							
39							
40							
41							
42							
43							
44							
43							

 Table S1. Nucleotide sequence variation of C. glutamicum CA08-0012 strain

STUDY NO: WGS-09-2020
10	(b) (4)
40	
4/	
48	
49	
50	
52	
53	
54	
55	
56	
57	
58	
59	
60	
61	
62	
63	
64	
65	
60	
6/	
68	
69	
70	
/1	
-12	
73	
74	
75	
70	
70	
70	
- 19	
00	
01	
02	
0.00	
85	
86	
87	
88	
89	
90	
91	
97	
93	
94	
95	
96	

	(b) (c)
97	
98	
99	
100	
101	
102	
102	
103	
104	
105	
106	
107	
108	
109	
110	
111	
112	
112	
113	
114	
115	
116	
117	
118	
119	
120	
120	
121	
122	
123	
124	
125	
126	
127	
128	
129	
130	
131	
131	
132	
133	
134	
135	
136	
137	
138	
139	
140	
141	
1/2	
142	
143	
144	
145	
146	
147	

		(b) (4)
148		
149		
150		
151		
152		
153		
154		
155		
156		
157		
158	-	
159	-1.	
160		
161		
162		
162	- 10.	
105	-1.	
164		
105		
166		
16/		
168		
169		
170		
171		
172		
173		
174		
175		
176		
177		
178		
179		
180		
181		
182		
183		
184		
185		
186		
187	- 22	
199		
180		
100		
190	-1.5	
102		
192		
193		
194		
195		
196		
197		
198		
_		

100	(b)	(4)
199		
200		
201		
202		
203		
204		
205		
206		
207		
208		
209		
210		
211		
212		
213		
214		
215		
216		
217		
218		
219		
220		
221		
222		
223		
224		
225		
226		
227		
228		
229		
230		
231		
232		
233		
234		
235		
236		
237		
238		
239		
240		
241		
242		
243		
244		
245		
246		
247		
248		
249		

	(б) (4)
250	
251	
252	
253	
254	
255	
256	
257	
258	
259	
260	
261	
262	
263	
264	
265	
205	
200	
207	
208	
269	
270	
2/1	
2/2	
273	
274	
275	
276	
277	
278	
279	
280	
281	
282	
283	
284	
285	
286	
287	
288	
289	
205	
291	
201	
292	
293	
294	
295	
296	
298	
299	
300	
_	

14.1		(b) (4)
301		
302		
303		
304		
305		
306		
307		
308		
309		
310		
311		
312		
313		
314		
315		
316		
317		
318		
319		
320		
321		
322		
323		
324	-	
325		
326		
327	- 1	
328		
329		
330		
331	- 1.	
332		
332		
334		
335		
226		
330		
220		
220	- 1	
240	- 1 -	
240	- 1	
241		
342		
343	- 1	
344		
345		
340		
34/		
348	- 100	
349	- /	
350		
351		

		(b) (4)
352		(0) (1)
353		
354		
355		
356		
357		
358		
359		
360		
261	- 1	
262		
302	-0.1	
303		
364		
305		
366		
367		
368		
369		
370		
371		
372		
373		
374		
375		
376		
377		
378		
379		
380		
381	-	
382		
383	- 1.0	
384		
385		
205	- /	
300		
200		
388		
389		
390		
391		
392		
393		
394		
395		
396		
397		
398		
399		
400		
401		
402		

403	(b) (4)
404	
405	
406	
407	
408	
400	
405	
410	
411	
412	
413	
414	
415	
410	
41/	
418	
419	
420	
421	
422	
423	
424	
425	
426	
427	
428	
429	
430	
431	
432	
433	
434	
435	
436	
43/	
438	
439	
440	
441	
443	
444	
445	
446	
44/	
448	
449	
450	
451	
452	
453	

12.2		(b) (4)
454		
455		
456		
457		
458		
459		
460		
461		
462		
463		
464	-	
465		
466	-	
467	-1.	
468	-	
400		
403	-	
470	- 1	
4/1	-	
4/2	- 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10	
4/3	- 10	
4/4		
475		
476		
477		
478		
479		
480		
481		
482		
483		
484		
485		
486		
487	-	
488		
489	-	
490		
/01		
/02		
402	- 2 0	
493	-	
494	- 11 1	
495	-	
496	-	
497	- 1	
498		
499		
500		
501		
502		
503		
504		
_		

505		(6) (4)
505		
506		
507		
508		
509		
510		
511		
512		
513		
514	• • • • • • • • • • • • • • • • • • •	
515		
	- 1. I.	
510		
517		
518		
519		
520		
521		
522		
523		
524		
525		
526		
527		
529		
520		
529	- 1	
530	-) () () () () () () () () ()	
531		
532		
533		
534		
535		
536		
537		
538		
539		
540		
541		
542		
543		
544		
545		
546		
540 E 47		
547		
548		
549		
550		
551		
552		
553		
554		
555		

556	(b) (d
550	
557	
500	
559	
560	
561	
562	
563	
564	
565	
566	
567	
568	
569	
570	
571	
572	
573	
574	
575	
576	
577	
578	
579	
580	
581	
582	
583	
584	
585	
586	
587	
588	
589	
590	
591	
592	
593	
594	
595	
596	
597	
598	
599	
600	
602	
602	
604	
605	
606	
000	
-	

607	(b) (4)
607	
608	
609	
610	
611	
612	
613	
614	
615	
616	
617	
618	
619	
620	
621	
622	
623	
624	
625	
626	
627	
628	
629	
630	
631	
632	
633	
634	
625	
636	
637	
637	
630	
639	
640	
641	
642	
643	
644	
645	
646	
647	
648	
649	
650	
651	
652	
653	
654	
655	
656	
657	
1-	
	Contraction of the local division of the loc

658		(b) (4)
659		
660		
661		
662	·	
663		
664		
665		
666		
667		
669	· ·	
660	-1.0	
670	- /	
670	- C.	
672		
672		
673	-	
674	- / .	
675		
677		
679	- () · · · · · · · · · · · · · · · · · ·	
670	1	
679		
080		
681		
682	- C	
003		
684		
696		
697		
600		
600	- 4 1	
600		
601		
602		
602		
604		
605		
606		
607		
609		
600		
700	- 100 million	
700	- 1. Au	
702		
703		
704		
705		
706		
707		
708		
100		

700	(6)
/09	1 m
710	
711	
712	
713	
713	
714	
/15	
716	
717	
718	
719	
720	
720	
/21	
122	
723	
724	
725	
726	
727	
720	
720	
730	
731	
732	
733	
734	
725	
735	
750	
/3/	
738	
739	
740	
741	
742	
7/3	
745	
744	
/45	
746	
747	
748	
749	
750	
751	
751	
/52	
/53	
754	
755	
756	
757	
758	
750	
135	

760		(b) (4)
761		
762		
763		
764		
765		
766		
767		
768		
769	- 1	
770		
771		
772		
773		
774	- 14 9	
775		
776		
777		
779		
770		
780		
781	- 1	
782	- 2	
783		
78/		
785		
786		
787	- 21 1	
788		
789		
790		
791		
792		
793		
794		
795		
796		
797	- 1	
798	- 1.	
799		
800		
801		
802		
803		
804		
805		
806		
807		
808		
800		
810		
- 010		
		-

911	(b) (4)
812	
813	
814	
815	
816	
817	
818	
819	
820	
821	
822	
823	
824	
825	
826	
827	
828	
829	
830	
831	
832	
833	
834	
835	
836	
837	
838	
839	
840	
841	

No			C. glutamicun	n ATCC 14067			C. glutamicum CA0	8-0012
*	Gene ID	Туре	Position	Strd	Function	Modified Type	Gene ID	Function
	CEY17_00470		and the second					(b) (4)
1								
-1	CEY17_00475							
	CEY17_01065							
. [CEY17 01070	-						
2	CEY17_01075							
	CEY17_01080							
	CEY17_02095							
3	CEY17 02100	-						
- 1	CEY17 02105							
	CEY17_03690							
Α								
	CEY17_03700							
	CEY17_04320							
	CEY17_04330							
	CEY17_04335							
. [CEY17_04340							
4	CEY17_04345							
101	CEY17_04350							
	CEY17_04355							
() j	CEY17_04360							
	CEY17_04365	1						

Table S2. Gene modified regions of C. glutamicum CA08-0012

* MGEs related gene is highlighted in yellow.

1	CEY17_04370	
11	CEY17_04375	
	CEY17_04380	
	CEY17_05475	
1		
	CEY17_05485	
	CEY17_06260	
-	CEY17_06270	
	CEY17_08925	
5 -		
	CEY17_08970	
ų.	CEY17_09245	
1		
	CEY17_09250	
	CEY17_10440	
÷	CEY17 10450	
Ē	CEY17_10455	
t	CEY17 10460	
1	CEY17 12865	
	CEY17_12870	
	CEY17 13180	
	CEY17_13185	
0	CEY17 15070	

EY17_15085	(b) (4
EY17 15090	
EY17_15095	
EY17_15105	
EY17_15110	
EY17_15115	
EY17_15120	
EY17_15125	
EY17_15130	
EY17_15135	
EY17_15140	
EY17_15145	
EY17_15150	
EY17_15155	
EY17_15170	
EY17_15175	
EY17_15180	
EY17_15185	
EY17 15190	
EY17 15195	
EY17_15215	
EY17_15220	
EY17_15225	
EY17 15230	
EY17 15240	

CEY17_15245	
CEY17_15250	
CEY17_15255	
CEY17_15260	
CEY17_15265	
CEY17_15270	
CEY17_15280	
CEY17 15285	
CEY17 15290	
CEY17 15295	
CEY17_15300	
CEY17_15305	
CEY17_15310	
CEY17_15315	
CEY17 15320	
CEY17 15325	
CEY17 15335	
CEY17 15340	
CEY17 15345	
CEY17 15350	
CEY17 15360	
CEY17 15365	
CEY17 15370	
CEY17 15380	
CEY17 15385	

Contract of the second s
EY17_15390
EY17_15395
EY17_15400
EY17_15405
EY17_15410
EY17 15420

	C. glutamicm	C. glutamicm CA08-0012		C. glutamicm KCCM80240			
No.	Ref. Position	Ref. Seq. Nuc.	Var. Nuc	Var. Position	Туре	Var. ORF Name	
1	0						(b) (4)
2							
3							
4							
5							
6							
7							
8							
9							
10							
11							
12							
13							
14							
15							
17							
18							
19							
20							
21							
22							
23							
24							
25							
26							
27							
28							
29							
30							
31							
32							
33							
34							
35							
36							
3/	- 10 C						
38							
39							
40							
41							
42							
44							
45							
46							
47							

Table S3. Nucleotide sequence variation of C. glutamicum KCCM 80240 strain

48 49 50 51 52 53 56 57 58 59 99 60 61 62 63 64 65 66 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 99 90 91 92 93 94 95 96 97 98		(b) (4)
$ \begin{array}{r} \begin{array}{r} \begin{array}{r} \begin{array}{r} \begin{array}{r} \begin{array}{r} \begin{array}{r} \begin{array}{r}$	48	
$ \frac{50}{51} $ $ \frac{52}{53} $ $ \frac{54}{55} $ $ \frac{56}{56} $ $ \frac{57}{77} $ $ \frac{58}{69} $ $ \frac{64}{64} $ $ \frac{64}{64} $ $ \frac{64}{65} $ $ \frac{69}{69} $ $ \frac{70}{70} $ $ \frac{71}{71} $ $ \frac{72}{73} $ $ \frac{74}{74} $ $ \frac{75}{76} $ $ \frac{76}{77} $ $ \frac{78}{79} $ $ \frac{99}{80} $ $ \frac{81}{81} $ $ \frac{82}{83} $ $ \frac{83}{86} $ $ \frac{86}{87} $ $ \frac{87}{88} $ $ \frac{89}{99} $ $ \frac{90}{90} $ $ \frac{91}{92} $ $ \frac{92}{92} $ $ \frac{93}{93} $ $ \frac{94}{95} $ $ \frac{95}{96} $ $ \frac{95}{96} $ $ \frac{97}{77} $ $ \frac{98}{98} $	49	
$ \frac{51}{52} \\ \frac{52}{53} \\ \frac{53}{56} \\ \frac{56}{57} \\ \frac{58}{59} \\ \frac{60}{60} \\ \frac{61}{61} \\ \frac{62}{63} \\ \frac{64}{63} \\ \frac{63}{65} \\ \frac{66}{67} \\ \frac{76}{77} \\ \frac{77}{73} \\ \frac{72}{73} \\ \frac{74}{75} \\ \frac{77}{76} \\ \frac{77}{78} \\ \frac{79}{79} \\ \frac{80}{80} \\ \frac{81}{81} \\ \frac{82}{83} \\ \frac{83}{84} \\ \frac{85}{85} \\ \frac{86}{86} \\ \frac{87}{87} \\ \frac{88}{89} \\ \frac{99}{90} \\ \frac{91}{92} \\ \frac{92}{93} \\ \frac{93}{96} \\ \frac{95}{96} \\ 9$	50	
$ \frac{52}{53} \\ \frac{53}{54} \\ \frac{55}{56} \\ \frac{57}{77} \\ \frac{58}{59} \\ \frac{59}{59} \\ \frac{60}{61} \\ \frac{62}{62} \\ \frac{63}{66} \\ \frac{64}{64} \\ \frac{65}{66} \\ \frac{66}{66} \\ \frac{66}{77} \\ \frac{77}{78} \\ \frac{78}{78} \\ \frac{79}{79} \\ \frac{80}{80} \\ \frac{81}{81} \\ \frac{82}{82} \\ \frac{83}{83} \\ \frac{84}{85} \\ \frac{85}{86} \\ \frac{86}{87} \\ \frac{87}{88} \\ \frac{88}{89} \\ \frac{99}{90} \\ \frac{90}{91} \\ \frac{92}{92} \\ \frac{93}{93} \\ \frac{94}{94} \\ \frac{95}{95} \\ \frac{96}{95} \\ \frac{97}{97} \\ \frac{98}{98} \\ \frac{99}{99} \\ 9$	51	
$ \frac{53}{56} \\ \frac{55}{56} \\ \frac{55}{56} \\ \frac{57}{57} \\ \frac{58}{58} \\ \frac{59}{56} \\ \frac{60}{50} \\ \frac{61}{55} \\ \frac{66}{66} \\ \frac{67}{77} \\ \frac{71}{72} \\ \frac{73}{73} \\ \frac{74}{75} \\ \frac{75}{76} \\ \frac{77}{77} \\ \frac{78}{79} \\ \frac{79}{79} \\ \frac{80}{80} \\ \frac{81}{81} \\ \frac{82}{83} \\ \frac{84}{84} \\ \frac{85}{85} \\ \frac{85}{86} \\ \frac{87}{88} \\ \frac{89}{99} \\ \frac{99}{99} \\ 9$	52	
$ \begin{array}{r} 54 \\ 55 \\ $	53	
55 56 57 58 59 60 61 62 63 64 55 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 93 90 91 92 93 94 95 96 97 98	54	
$ \frac{56}{57} \\ \frac{57}{58} \\ \frac{59}{60} \\ \frac{61}{61} \\ \frac{62}{62} \\ \frac{63}{66} \\ \frac{66}{67} \\ \frac{68}{69} \\ \frac{69}{70} \\ \frac{70}{70} \\ \frac{71}{72} \\ \frac{73}{73} \\ \frac{73}{74} \\ \frac{75}{75} \\ \frac{75}{76} \\ \frac{75}{76} \\ \frac{75}{78} \\ \frac{79}{79} \\ \frac{88}{83} \\ \frac{84}{85} \\ \frac{86}{86} \\ \frac{87}{87} \\ \frac{88}{88} \\ \frac{88}{89} \\ \frac{90}{90} \\ \frac{91}{91} \\ \frac{92}{93} \\ \frac{93}{93} \\ \frac{94}{94} \\ \frac{95}{95} \\ \frac{95}{96} \\ \frac{97}{98} \\ \frac{98}{88} \\ \frac{88}{89} \\ \frac{99}{96} \\ \frac{99}{96} \\ \frac{99}{96} \\ \frac{99}{98} \\ \frac{99}{99} \\ \frac{99}{98} \\ \frac{99}{99} \\ \frac{99}{98} \\ \frac{99}{99} \\ \frac{99}{98} \\ \frac{99}{99} \\ 9$	55	
$ \begin{array}{r} 57 \\ 58 \\ 59 \\ 60 \\ 61 \\ 62 \\ 63 \\ 64 \\ 65 \\ 66 \\ $	56	
58 59 60 61 62 63 64 65 66 69 70 71 72 73 73 76 77 78 79 80 81 82 83 84 85 86 87 99 90 91 92 93 94 95 96 97 98	57	
$ \begin{array}{r} 39 \\ 59 \\ 60 \\ 61 \\ 62 \\ 63 \\ 66 \\ 66 \\ 66 \\ 66 \\ 69 \\ 77 \\ 71 \\ 72 \\ 73 \\ 74 \\ 75 \\ 76 \\ 77 \\ 77 \\ 78 \\ 79 \\ 80 \\ 81 \\ 82 \\ 83 \\ 84 \\ 88 \\ 89 \\ 99 \\ 90 \\ 91 \\ 92 \\ 93 \\ 95 \\ 96 \\ 95 \\ 96 \\ 95 \\ 98 \\ 98 \\ 95 98 \\ 9 9 98 \\ 9 9 9 9 9 $	58	
$ \begin{array}{r} \frac{5}{60} \\ \overline{61} \\ \overline{62} \\ \overline{63} \\ \overline{64} \\ \overline{65} \\ \overline{66} \\ \overline{67} \\ \overline{68} \\ \overline{69} \\ \overline{70} \\ \overline{71} \\ \overline{72} \\ \overline{73} \\ \overline{73} \\ \overline{75} \\ \overline{76} \\ \overline{77} \\ \overline{78} \\ \overline{79} \\ \overline{79} \\ \overline{80} \\ \overline{81} \\ \overline{82} \\ \overline{83} \\ \overline{84} \\ \overline{85} \\ \overline{86} \\ \overline{87} \\ \overline{88} \\ \underline{89} \\ \overline{90} \\ \overline{90} \\ \overline{91} \\ \overline{92} \\ \overline{93} \\ \overline{98} \\ \overline{99} \\ \overline{98} \\ \overline{99} \\ \overline{98} \\ \overline{99} \\ \overline{98} \\ \overline{98} \\ \overline{99} \\ \overline{98} \\ $	50	
$ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	60	
$ \begin{array}{c} 0.1 \\ 6.2 \\ 6.3 \\ 6.4 \\ 6.5 \\ 6.6 \\ 6.7 \\ 6.8 \\ 6.9 \\ 70 \\ 70 \\ $	61	
$ \begin{array}{c} \frac{62}{63} \\ \underline{64} \\ \underline{65} \\ \underline{66} \\ \underline{67} \\ \underline{68} \\ \underline{69} \\ \underline{70} \\ \overline{70} \\ \overline{71} \\ \overline{72} \\ \overline{73} \\ \overline{74} \\ \overline{75} \\ \overline{76} \\ \overline{77} \\ \overline{78} \\ \overline{79} \\ \overline{79} \\ \overline{80} \\ \underline{81} \\ \underline{82} \\ \underline{83} \\ \underline{84} \\ \underline{85} \\ \underline{86} \\ \underline{87} \\ \underline{88} \\ \underline{89} \\ \underline{99} \\ \underline{90} \\ \underline{91} \\ \underline{92} \\ \underline{92} \\ \underline{93} \\ \underline{94} \\ \underline{95} \\ \underline{96} \\ \underline{97} \\ \underline{98} \\ \end{array} $		
$ \begin{array}{c} $	62	
$ \begin{array}{r} \frac{64}{65} \\ \overline{66} \\ \overline{67} \\ \overline{68} \\ \overline{69} \\ \overline{70} \\ \overline{70} \\ \overline{71} \\ \overline{72} \\ \overline{73} \\ \overline{74} \\ \overline{75} \\ \overline{76} \\ \overline{77} \\ \overline{78} \\ \overline{79} \\ \overline{80} \\ \overline{80} \\ \overline{81} \\ \overline{82} \\ \overline{83} \\ \overline{84} \\ \overline{85} \\ \overline{86} \\ \overline{87} \\ \overline{88} \\ \overline{89} \\ \overline{90} \\ \overline{90} \\ \overline{91} \\ \overline{92} \\ \overline{93} \\ \overline{94} \\ \overline{95} \\ \overline{95} \\ \overline{96} \\ \overline{97} \\ \overline{98} \\ $	63	
$ \begin{array}{r} $	64	
$ \begin{array}{r} $	65	
$ \begin{array}{r} \frac{67}{68} \\ \frac{69}{70} \\ \overline{70} \\ \overline{71} \\ \overline{72} \\ \overline{73} \\ \overline{74} \\ \overline{75} \\ \overline{76} \\ \overline{77} \\ \overline{78} \\ \overline{79} \\ \overline{80} \\ \overline{81} \\ \underline{82} \\ \underline{83} \\ \underline{84} \\ \underline{85} \\ \underline{86} \\ \underline{87} \\ \underline{88} \\ \underline{89} \\ \underline{90} \\ \underline{91} \\ \underline{92} \\ \underline{93} \\ \underline{94} \\ \underline{95} \\ \underline{95} \\ \underline{97} \\ \underline{98} \\ \overline{98} \\ $	66	
$ \begin{array}{r} 68 \\ 69 \\ 70 \\ 71 \\ 72 \\ 73 \\ 74 \\ 75 \\ 76 \\ 77 \\ $	67	
$ \begin{array}{r} \frac{69}{70} \\ \overline{71} \\ \overline{72} \\ \overline{73} \\ \overline{74} \\ \overline{75} \\ \overline{76} \\ \overline{77} \\ \overline{78} \\ \overline{79} \\ \overline{80} \\ \overline{81} \\ \overline{82} \\ \overline{83} \\ \overline{84} \\ \overline{85} \\ \overline{86} \\ \overline{87} \\ \overline{88} \\ \overline{89} \\ \overline{90} \\ \overline{90} \\ \overline{91} \\ \overline{92} \\ \overline{93} \\ \overline{94} \\ \overline{95} \\ \overline{96} \\ \overline{97} \\ \overline{98} \\ \end{array} $	68	
$ \begin{array}{r} 70\\ 71\\ 72\\ 73\\ 74\\ 75\\ 76\\ 76\\ 77\\ 78\\ 79\\ 80\\ 81\\ 82\\ 83\\ 84\\ 85\\ 86\\ 87\\ 88\\ 89\\ 90\\ 90\\ 90\\ 90\\ 90\\ 90\\ 90\\ 90\\ 90\\ 9$	69	
$ \begin{array}{c} 71\\ 72\\ 73\\ 74\\ 75\\ 76\\ 77\\ 79\\ 80\\ 80\\ 81\\ 82\\ 83\\ 84\\ 85\\ 86\\ 87\\ 88\\ 89\\ 99\\ 90\\ 91\\ 92\\ 93\\ 94\\ 95\\ 96\\ 97\\ 98 \end{array} $	70	
$ \begin{array}{r} 72 \\ 73 \\ 74 \\ 75 \\ 76 \\ 77 \\ 78 \\ 79 \\ 80 \\ 81 \\ 82 \\ 83 \\ 84 \\ 85 \\ 86 \\ 87 \\ 88 \\ 89 \\ 90 \\ 90 \\ 91 \\ 92 \\ 93 \\ 94 \\ 95 \\ 96 \\ 97 \\ 98 \\ \end{array} $	71	
$ \begin{array}{r} 73 \\ 74 \\ 75 \\ 76 \\ 77 \\ 77 \\ 79 \\ 80 \\ 81 \\ 82 \\ 83 \\ 84 \\ 85 \\ 86 \\ 87 \\ 88 \\ 89 \\ 90 \\ 91 \\ 92 \\ 93 \\ 94 \\ 95 \\ 96 \\ 97 \\ 98 \\ 9 $	72	
$ \begin{array}{r} 74 \\ 75 \\ 76 \\ 77 \\ 78 \\ 79 \\ 80 \\ 81 \\ 82 \\ 83 \\ 84 \\ 85 \\ 86 \\ 87 \\ 88 \\ 89 \\ 90 \\ 90 \\ 91 \\ 92 \\ 93 \\ 94 \\ 95 \\ 96 \\ 97 \\ 98 \\ $	73	
$ \begin{array}{r} 75 \\ 76 \\ 77 \\ 78 \\ 79 \\ 80 \\ 81 \\ 82 \\ 83 \\ 84 \\ 85 \\ 86 \\ 87 \\ 88 \\ 89 \\ 90 \\ 90 \\ 91 \\ 92 \\ 93 \\ 94 \\ 95 \\ 96 \\ 97 \\ 98 \\ 9 $	74	
$ \begin{array}{r} 76 \\ 77 \\ 77 \\ 78 \\ 79 \\ 80 \\ 81 \\ 82 \\ 83 \\ 84 \\ 85 \\ 86 \\ 87 \\ 88 \\ 89 \\ 90 \\ 90 \\ 91 \\ 92 \\ 93 \\ 94 \\ 95 \\ 96 \\ 97 \\ 98 \\ \end{array} $	75	
$ \begin{array}{r} 77\\ 77\\ 78\\ 79\\ 80\\ 81\\ 82\\ 83\\ 84\\ 85\\ 86\\ 87\\ 88\\ 89\\ 90\\ 91\\ 92\\ 93\\ 94\\ 95\\ 96\\ 97\\ 98 \end{array} $	76	
$ \begin{array}{r} 77 \\ 79 \\ 80 \\ 81 \\ 82 \\ 83 \\ 84 \\ 85 \\ 86 \\ 87 \\ 88 \\ 89 \\ 90 \\ 90 \\ 91 \\ 92 \\ 93 \\ 94 \\ 95 \\ 96 \\ 97 \\ 98 \\ \end{array} $	77	
$ \begin{array}{r} 78 \\ 79 \\ 80 \\ 81 \\ 82 \\ 82 \\ 83 \\ 84 \\ 85 \\ 86 \\ 87 \\ 88 \\ 89 \\ 90 \\ 90 \\ 91 \\ 92 \\ 93 \\ 94 \\ 95 \\ 96 \\ 97 \\ 98 \\ \end{array} $	79	
$ \begin{array}{r} $	70	
$ \begin{array}{r} 80 \\ 81 \\ 82 \\ 83 \\ 84 \\ 85 \\ 86 \\ 87 \\ 88 \\ $		
$ \begin{array}{r} 81 \\ 82 \\ 83 \\ 84 \\ 85 \\ 86 \\ 87 \\ 88 \\ $	80	
$ \begin{array}{r} 82 \\ 83 \\ 84 \\ 85 \\ 86 \\ 87 \\ 88 \\ $		
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98	82	
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98	83	
85 86 87 88 89 90 91 92 93 94 95 96 97 98	84	
$ \begin{array}{r} 86 \\ 87 \\ 88 \\ $	85	
$ \begin{array}{r} 87 \\ 88 \\ $	86	
88 89 90 91 92 93 94 95 96 97 98	87	
89 90 91 92 93 94 95 96 97 98	88	
90 91 92 93 93 94 95 96 97 98	89	
91 92 93 94 95 96 97 98	90	
92 93 94 95 96 97 98	91	
93 94 95 96 97 98	92	
94 95 96 97 98	93	
95 96 97 98	94	
96 97 98	95	
97 98	96	
98	07	
70	00	
	- 70	

00	Section 2010	(b) (4
100		
100		
101		
102		
103		
104		
105		
106		
107		
108		
109		
110		
111		
112		
113		
114		
115		
116		
117		
112		
119		
120		
101		
121		
122		
123		
124		
125		
126		
12/		
128		
129		
130		
131		
132		
133		
134		
135		
136		
137		
138		
139		
140		
141		
142		
143		
144		
145		
1/6		
140		

Ē

151	
152	
153	
154	
155	
156	
157	
158	
159	
160	
161	
162	
163	
164	
165	
166	
167	
168	
169	
170	
171	
172	
173	
174	
175	
176	
177	
178	
179	
180	
181	
182	
183	
184	
185	
186	
187	
188	
189	
190	
191	
192	
193	
194	
195	
196	
197	
198	

148 149 150 (b) (4)

100	(b) (4)
199	
200	
202	
203	
204	
205	
206	
207	
208	
209	
210	
210	
212	
215	
216	
217	
218	
219	
220	
221	
222	
223	
224	
225	
225	
220	
227	
228	
230	
231	
232	
233	
234	
235	
236	
237	
238	
239	
240	
241	
242	
242	
243	
244	
245	
247	
248	
249	

350	(b) (4)
250	
252	
253	
254	
255	
256	
257	
258	
259	
260	
200	
201	
262	
263	
264	
265	
266	
267	
268	
269	
270	
271	
272	
272	
275	
274	
2/5	
2/6	
278	
279	
280	
281	
282	
283	
284	
285	
286	
287	
207	
200	
289	
292	
293	
294	
295	
296	
297	
298	
299	
300	
500	

301	(b) (4)
302	
303	
304	
305	
306	
307	
308	
309	
310	
311	
312	
313	
314	
315	
316	
317	
318	
319	
320	
321	
322	
323	
324	
325	
326	
327	
328	
329	
330	

 Table S4. Gene modified regions of C. glutamicum KCCM 80240

* MGEs related gene is highlighted in yellow. The genetic modified site is marked in red.

Ne			C. glutamicu	m CA08-0012	C. glutamicum KCCM 80240				
NO	Gene ID	Туре	Position	Strd	Function	Modified type	Gene ID	Function	0.10
									(0) (4)
1									100
2									
. 1									
3									
4									
- 1									
5									
6									
7									
_									
1		-							

(b) (4)

REVISED APPENDIX 2. PRE-FERMENTATION INFORMATION (CONFIDENTIAL)

Table of Contents

APPENDIX 2. PR	E-FERMENTATION INFORMATION (CONFIDENTIAL)1
List of Tables	
List of Figures	4
A. CHARACTER	ZATION OF THE PRODUCTION MICROORGANISM
A.1 Scientific Na	me and Taxonomy of <i>C. glutamicum</i> KCCM 80240
A.2 Nature Habit	at of <i>C. glutamicum</i> and Its Ecological Role
A.3 Phenotypic C	Characteristics of C. glutamicum KCCM 80240
A.4 Genetic Com	parison of Host to Published Data of the Species
B. INFORMATIC STRAIN, <i>CORYN</i>	ON OF DRIED L-VALINE FERMENTATION PRODUCT PRODUCING EBACTERIUM GLUTAMICUM KCCM 80240
B.1 Information of	of Genetic Modification in <i>C. glutamicum</i> KCCM 80240 12
B.1.1 Random	Mutagenesis12
B.1.2 Site-dired	cted Mutagenesis12
B.1.3 Overexpi for Producing (ression of Biosynthetic Genes, Especially Deregulated Genes Encoding Key Enzymes, C. glutamicum KCCM 80240
B.2 Donor Organ	ism
B.3 Descriptions	of Genetic Modification
B.3.1 Vector U	sed for Genetic Modification18
B.3.2	(b) (4)
B.3.3	(b) (4)
B.3.4	(b) (4)
B.3.5	(b) (4)
B.3.6	^{(b) (4)} 29
B.3.7	(b) (4)
B.3.8	^{(b) (4)} 32
B.3.9	(b) (4)
B.3.10	(b) (4)
B.3.11	^{(b) (4)}

B.4 Identification and Detection Techniques	39
B.5 Description of Gene Deletion Region(s)	39
B.6 Promoter Information	41
B.7 Description of Gene Integration	43
B.8 Safety of DNA Modification	59
B.9 Genetic Stability of C. glutamicum KCCM 80240	60
B.10 Open Reading Frame (ORF) Analysis of Genetically Modified Region	60
B.11 Open Reading Frame Analysis of Full Genome Sequence of C. glutamicum KCCM 80240	62
C. SPILL-OVER ANALYSIS	.63
C.1 Comparison Metabolic Flux of C. glutamicum ATCC 14067 and C. glutamicum KCCM 80240	63
C.2 Comparison of Metabolite in C. glutamicum ATCC 14067 and C. glutamicum KCCM 80240	67
C.3 Biogenic Amines	69
D. LIST OF ATTACHMENTS	.71
E. LIST OF REFERENCES	.72

List of Tables

Table A.3.1. PC. glutamicum	Phenotypic characteristics of <i>C. glutamicum</i> ATCC14067, <i>C. glutamicum</i> CA08-0012 <i>i</i> KCCM 80240	2 and 7
Table B.1.1. S	Summary of genetic modification in C. glutamicum KCCM 80240	17
Table B.3.1. S	equence of pDZ-MCS	20
Table B.3.1. P	rimer sequence used to construct C. glutamicum KCCM 80240	37
Table B.4.1. C KCCM 80240	Comparison of PCR products sizes between C. glutamicum ATCC 14067 and C. glutam	<i>iicum</i> 39
Table B.5.1.	Size and function of deleted gene	40
Table B.5.2.	(b) (4)	40
Table B.6.1.	(b) (4)	42
Table B.7.1. I	Location of integrated genes in genome	44
Table B.7.2.	(b) (4)	44
Table B.7.3.	(b) (4)	46
Table B.7.4.	(b) (4)	47
Table B.7.5.	(b) (4)	49

Table B.7.6.	(b) (4)	
Table B.7.7.	(b) (4)	
Table B.7.8.	(b) (4)	
Table B.7.9.	(b) (4)	
Table B.7.10.	(b) (4)	
Table B.10.1. Locat	tion of modified gene in genome	61
Table B.11.1. Compand <i>C. glutamicum</i>	parison of ORF between the <i>C. glutamicum</i> ATCC14067, C KCCM80240	C. glutamicum CA08-0012 62
Table C.1.1 MFA of	f C. glutamicum ATCC 14067 and C. glutamicum KCCM	80240
Table C.2.1. Amino KCCM 80240 ferme	acid of <i>C. glutamicum</i> ATCC 14067, <i>C. glutamicum</i> CA08 entation broth	8-0012 and <i>C. glutamicum</i> 68
Table C.2.2. Organic KCCM 80240 ferme	c acid of <i>C. glutamicum</i> ATCC 14067, <i>C. glutamicum</i> CA0 entation broth	8-0012 and <i>C. glutamicum</i> 69
Table C.2.6. Bioge glutamicum KCCM	enic amines of <i>C. glutamicum</i> ATCC 14067, <i>C. glutam</i> 80240 fermentation broth	<i>ticum</i> CA08-0012 and <i>C</i> 70

List of Figures

Figure A.1.1. Certificate of deposition (C. glutamicum KCCM 80240)	
Figure A.3.1. 16s rDNA sequence analysis of C. glutamicum KCCM 80240	
Figure B.1.1. L-Valine biosynthetic pathway in <i>C. glutamicum</i> KCCM 80240. B corresponding gene in the reaction and yellow oval indicates regulator	lue letters indicates
Figure B.3.1. Marker free insertion method	
Figure B.3.2. (b) (4)	
Figure B.3.3.	(b) (4)
Figure B.3.4	(b) (4)
Figure B.3.5.	(b) (4) 25
Figure B.3.6	(b) (4)
Figure B.3.7.	(b) (4) 28
Figure B.3.8	(b) (4) 29
Figure B.3.9.	(b) (4)
Figure B.3.10.	(b) (4)
Figure B.3.11.	(b) (4)
Figure B.3.12.	(b) (4)
Figure B.3.13.	(b) (4)
Figure B.3.14.	(b) (4) 36
Figure C.1.1.	(b) (4)

A. CHARACTERIZATION OF THE PRODUCTION MICROORGANISM

A.1 Scientific Name and Taxonomy of C. glutamicum KCCM 80240

A.2 Nature Habitat of C. glutamicum and Its Ecological Role

It was reported that Corynebacteriaceae are rod-shaped, fast growing, non-sporulating gram-positive bacteria that are found widespread in nature. A large number of corynebacterial species were isolated from human clinical samples or animals, but several others were isolated from soils, cheese, dairy products, vegetables and fruits. Some of these species were also found in marine samples. It seems that these bacteria are widely spread throughout nature which induces high diversity in the Corynebacterium genus. The natural habitat of *C. glutamicum* strains have been reported in soil, soils contaminated with bird feces, sewage, manure, and vegetables and fruits (Eggeling and Bott, 2005).

A.3 Phenotypic Characteristics of C. glutamicum KCCM 80240

	(b) (4
Tanan and the second	

Table A.3.1. Phenotypic characteristics of C. glutamicum ATCC14067, C. glutamicum CA08-0012 and C. glutamicum KCCM 80240

	<i>C. glutamicum</i> ATCC 14067 (Wild-type strain)	<i>C. glutamicum</i> CA08- 0012 (Parental strain)	<i>C. glutamicum</i> KCCM 80240 (Production strain)
Colony shape		(б) (4) (b) (4)
Colony color			
Cell arrangement			
Cell shape			
16s rDNA			
homology			
Optimal			
temperature range			
Optimal pH range			

A.4 Genetic Comparison of Host to Published Data of the Species

Figure A.1.1. Certificate of deposition (C. glutamicum KCCM 80240)

13641 서울시 서대문구 중제내2가입 45 유럽법당

KOREAN CULTURE CENTER OF MICROORGANISMS

45 Hongierice 2004gl Sebilitierhunkgu Seoul (2044) Korea TEL: 82-9-391-0950 FAX: 82-2-392-2859 kamie Plage ; http://www.kccm.or.kt

No.20-83

2020-09-25

Certification of Analysis

Dear CJ CheilJedang 330, Dongho-ro, Jung-gu, Seoul, Korea 04560

We have performed the 16S rDNA sequence analysis of your strain KCCM80240. The result is as follows:

KCCM80240 : Corynebacterium glutamicum (GenBank Data homology search result : 99%)

Please refer to sequence and phylogeny tree.

Sincerely yours

(b) (4)

Korean Culture Collection of Microorganisms (KCCM) 45, Hongjenae 2ga-gil, Seodaemun-gu, Seoul, Korea. 03641 Tel: 82-2-391-0950 FAX: 82-2-392-2859 (b) (4)

>KCCM80240

B. INFORMATION OF DRIED L-VALINE FERMENTATION PRODUCT PRODUCING STRAIN, *CORYNEBACTERIUM GLUTAMICUM* KCCM 80240

(b) (4)	(b) (4)

B.1 Information of Genetic Modification in C. glutamicum KCCM 80240

B.1.1 Random Mutagenesis

(b) (4)

B.1.2 Site-directed Mutagenesis

(b) (4)
(b) (4)

Page 13

(b) (4)
(b) (4)
(b) (4)
(b) (4)
(b) (4)

	(b) (4)
	(b) (4)
	(-)(-)
	(b) (4)

B.1.3 Overexpression of Biosynthetic Genes, Especially Deregulated Genes Encoding Key Enzymes, for Producing C. glutamicum KCCM 80240

	(b) (4)
	(b) (4)
	(b) (4)
_	
	(b) (4)
	(b) (4)

The production strain of Dried L-Valine Fermentation Product was deposited as *C. glutamicum* KCCM 80240 at KCCM (Korea Culture Center of Microorganisms) located in the South Korea.

T-LL D 1 1	Commence a sume	f tin	31.01 41	:- 0	- Tred alors & a stress	LCCNI DOG 10
I ADIE K I I	Summary (n generic	modulication	10 (ommanna ann	KCC VI X0740
THOIL DITIT.	Summing	I genetic	mountienton	111	Summercum	ILC CHI DUATU

	Modified	Modification	Conv number of	Characteristic	s
Modified gene	locus	method	integration gene	Parental organism	Donor organism
	locus	Internou	integration gene	organism	Donor organism

B.2 Donor Organism

(b) (d)			(b) (4
(b) (4)			
(b) (d)			
(b) (4)			
(b) (4)			
(b) (4)	_		
		(b) (4)	

B.3 Descriptions of Genetic Modification

(b) (4)

(b) (4)

Table B.3.1. Sequence of pDZ-MCS

Page 21

İ				(b) (4)
			(b) (4)	
	(b) (4)			(b) (4)

B.3.3 Replacement of Original ilvC Gene with Duplicated ilvC Gene

		(b) (4)
(b) (4)		
		(b) (4)
(b) (4)		

	(b) (4)
(b) (4)	
	(b) (4)

	(b) (4)
	(b) (4)
(b) (4)	
	(b) (4)
(b) (4)	

	(b) (4)	
		(b) (4)
(b) (4)		
		(b) (4)

GRAS Notice Dried L-Valine Fermentation Product
Revised Appendix 2. Pre-Fermentation Information (CONFIDENTIAL)

(b) (4)	 _		
			(b) (4)
		(b) (4)	
(b) (4)			
		(b) (4)	

GRAS Notice Dried L-Valine Fermentation Product
Revised Appendix 2. Pre-Fermentation Information (CONFIDENTIAL)

(b) (4)	_	
		(b) (4)
	(b) (4)	
		(b) (4)
(b) (4)		

			(b) (4)
i			
			(b) (
		(b) (4)	
			(b) (4)
- i			
- 1			
- 1			
- 1			

		(b) (4)
(b) (4)		1
		(b) (4)
(b)(4)	 	
(0) (4)		

		(b) (4)	
			(b) (4)
			(b) (4
			(b) (4)
		_	

			(b) (4)
		(b) (4)	
			(b) (4)
(b) (4)			

	(b) (4)
(b) (4)	
	(b) (4)

(b) (4)		
	(b) (4)	
(b) (4)		

No	SEQ ID	Sequence $(5' \rightarrow 3')$
1	SEQ ID No 01	(b) (
2	SEQ ID No 02	
3	SEQ ID No 03	
4	SEQ ID No 04	
5	SEQ ID No 05	
6	SEQ ID No 06	
7	SEQ ID No 07	
8	SEQ ID No 08	
9	SEQ ID No 09	
10	SEQ ID No 10	
11	SEQ ID No 11	
12	SEQ ID No 12	
13	SEQ ID No 13	
14	SEQ ID No 14	
15	SEQ ID No 15	
16	SEQ ID No 16	
17	SEQ ID No 17	
18	SEQ ID No 18	
19	SEQ ID No 19	
20	SEQ ID No 20	
21	SEQ ID No 21	
22	SEQ ID No 22	
23	SEQ ID No 23	
24	SEQ ID No 24	
25	SEQ ID No 25	
26	SEQ ID No 26	
27	SEQ ID No 27	
28	SEQ ID No 28	
29	SEQ ID No 29	
21	SEQ ID No 30	
22	SEQ ID No 31	
22	SEQ ID No 32	
24	SEQ ID No 33	
35	SEQ ID No 34	
26	SEQ ID No 35	
37	SEQ ID No 37	
38	SEQ ID No 38	
39	SEQ ID No 39	
40	SEQ ID No 40	
41	SEQ ID No 41	
42	SEO ID No 42	
43	SEO ID No 43	
44	SEQ ID No 44	
45	SEQ ID No 45	
46	SEQ ID No 46	

Table B.3.1. Primer sequence used to construct C. glutamicum KCCM 80240

No	SEQ ID	Sequence $(5' \rightarrow 3')$	
47	SEQ ID No 47		(b) (4
48	SEQ ID No 48		
49	SEQ ID No 49		
50	SEQ ID No 50		
51	SEQ ID No 51		
52	SEQ ID No 52		
53	SEQ ID No 53		
54	SEQ ID No 54		
55	SEQ ID No 55		
56	SEQ ID No 56		
57	SEQ ID No 57		
58	SEQ ID No 58		
59	SEQ ID No 59		
60	SEQ ID No 60		
61	SEQ ID No 61		
62	SEQ ID No 62		
63	SEQ ID No 63		
64	SEQ ID No 64		
65	SEQ ID No 65		
66	SEQ ID No 66		
67	SEQ ID No 67	Rest of the second s	
68	SEQ ID No 68		
69	SEQ ID No 69		
70	SEQ ID No 70		
71	SEQ ID No 71		
72	SEQ ID No 72		
73	SEQ ID No 73		
74	SEQ ID No 74		
75	SEQ ID No 75	l la seconda de la companya de la compan	
76	SEQ ID No 76		
77	SEQ ID No 77		
78	SEQ ID No 78		
79	SEQ ID No 79		
80	SEQ ID No 80		
81	SEQ ID No 81		
82	SEQ ID No 82		
83	SEQ ID No 83		
84	SEQ ID No 84		
85	SEQ ID No 85		
86	SEQ ID No 86		

B.4 Identification and Detection Techniques

Table B.4.1. Comparison of PCR products sizes between C. glutamicum ATCC 14067 and C. glutamicum KCCM 80240

Gene	Seq	Primer sequence $(5^{\circ} \rightarrow 3^{\circ})$	Integrated	PCR size (bp)	
	No		locus	ATCC 14067	KCCM 80240

B.5 Description of Gene Deletion Region(s)

(b) (4)

(b) (4)

Table B.5.1. Size and function of deleted gene

D.1.4.1	Transition	Size (bp)	Size (bp)	
Deleted gene	Function	Whole gene	Deleted gene	(b) (4)

ame	Sequence $(5^{2} \rightarrow 3^{2})$	Size (bp)

Name	Sequence (5' → 3')	Size (bp)

B.6 Promoter Information

			-	
-		(b) (4)		
Promoter			Ar	ppli
Name	Origin	Sequence $(5^{\circ} \rightarrow 3^{\circ})$	Length (bp) OI	RF
Name	Origin	Sequence $(5^{\circ} \rightarrow 3^{\circ})$	Length (bp) OI	RF
Name	Origin	Sequence $(5^{\circ} \rightarrow 3^{\circ})$	Length (bp) OI	RF
Name	Origin	Sequence (5' → 3')	Length (bp) OI	RF
Name	Origin	Sequence $(5^{\circ} \rightarrow 3^{\circ})$	Length (bp) OI	RF
Name	Origin	Sequence (5' → 3')	Length (bp) OI	RF
Name	Origin	Sequence (5' → 3')	Length (bp) OI	RF
Name	Origin	Sequence (5' → 3')	Length (bp) OI	RF
Name	Origin	Sequence (5' → 3')	Length (bp)	RF
Name	Origin	Sequence (5' → 3')	Length (bp)	RF
Name	Origin	Sequence (5' → 3')	Length (bp)	RF
Name	Origin	[Sequence (5' → 3')	Length (bp)	RF
Name	Origin	[Sequence (5' → 3')	Length (bp)	RF
Name	Origin	[Sequence (5' → 3')	Length (bp)	RF

B.7 Description of Gene Integration

(b) (4)
(h) (4)
(0) (4)
(b) (4)
(b) (4)
(b) (4)

			(b) (4)		
		rated I	ocus	Location in gene	ome (b) (4)
			(b) (4)	Size (bp)	Origin (6) (4)
					(b) (4)
					(b) (4)

Name	Sequence $(5^{\circ} \rightarrow 3^{\circ})$	Size (bp) Origin
		(b) (4)
		(b) (4
		(6) (4
		(b) (4)
_		

Name	Sequence (5' → 3')	Size (bp)	Drigin
			(б) (4

Table B.7.3. Sequence of introduced Pcj7-*ilv*E

Name	Sequence $(5' \rightarrow 3')$	Size (bp) Origin
-		(b) (4)
	*	

Name	Sequence (5' → 3')	Size (bp) Origin
Name	(b) (4)(b) (4)_(b) (4)_(b) (4)(b) (4)_(b) (4)_(b) (4)_(b) (4)_(b	Size (bp) Origin

$(3 \rightarrow 3)$	Size (op)	Origin
	5 7 5 7	

Name	Sequence (5' → 3')	Size (bp)	Origin
			(0) (4
			(b) (d
nutations a	re undernned.		
	(b) (4)		
Name	Sequence $(5' \rightarrow 3')$	Size (bp)	Origin

Name	Sequence (5'→3')	Size (bp)	Origin	(b) (4)
				(b) (4

Name	Sequence (5' → 3')	Size (bp) Origin
Name	^{(b)(4)} Sequence (5' → 3')	Size (bp) Origin

Name	Sequence $(5' \rightarrow 3')$	Size (bp)	Origin	
-	and the second sec			(b

Name	Sequence (5' → 3')	Size (bp)	Origin	(b) (4)
				(b) (4)

Len a vi			In second second
Name	Sequence $(5' \rightarrow 3')$	Size (bp)	Origin
-	Market and a second		(b) (4

Name	Sequence (5' → 3')	Size (bp)	Origin	0) (4)
				b) (4)

Name	Sequence (5' → 3')	Size (bp)	Origin

lame	Sequence $(5' \rightarrow 3')$	Size (bp)	Origin
	11	[CP/	(6)

Name	Sequence (5' → 3')	Size (bp)	Origin (b) (4)

	(b) (4)		
Name	Sequence $(5' \rightarrow 3')$	Size (bp)	Origin (b) (4)
			(b) (d)
			(0) (4)

Name	Sequence $(5' \rightarrow 3')$	Size (bp)	Origin
			(0) (4
			A) (1
			(0) (4

*Mutations are underlined.

(bp) Origin	
	(b
	0

Name	Sequence $(5' \rightarrow 3')$	Size (bp)	Origin

Name	Sequence $(5' \rightarrow 3')$	Size (bp)	Origin
			(c
Safety of DNA Mod	lification		
,,			
			(b)

B.9 Genetic Stability of C. glutamicum KCCM 80240

B.10 Open Reading Frame (ORF) Analysis of Genetically Modified Region

(b) (4)
(b) (4)

(b) (4)

		(6) (4
		ው) (ሳ
		(0) (4
		(b) (d
		(0)(-
		(ሰ) (ሰ
		(4)
(
b)		
(4		1
)		
1		
1.		
а.		
Tab	le B.10.1. Location of modified gene in genome	

Genes	Modification type	Locus	Location in genome	
				(b) (4)

(b) (4)

B.11 Open Reading Frame Analysis of Full Genome Sequence of C. glutamicum KCCM 80240

(b) (4)

Table B.11.1. Comparison of ORF between the *C. glutamicum* ATCC14067, *C. glutamicum* CA08-0012 and *C. glutamicum* KCCM80240

Feature	Wild-type strain ATCC 14067	Parental strain CA08-0012	Production strain KCCM 80240	
				(b) (4)

(b) (4)

(b) (4)

C. SPILL-OVER ANALYSIS

	(b) (4
(b) (4)	
(b)	
(4)	
(b)	
=(4)	
	(b) (4

C.1 Comparison Metabolic Flux of C. glutamicum ATCC 14067 and C. glutamicum KCCM 80240

(b) (4)

		(b) (4)
	10	
		6) (A)
		(0)(4)
-		
		(b) (4)
		(b) (4)
		(b) (4) (b) (4)

(b) (4)

Table C.1.1 MFA of C. glutamicum ATCC 14067 and C. glutamicum KCCM 80240

Pathway	ATCC 14067	KCCM 80240
Glycolysis		
		(0

	Pathway	ATCC 14067	KCCM 80240

Pathway	ATCC 14067	KCCM 80240 (b) (4)

C.2 Comparison of Metabolite in C. glutamicum ATCC 14067 and C. glutamicum KCCM 80240

(b) (4)

(b) (4)
(6) (4)
(b) (4)
2

Table C.2.1. Amino acid of *C. glutamicum* ATCC 14067, *C. glutamicum* CA08-0012 and *C. glutamicum* KCCM 80240 fermentation broth (3KL Pilot scale, the end of fermentation)

	ATCC 14067 (g/L)	CA08-0012 (g/L)	KCCM 80240 (g/L)								
1	Batch1	Batch1	Batch1	Batch2	Batch3	Ave					
OD562					(b) (4)	57.6					
Asp						0.00					
Thr						0.07					
Ser						0.01					
Glu						0.20					
Gly						0.14					
Ala						0.17					
Cys						0.00					
Val						92.51					
Met						0.00					
Ile	623					0.12					
Leu						0.14					
Tyr						0.11					
Phe						0.32					

Lys	(b) (4)	0.02
His		0.31
Arg		0.00

* Asp: aspartate, Thr: threonine, Ser: serine, Glu: glutamate, Gly: glycine, Ala: alanine, Cys: cysteine, Val: valine, Met: methionine, Ile: isoleucine, Leu: leucine, Tyr: tyrosine, Phe: phenylalanine, Lys: lysine, His: histidine, Arg: arginine

** Analytical method: L-Valine-HPLC, Free amino acids (except L-valine)-AOAC 999.13

Table C.2.2. Organic acid of *C. glutamicum* ATCC 14067, *C. glutamicum* CA08-0012 and *C. glutamicum* KCCM 80240 fermentation broth (3KL Pilot scale, the end of fermentation)

	ATCC 14067	CA08-0012							
	(g/L)	(g/L)	(g/L)						
	Batch1	Batch1	Batch1	Batch2	Batch3	Ave.			
Citric acid					(b) (4)	0.00			
Malic acid						0.04			
Succinic acid						0.00			
Lactic acid						0.00			
Formic acid						0.00			
Acetic acid						0.01			

* Analytical method: Korean Feed Standards Codex, 1 of chapter 14

C.3 Biogenic Amines

(b) (4)

(b) (4)

(b) (4)
(b) (4)

Table C.2.6. Biogenic amines of *C. glutamicum* ATCC 14067, *C. glutamicum* CA08-0012 and *C. glutamicum* KCCM 80240 fermentation broth

	A	FCC 14)67 (mg/	L)	CA08-0012 (mg/L)				KCCM 80240 (mg/L)			
	Batch1	Batch2	Batch3	Ave.	Batch1	Batch2	Batch3	Ave.	Batch1	Batch2	Batch3	Ave.
Cadaverine			(b) (4)	0.110			(b) (4)	0.128			(Ъ) (4)	0.020
Histamine				0.104				0.185				0.153
Phenylethyl- amine				0.067				0.079				0.077
Putrescine				1.015				1.352			1	0.248
Tryptamine				0.010				0.010				0.008
Tyramine	<u> </u>			2.851				3.351				3.654

(b) (4)

Page 70

D. LIST OF ATTACHMENTS

Attachment 1	Determination of Antibiotic Minimal Inhibitory Concentration (MIC) of <i>Corynebacterium glutamicum</i> KCCM 80240, 9 pages
Attachment 2	Determination of viable cells of the production strain in Dried L-Valine Fermentation Product, 16 pages
Attachment 3	Genetic stability of Corynebacterium glutamicum KCCM 80240, 7 pages
Attachment 4	Whole genome sequence analysis of <i>Corynebacterium glutamicum</i> KCCM 80240, 59 pages
Attachment 5	Metabolic flux analysis of Corynebacterium glutamicum KCCM 80240, 15 pages

E. LIST OF REFERENCES

	(b) (4)
_	
	(b) (4)

	(b) (4)
	(b) (4)
	(b) (4)
	(b) (4)

				()/()
				(b) (4)
				(b) (4)
				(b) (4)
				 (0)(4)
		_	_	(b) (4)
				(b) (4)
			-	(b) (4)
				(b) (4)
		(b) (4)		(b) (4)
		(b) (4)		(b) (4)
	(b) (4)	(b) (4)		(b) (4)
	(b) (4)	(b) (4)		(b) (4)
	(b) (4)	(b) (4)		(b) (4)
	(b) (4)	(b) (4)		(b) (4)
	(b) (4)	(b) (4)		(b) (4)
	(b) (4)	(b) (4)		(b) (4)
	(b) (4)	(b) (4)		(b) (4)

(b) (4)
_

(b) (4)
(b) (4)
(b) (4)
(b) (4)
(b) (4)

Revis	ed Appendix	2. Pre-Fe	ermentatio	n Inform	hation (C	CONFIDE	ential))				
												(b) (4)
												(b) (4)
			_			_	_	_	_	-	_	_
			_	_								
												(b) (4)
CONFIDENTIAL REPORT

Stability test

: Dried L-Valine Fermentation Product (VAL Pro)

Version 2.0

TITLE

Stability test: Dried L-Valine Fermentation Product (VAL pro)

OBJECTIVE OF THE STUDY

This study was conducted to establish a shelf life for the Dried L-Valine Fermentation Product (VAL Pro) under the recommended storage conditions.

SCHEDULE OF THE STUDY

Initiation of experiment: June 26, 2020 Termination of experiment: August 26, 2021 Submission of interim report: December 31, 2020 Submission of final report: October 7, 2021

TESTING FACILITY

Institute of Biotechnology) Scientific and Regulatory Affairs, CJ CheilJedang 55, Gwanggyo-ro 42beon-gil, Yeongtong-gu, Suwon-si, Gyeonggi-do 16495, Korea

RESPONSIBLE STAFFS

Analyst and Author

Ran Young Yoon

Report approved by

Yang Hee Kim

Romfler

CONTENTS

MATERIALS AND METHODS	4
Information of test sample	4
Storage condition	4
Analysis method	4
RESULTS	5
REFERENCES	6
[APPENDIX 1] Certificate of Analysis	7

MATERIALS AND METHODS

The stability test of Dried L-Valine Fermentation Product (VAL Pro) was conducted in accordance with the ICH HARMONISED TRIPARTITE GUIDELINE [1].

Information of test sample

- 1) Sample: Dried L-Valine Fermentation Product (VAL Pro)
- L-Valine (dry base): not less than 72%
- Moisture: not more than 5.0%
- 2) Batch number: NGVAL191221, NGVAL191222, NGVAL191223

Storage condition

- 1) Packaging: Polypropylene woven bag and 1 ply polyethylene inner
- 2) Weight of storage sample: 50 g / bag
- 3) Temperature and humidity of storage
- General condition: 25°C ± 2°C and 60% RH ± 5% RH
- Accelerated condition: $40^{\circ}C \pm 2^{\circ}C$ and $75\% RH \pm 5\% RH$
- 4) Testing frequency: Initial, 1, 3, 4, 6 months

Analysis method

1) Content of L-valine: HPLC

Parameter	Condition			
System	HPLC (SHIMADZU Nexera UPLC-30A)			
Detector	Fluorescence detector			
Detector	(Excitation λ : 338 nm Emission λ : 425 nm)			
Column	ODS C18, 150 x 4.6 mm, particle size 3 μm			
Column temperature	40 °C			
Mahila nhasa	16.7 mM-KH ₂ PO ₄ + 5 mM OSA in 12% CH ₃ CN,			
Nobile priase	pH 2.5 (by H ₃ PO ₄)			
Flow rate of mobile phage	1.0 ml/min			
Prostion respont	201.91 mM-KOH + 241.39 mM-H ₃ BO ₃ + 2.53 mM-OPA +			
Reaction reagent	C ₂ H ₆ OS 1 mL + CH ₃ OH 5 mL + 3.5 %-Brij 1.25 mL			
Flow rate of reaction reagent	0.5 ml/min			
Sample temperature	15 °C			
Injection volume	5 μl			

2) Moisture: Loss on drying (AOAC 934.01)

RESULTS

Test items	Specification	Batch No.		Initial	1 month	3 month
I VI P		NGVAL191221				(b) (4
L-Valine	≥ 72.0	NGVAL191222	1			
(% dry base)		NGVAL191223				
Moisture (%)		NGVAL191221				
	≤ 5.0	NGVAL191222	1			
		NGVAL191223)	2		
Test items	Specification	Batch No.	4 month	6 month	9 month	12 month
LACE		NGVAL191221	1			(b) (4
L-Valine	≥ 72.0	NGVAL191222	1			
(% dry base)	10000000	NGVAL191223				
		NGVAL191221	(***			
Moisture (%)	≤ 5.0	NGVAL191222				
		NGVAL191223	č			

Table 1. General condition (25°C/60% RH)

Table 2. Accelerated condition (40°C/75% RH)

Test items	Specification	Batch No.	1 month	3 month	4 month	6 month
1.11.15		NGVAL191221				(b) (4
L-Valine	≥ 72.0	NGVAL191222				
(% dry base)	- 201	NGVAL191223				
		NGVAL191221				
Moisture (%)	≤ 5.0	NGVAL191222				
		NGVAL191223				

REFERENCES

[1] ICH Harmonised Tripartite Guideline. Q1A(R2) Stability Testing of New Drug Substances and Products. 6 February 2003.

[APPENDIX 1] Certificate of Analysis

CJ Research Institute of Biotechnology

55, Gwanggyo-ro 42beon-gil, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16495, Korea

www.cj.co.kr

TEL: 031) 8099-2450 FAX: 031) 8099-2918

Certificate of analysis

Certificate No.	2020-PR-001	Rece	eipt No.	1	2020-AN-001	
Client	-	Date o	of Receipt		2020.02.12.	
Client Name	÷.	Date	of Test		2020.02.12.	
Client Tel	<u> </u>	Use o	of Report	F	Reference test	
Client Address			e ek el la			
Test Sample	L-Valine (70%)				
Manuf. Date	2019.12.2	1.				
Lot. No	NGVAL191221					
Quantity (kg) -					
Test Item(s)	Speci	fication	Test Result		Test method used	
L-Valine(dry ba	ise) Not less	than 70 %		(b) (4)	HPLC	
Moisture (Loss on dryin	Not more	e than 5 %			AOAC 934.01	
* Information				-		
* Temperature : (2 * The results show The Test Report Approved by Te	2~28) °C, Relative In in this test report cannot be reprodu chnical Manager	Humidity : (30- rt refer only to uced, except in (9) ⁽⁴⁾	~60) % the sample te full.	ested unl ത(4)	ess otherwise stated.	
	CJ Research	Institute	of Biotecl	nolog	Feb, 14, 2020	

55, Gwanggyo-ro 42beon-gil, Yeongtong-gu, Suwon-si,

Gyeonggi-do, 16495, Korea

www.cj.co.kr

TEL: 031) 8099-2450 FAX: 031) 8099-2918

Certificate of analysis

Certificate No.	2020-PR-002		Rece	ipt No.	2	2020-AN-002	
Client			Date o	of Receipt		2020.02.12.	
Client Name		5	Date	of Test		2020.02.12.	
Client Tel		÷.	Use o	f Report	R	eference test	
Client Address	-			1			
Test Sampl	L-Valine (70%)						
Manuf. Dat	te	2019.12.22.					
Lot. No	e f	NGVAL191222					
Quantity (k	g)	-			1.0		
Test Item(s	5)	Specificat	ion	Test Result		Test method used	
L-Valine(dry b	oase)	Not less than 70 %			(b) (4)	HPLC	
Moisture (Loss on dryi	Moisture (Loss on drving)		an 5 %			AOAC 934.01	
* Information					-		
 * Temperature : (* The results sho The Test Repor Approved by T 	22~28) wn in tl t cannc ēchnica	°C, Relative Hun his test report re ot be reproduced (0)(I Manage	nidity : (30- fer only to I, except in	-60) % the sample tes full. ®	ted unl	ess otherwise stated.	
	C) I	Research In	stitute	of Biotech	nolog	Feb, 14, 2020	

CJ BIO-AD form 100-01 REV.01

55, Gwanggyo-ro 42beon-gil, Yeongtong-gu, Suwon-si,

Gyeonggi-do, 16495, Korea

www.cj.co.kr

TEL: 031) 8099-2450 FAX: 031) 8099-2918

Certificate of analysis

Certificate No.	2020-PR-003		Rec	Receipt No. 2		2020-AN-003	
Client	-		Date	of Receipt		2020.02.12.	
Client Name		а. С	Dat	e of Test		2020.02.12.	
Client Tel			Use	of Report	1	Reference test	
Client Address					1		
Test Samp	le	L-Valine (70%))				
Manuf. Da	te	2019.12.23.					
Lot. No	Ś	NGVAL191223	3				
Quantity (k	g)	en la compañía de la					
Test Item(s	s)	Specificat	ion	Test Res	sult	Test method used	
L-Valine(dry b	oase)	Not less than	n 70 %		(6) (4)	HPLC	
Moisture (Loss on dry	ing)	Not more tha	an 5 %	%		AOAC 934.01	
* Information							
* Temperature : (* The results sho The Test Repor	(22~28) wwn in t rt canno	°C, Relative Hun his test report re ot be reproduced (b)	nidity : (30 fer only to l, except ir	~60) % • the sample • full.	tested un	ess otherwise stated.	
Approved by 1	Technica	l Manager					
						Feb, 14, 2020	
	CJ	Research In	stitute	of Biote	chnolog	ау	

CJ BIO-AD form 100-01 REV.01

55, Gwanggyo-ro 42beon-gil, Yeongtong-gu, Suwon-si,

Gyeonggi-do, 16495, Korea

www.cj.co.kr

CJ CHEILJEDANG

TEL: 031) 8099-2450 FAX: 031) 8099-2918

Certificate of analysis

Certificate No.	2021-PR-095		Receip	t No.	2	021-AN-062
Client		- Date of		Receipt	1	2020.07.31.
Client Name		2. T	Date o	f Test		2020.08.25.
Client Tel		•	Use of	Report	R	eference test
Client Address				-		r 00107
Test Sam	ple	L-Valine (Va	IPro)-25			
Manuf. D	ate	2019.12.21.				
Lot. No	5	NGVAL1912	221			
Quantity	(kg)	-				
Test Item	n(s) Specific		cation	Test Result		Test method used
L-Valine(dry base)		Not less than 70 %			(6) (4)	HPLC
Moisture (Loss on drying)		Not more than 5 %				AOAC 934.01
* Information						A
* Temperature : (* The results sho The Test Report	(20~28) °C, own in this cannot be	Relative Hun test report re reproduced. @	nidity : (30~6 fer only to th except in full.	0) % le sample te	sted unle	ess otherwise stated.
Approved by Tec	chnical Man	ager			<i>y</i> (4)	Oct, 06, 2021
	CJ Re	search In	stitute of	Biotech	nolog	у

55, Gwanggyo-ro 42beon-gil, Yeongtong-gu, Suwon-si,

Gyeonggi-do, 16495, Korea

www.cj.co.kr

CJ CHEILJEDANG

TEL: 031) 8099-2450 FAX: 031) 8099-2918

Certificate of analysis

Certificate No.	2021-PR-096		Receipt N	No.	2021-AN-063
Client		-	Date of Re	ceipt	2020.07.31.
Client Name		<i>.</i> 2.	Date of T	est	2020.08.25.
Client Tel		÷	Use of Re	port	Reference test
Client Address					
Test Samp	ole	L-Valine (Va	lPro)-40		
Manuf. Da	ate	2019.12.21.			
Lot. No	bi i i	NGVAL1912	221		· · · · · · · · ·
Quantity (kg)				
Test Item	(s)	Specific	cation	Test Result	Test method used
L-Valine(dry	L-Valine(dry base) No		han 70 %	(b) (4) HPLC
Moisture (Loss o	n drying)	Not more than 5 %			AOAC 934.01
* Information					
* Temperature : (* The results sho The Test Report o	20~28) °C, wn in this cannot be	Relative Hun test report re reproduced, e	nidity : (30~60) fer only to the : except in full.	% sample tested ur ®(4)	less otherwise stated.
Approved by Tec	hnical Mar	hager			Oct. 06, 2021
	CJ Re	search In	stitute of E	Biotechnolo	ах

55, Gwanggyo-ro 42beon-gil, Yeongtong-gu, Suwon-si,

Gyeonggi-do, 16495, Korea

www.cj.co.kr

CJ CHEILJEDANG

TEL: 031) 8099-2450 FAX: 031) 8099-2918

Certificate of analysis

Certificate No.	2021-PR-097		Receipt N	o.	2021-AN-064
Client		-	Date of Rec	eipt	2020.07.31.
Client Name		ġ.	Date of Te	est	2020.08.25.
Client Tel		•	Use of Rep	ort	Reference test
Client Address			-		
Test Samp	ole	L-Valine (Va	lPro)-25		
Manuf. Da	ate	2019.12.22.	2		
Lot. No	a de la composición d	NGVAL1912	222		
Quantity (kg)				
Test Item	(s)	Specifi	cation	Test Result	Test method used
L-Valine(dry base)		Not less t	han 70 %	(6) (HPLC
Moisture (Loss o	n drying)	Not more than 5 %			AOAC 934.01
* Information					
* Temperature : (* The results sho The Test Report o	20~28) °C, wn in this cannot be	Relative Hun test report re reproduced e	nidity : (30~60) 9 fer only to the s except in full.	% ample tested un ®(4)	less otherwise stated.
Approved by Tec	hnical Mar	nager			
					Oct, 06, 2021
	CJ Re	search In	stitute of B	iotechnolo	ду

55, Gwanggyo-ro 42beon-gil, Yeongtong-gu, Suwon-si,

Gyeonggi-do, 16495, Korea

www.cj.co.kr

CJ CHEILJEDANG

TEL: 031) 8099-2450 FAX: 031) 8099-2918

Certificate of analysis

Certificate No.	2021-PR-098		Receipt N	lo.	2021-AN-065
Client		÷	Date of Rec	eipt	2020.07.31.
Client Name		Э.	Date of Te	est	2020.08.25.
Client Tel			Use of Rep	ort i	Reference test
Client Address					
Test Sam	ple	L-Valine (Va	lPro)-40		
Manuf. Da	ate	2019.12.22.	2		
Lot. No	þ	NGVAL1912	222		
Quantity ((kg)	-			
Test Item(s) Spec		Specifi	cation	Test Result	Test method used
L-Valine(dry base)		Not less t	han 70 %	(0) (4	HPLC
Moisture (Loss c	on drying)	Not more than 5 %			AOAC 934.01
* Information					
* Temperature : (* The results sho The Test Report of Approved by Tec	20~28) °C, won in this cannot be chnical Man	Relative Hun test report re reproduced, e bager	nidity : (30~60) f fer only to the s except in full.	% ample tested un (6) (4)	less otherwise stated.
					Oct, 06, 2021

55, Gwanggyo-ro 42beon-gil, Yeongtong-gu, Suwon-si,

Gyeonggi-do, 16495, Korea

www.cj.co.kr

CJ CHEILJEDANG

TEL: 031) 8099-2450 FAX: 031) 8099-2918

Certificate of analysis

Certificate No.	2021-PR-099		Receipt N	0	2021-AN-066
Client			Date of Peo	aint	2020 07 31
Client Name			Date of Kec	eipt	2020.07.31.
			Date of te	st	2020.08.25.
Client lei			Use of Rep	ort	Reference test
Client Address			-		
Test Sam	ole	L-Valine (Va	IPro)-25		
Manuf. Da	ate	2019.12.23.	£ 1		
Lot. No	Lot. No NGVAL191223				C
Quantity (kg)	-			
Test Item	Test Item(s) Spec		cation	Test Result	Test method used
L-Valine(dry base)		Not less than 70 %		(б) (4	HPLC
Moisture (Loss o	on drying)	Not more	than 5 %		AOAC 934.01
* Information					
* Temperature : (* The results sho The Test Report o	20~28) ℃, wn in this cannot be	Relative Hun test report re reproduced, e	nidity : (30~60) 9 fer only to the sa except in full.	ര ample tested un കമ	less otherwise stated.
Approved by Tec	hnical Man	ager		(0)(0)	Oct 06 2021
	CJ Re	search In	stitute of B	iotechnolo	9 y

55, Gwanggyo-ro 42beon-gil, Yeongtong-gu, Suwon-si,

Gyeonggi-do, 16495, Korea

www.cj.co.kr

CJ CHEILJEDANG

TEL: 031) 8099-2450 FAX: 031) 8099-2918

Certificate of analysis

Certificate No.	202	2021-PR-100 Receip		lo. 2	2021-AN-067	
Client			Date of Per	eint	2020 07 31	
Client Name			Date of Ket	act	2020.07.31.	
Client Tal			Date of Date		2020.08.25.	
			Use of Rep	BOIT R	eference test	
Client Address						
Test Sam	ple	L-Valine (Va	alPro)-40			
Manuf. Date		2019.12.23.				
Lot. No)	NGVAL1912				
Quantity	(kg)	-				
Test Item	(s)	Specification Test Res		Test Result	Test method used	
L-Valine(dry	/aline(dry base) Not less than 70		han 70 %	(6) (4)	HPLC	
Moisture (Loss o	on drying)	Not more than 5 %			AOAC 934.01	
* Information						
* Temperature : (* The results sho The Test Report	20~28) °C, wn in this cannot be	Relative Hun test report re reproduced, e	nidity : (30~60) fer only to the s except in full.	% ample tested unl (6)(4)	ess otherwise stated.	
Approved by Tec	hnical Mar	ager				
					Oct, 06, 2021	
	CJ Re	search In	stitute of B	liotechnolog	уу	

55, Gwanggyo-ro 42beon-gil, Yeongtong-gu, Suwon-si,

Gyeonggi-do, 16495, Korea

www.cj.co.kr

CJ CHEILJEDANG

TEL: 031) 8099-2450 FAX: 031) 8099-2918

Certificate of analysis

Certificate No.	202	1-PR-101	Receipt N	lo.	2021-AN-068
Client		4	Date of Red	ceipt	2020.09.25.
Client Name		<u>ب</u>	Date of Te	est	2020.10.22.
Client Tel			Use of Rep	oort	Reference test
Client Address					
Test Samp	ble	L-Valine (Va	alPro)-25		
Manuf. Date		2019.12.21.	6		
Lot. No		NGVAL1912	221		· · · · · ·
Quantity (kg)	-			
Test Item	Test Item(s) Specif		cation	Test Result	Test method used
L-Valine(dry	base)	Not less t	han 70 %	(6) (4) HPLC
Moisture (Loss o	n drying)	Not more than 5 %			AOAC 934.01
* Information					
* Temperature : (* The results sho The Test Report o	20~28) °C, wn in this cannot be	Relative Hur test report re reproduced, () ())	nidity : (30~60) fer only to the s except in full.	% ample tested un	less otherwise stated.
Approved by Tec	hnical Mar	nager			Oct, 06, 2021
	CJ Re	search In	stitute of E	liotechnolo	ду

55, Gwanggyo-ro 42beon-gil, Yeongtong-gu, Suwon-si,

Gyeonggi-do, 16495, Korea

www.cj.co.kr

CJ CHEILJEDANG

TEL: 031) 8099-2450 FAX: 031) 8099-2918

Certificate of analysis

Certificate No.	2021-PR-102		Receipt	No.	2	021-AN-069
Client		-	Date of F	leceipt		2020.09.25.
Client Name		<i></i>	Date of	Test		2020.10.22.
Client Tel		•	Use of R	eport	R	eference test
Client Address				-		
Test Sam	ple	L-Valine (Va	lPro)-40			
Manuf. Date		2019.12.21.				
Lot. No	þ	NGVAL1912	221			2
Quantity	(kg)	-				
Test Item(s)		Specification		Test Resu	lt	Test method used
L-Valine(dry	L-Valine(dry base)		nan 70 %		(b) (4)	HPLC
Moisture (Loss o	on drying)	Not more than 5 %				AOAC 934.01
* Information					- 1	
* Temperature : (* The results sho The Test Report Approved by Teo	(20~28) °C, own in this cannot be chnical Mar	Relative Hun test report re reproduced, e (b)	nidity : (30~60 fer only to the except in full. ⁽⁴⁾)) % e sample tes	ted unlo	ess otherwise stated.
						0.4.00.2021

55, Gwanggyo-ro 42beon-gil, Yeongtong-gu, Suwon-si,

Gyeonggi-do, 16495, Korea

www.cj.co.kr

CJ CHEILJEDANG

TEL: 031) 8099-2450 FAX: 031) 8099-2918

Certificate of analysis

Certificate No.	2021-PR-103		Receipt	No.	2	021-AN-070
Client	-		Date of R	eceipt		2020.09.25.
Client Name		<i>.</i>	Date of	Test		2020.10.22.
Client Tel	-		Use of R	eport	R	eference test
Client Address				-		
Test Samp	ole	L-Valine (Va	IPro)-25			
Manuf. Da	ate	2019.12.22.	2			
Lot. No		NGVAL1912	222			
Quantity (kg)					
Test Item(s)		Specification		Test Resu	lt	Test method used
L-Valine(dry	L-Valine(dry base)		han 70 %		(0) (4)	HPLC
Moisture (Loss o	n drying)	Not more than 5 %				AOAC 934.01
* Information						
* Temperature : (* The results sho The Test Report o	20~28) °C, wn in this cannot be	Relative Hun test report re reproduced, e	nidity : (30~60 fer only to the except in full.) % sample test	ted unl	ess otherwise stated.
Approved by Tec	hnical Mar	nager			5,67	Oct 06 2021
	CJ Re	search In	stitute of	Biotechı	nolog	у

55, Gwanggyo-ro 42beon-gil, Yeongtong-gu, Suwon-si,

Gyeonggi-do, 16495, Korea

www.cj.co.kr

CJ CHEILJEDANG

TEL: 031) 8099-2450 FAX: 031) 8099-2918

Certificate of analysis

Certificate No.	202	2021-PR-104 Receip		lo.	2021-AN-071
Client		4	Date of Rec	ceipt	2020.09.25.
Client Name		2	Date of Te	est	2020.10.22.
Client Tel			Use of Rep	oort l	Reference test
Client Address					
Test Sam	ple	L-Valine (Va	lPro)-40		
Manuf. Date		2019.12.22.	2		
Lot. No	0	NGVAL1912			
Quantity ((kg)	-			
Test Item(s)		Specification		Test Result	Test method used
L-Valine(dry	L-Valine(dry base)		han 70 %	(6) (4	HPLC
Moisture (Loss o	on drying)	Not more than 5 %			AOAC 934.01
* Information				_	
* Temperature : (* The results sho The Test Report Approved by Tec	(20~28) °C, own in this cannot be chnical Mar	, Relative Hun test report re reproduced e nager	nidity : (30~60) f fer only to the s except in full.	% ample tested un @(4)	less otherwise stated.
	CJ Re	search In	stitute of B	liotechnolo	Oct, 06, 2021 9y

55, Gwanggyo-ro 42beon-gil, Yeongtong-gu, Suwon-si,

Gyeonggi-do, 16495, Korea

www.cj.co.kr

CJ CHEILJEDANG

TEL: 031) 8099-2450 FAX: 031) 8099-2918

Certificate of analysis

Certificate No.	202	2021-PR-105 Receip		o	2021-AN-072	
Client		-	Date of Rec	eipt	2020 09 25	
Client Name		2.	Date of Te	st	2020.10.22.	
Client Tel			Use of Rep	ort F	leference test	
Client Address	5				<u>11.51.8121.2.8251.4</u>	
Test Sam	ole	L-Valine (Va	IPro)-25			
Manuf. Date		2019.12.23.				
Lot. No	No NGVAL191223					
Quantity (kg)	1_				
Test Item	Test Item(s) Spec		cation	Test Result	Test method used	
L-Valine(dry	base)	Not less t	han 70 %	(b) (4)	HPLC	
Moisture (Loss o	on drying)	Not more than 5 %			AOAC 934.01	
* Information						
* Temperature : (* The results sho The Test Report o	20~28) °C, wn in this cannot be	Relative Hun test report re reproduced	nidity : (30~60) 9 fer only to the se except in full.	ര് തമ്പ	ess otherwise stated.	
Approved by Tec	hnical Mar	ager				
	CJ Re	search In	stitute of B	iotechnolog	Uct, 06, 2021	

55, Gwanggyo-ro 42beon-gil, Yeongtong-gu, Suwon-si,

Gyeonggi-do, 16495, Korea

www.cj.co.kr

CJ CHEILJEDANG

TEL: 031) 8099-2450 FAX: 031) 8099-2918

Certificate of analysis

Cortificato No	202	1 DD 106	Pacain	t No	2	021 AN 072
Certificate No.	LOLITIK TOO		Receip	it NO.	2	021-AN-075
Client		÷	Date of	Receipt		2020.09.25.
Client Name			Date o	f Test		2020.10.22.
Client Tel		•	Use of	Report	R	eference test
Client Address				-		
Test Sam	ole	L-Valine (Va	IPro)-40			
Manuf. Date		2019.12.23.				
Lot. No	NGVAL191223					2
Quantity (kg)	-		1		
Test Item	Test Item(s)		Specification		sult	Test method used
L-Valine(dry	L-Valine(dry base)		Not less than 70 %		(b) (4)	HPLC
Moisture (Loss o	on drying)	Not more than 5 %				AOAC 934.01
* Information						-
* Temperature : (* The results sho The Test Report (20~28) ℃, wn in this cannot be	Relative Hun test report re reproduced, e	nidity : (30~6 fer only to th except in full.	0) % ne sample te	ested unlo	ess otherwise stated.
Approved by Tec	hnical Mar	hager				
	CJ Re	search In	stitute of	f Biotecł	nolog	I y

55, Gwanggyo-ro 42beon-gil, Yeongtong-gu, Suwon-si,

Gyeonggi-do, 16495, Korea

www.cj.co.kr

CJ CHEILJEDANG

TEL: 031) 8099-2450 FAX: 031) 8099-2918

Certificate of analysis

Cartificate No.	202	DD 107	Dessint N		0001 ANI 074
Certificate No.	2021-PR-107		Receipt N	0.	2021-AN-074
Client		-	Date of Rec	eipt	2020.10.30.
Client Name		2	Date of Te	st	2020.11.24.
Client Tel			Use of Rep	ort F	Reference test
Client Address					
Test Sam	ple	L-Valine (Va	lPro)-25		
Manuf. Date		2019.12.21.	£		
Lot. No)	NGVAL191221			2
Quantity ((kg)	-			
Test Item	Test Item(s)		cation	Test Result	Test method used
L-Valine(dry	L-Valine(dry base) Not l		han 70 %	(6) (4,	HPLC
Moisture (Loss o	on drying)	Not more than 5 %			AOAC 934.01
* Information					
* Temperature : (* The results sho The Test Report (20~28) °C, wn in this cannot be	Relative Hun test report re reproduced, e	nidity : (30~60) 9 fer only to the se except in full.	6 ample tested unl	ess otherwise stated.
Approved by Tec	hnical Man	ager		(0) (4)	
	CJ Re	search In	stitute of B	iotechnolog	Oct, 06, 2021

55, Gwanggyo-ro 42beon-gil, Yeongtong-gu, Suwon-si,

Gyeonggi-do, 16495, Korea

www.cj.co.kr

CJ CHEILJEDANG

TEL: 031) 8099-2450 FAX: 031) 8099-2918

Certificate of analysis

Certificate No.	202	2021-PR-108 Rec		No.	2	021-AN-075
Client		4	Date of R	eceipt	1	2020.10.30.
Client Name		- <u>1</u>	Date of	Test		2020.11.24.
Client Tel			Use of R	eport	R	eference test
Client Address						
Test Sam	ole	L-Valine (Va	lPro)-40			
Manuf. Date		2019.12.21.				
Lot. No		NGVAL1912	221			
Quantity (kg)	-				
Test Item(s)		Specification		Test Result		Test method used
L-Valine(dry	L-Valine(dry base)		han 70 %		(b) (4)	HPLC
Moisture (Loss o	on drying)	Not more than 5 %				AOAC 934.01
* Information						
* Temperature : (* The results sho The Test Report o	20~28) ℃, wn in this cannot be	, Relative Hun test report re reproduced, e	nidity : (30~60 fer only to the except in full.) % sample tested (6)(4)	unl	ess otherwise stated.
Approved by Tec	hnical Mar	nager		. V		Oct, 06, 2021
	CJ Re	search In	stitute of	Biotechno	log	у

55, Gwanggyo-ro 42beon-gil, Yeongtong-gu, Suwon-si,

Gyeonggi-do, 16495, Korea

www.cj.co.kr

CJ CHEILJEDANG

TEL: 031) 8099-2450 FAX: 031) 8099-2918

Certificate of analysis

Certificate No.	2021-PR-109		Receipt N	o. 2	2021-AN-076
Client	÷		Date of Rec	eipt	2020.10.30.
Client Name		دو	Date of Te	st	2020.11.24.
Client Tel			Use of Rep	ort F	Reference test
Client Address			-		
Test Sam	ple	L-Valine (Va	lPro)-25		
Manuf. Date		2019.12.22	8		
Lot. No)	NGVAL1912	222		
Quantity ((kg)	-			
Test Item(s)		Specification		Test Result	Test method used
L-Valine(dry	L-Valine(dry base) No		han 70 %	(0) (4,	HPLC
Moisture (Loss o	on drying)	Not more than 5 %			AOAC 934.01
* Information					
* Temperature : (* The results sho The Test Report (20~28) °C, wn in this cannot be	Relative Hun test report re reproduced e	nidity : (30~60) 9 fer only to the s except in full.	6 ample tested unl هه هه	ess otherwise stated.
Approved by Tec	hnical Mar	hager	-		Oct, 06, 2021
	CJ Re	search In	stitute of B	iotechnolog	ЭУ

55, Gwanggyo-ro 42beon-gil, Yeongtong-gu, Suwon-si,

Gyeonggi-do, 16495, Korea

www.cj.co.kr

CJ CHEILJEDANG

TEL: 031) 8099-2450 FAX: 031) 8099-2918

Certificate of analysis

Country and a company in the		- TOC 107	1 10 10 10 10 10 10	275 m m	-	
Certificate No.	2021-PR-110		Receipt	No.	2	021-AN-077
Client		4	Date of R	eceipt		2020.10.30.
Client Name		÷.	Date of	Test		2020.11.24.
Client Tel			Use of R	eport	R	eference test
Client Address				-		
Test Sam	ple	L-Valine (Va	lPro)-40			
Manuf. Date		2019.12.22	2			
Lot. No)	NGVAL1912			2	
Quantity ((kg)	-				
Test Item	Test Item(s) Spe		cation	Test Result	2	Test method used
L-Valine(dry	L-Valine(dry base) Not less t		han 70 %		(b) (4)	HPLC
Moisture (Loss c	on drying)	Not more than 5 %				AOAC 934.01
* Information						
* Temperature : (* The results sho The Test Report (20~28) °C, wn in this cannot be	Relative Hun test report re reproduced, e	nidity : (30~60 fer only to the except in full. (4)) % sample tested	unle	ess otherwise stated.
Approved by Tec	hnical Mar	nager		(0) (4)		Oct, 06, 2021
	CJ Re	search In	stitute of	Biotechno	log	у

55, Gwanggyo-ro 42beon-gil, Yeongtong-gu, Suwon-si,

Gyeonggi-do, 16495, Korea

www.cj.co.kr

CJ CHEILJEDANG

TEL: 031) 8099-2450 FAX: 031) 8099-2918

Certificate of analysis

Certificate No.	202	2021-PR-111 Receip		lo.	2021-AN-078
Client		-	Date of Rec	eipt	2020.10.30.
Client Name			Date of Te	est	2020.11.24.
Client Tel	3		Use of Rep	ort	Reference test
Client Address					
Test Samp	ble	L-Valine (Va	lPro)-25		
Manuf. Date		2019.12.23.	£		
Lot. No	a la compañía de la c	NGVAL1912	223		2
Quantity (kg)	1			
Test Item(s)		Specification		Test Result	Test method used
L-Valine(dry	L-Valine(dry base)		han 70 %	(6) (4	HPLC
Moisture (Loss o	n drying)	Not more than 5 %			AOAC 934.01
* Information					
* Temperature : (* The results sho The Test Report o	20~28) °C, wn in this cannot be	, Relative Hun test report re reproduced, e	nidity : (30~60) ⁽ fer only to the s except in full. ^{(b) (4)}	% ample tested un (6)(4)	less otherwise stated.
Approved by Tec	hnical Mar	nager		11	Oct. 06, 2021
	CJ Re	search In	stitute of B	liotechnolo	ду

55, Gwanggyo-ro 42beon-gil, Yeongtong-gu, Suwon-si,

Gyeonggi-do, 16495, Korea

www.cj.co.kr

CJ CHEILJEDANG

TEL: 031) 8099-2450 FAX: 031) 8099-2918

Certificate of analysis

Certificate No.	2021-PR-112		Receipt N	No.	2021-AN-079
Client		-	Date of Re	ceipt	2020.10.30.
Client Name		21.	Date of T	est	2020.11.24.
Client Tel			Use of Re	port R	leference test
Client Address					
Test Samp	ble	L-Valine (Va	lPro)-40		
Manuf. Da	ate	2019.12.23.			
Lot. No		NGVAL1912	223		
Quantity (kg)	-			
Test Item	(s)	Specifi	cation	Test Result	Test method used
L-Valine(dry base)		Not less than 70 %		(6) (4,	HPLC
Moisture (Loss o	n drying)	Not more than 5 %			AOAC 934.01
* Information					
* Temperature : (* The results sho The Test Report o	20~28) ℃, wn in this cannot be	Relative Hun test report re reproduced, e	nidity : (30~60) fer only to the s except in full.	% sample tested unl (6)(4)	ess otherwise stated.
Approved by Tec	hnical Mar	hager	_		
	CJ Re	search In	stitute of E	Biotechnolog	Oct, 06, 2021

55, Gwanggyo-ro 42beon-gil, Yeongtong-gu, Suwon-si,

Gyeonggi-do, 16495, Korea

www.cj.co.kr

CJ CHEILJEDANG

TEL: 031) 8099-2450 FAX: 031) 8099-2918

Certificate of analysis

Certificate No.	2021-PR-113		Receipt	No.	2	021-AN-080
Client		-	Date of R	eceipt	1	2020.12.23.
Client Name		2 ¹ .	Date of	Test	- 7	2020.12.24.
Client Tel			Use of R	eport	R	eference test
Client Address				4 - C		
Test Sam	ple	L-Valine (Va	IPro)-25			
Manuf. Da	ate	2019.12.21.	6			
Lot. No	0	NGVAL1912	221			
Quantity ((kg)					
Test Item	(s)	Specific	cation Test Resu		lt	Test method used
L-Valine(dry base)		Not less than 70 %			(b) (4) ⁻	HPLC
Moisture (Loss o	on drying)	Not more than 5 %				AOAC 934.01
* Information						
* Temperature : (* The results sho The Test Report o Approved by Tec	(20~28) °C, own in this cannot be chnical Mar	Relative Hun test report re reproduced, e (b)	nidity : (30~60 fer only to the except in full. (4)) % sample test დ.	ed unle	ess otherwise stated.
						Oct, 06, 2021

55, Gwanggyo-ro 42beon-gil, Yeongtong-gu, Suwon-si,

Gyeonggi-do, 16495, Korea

www.cj.co.kr

CJ CHEILJEDANG

TEL: 031) 8099-2450 FAX: 031) 8099-2918

Certificate of analysis

Certificate No.	2021-PR-114		Receipt No	b .	2021-AN-081
Client		4	Date of Rece	eipt	2020.12.23.
Client Name		- <u>-</u>	Date of Te	st	2020.12.24.
Client Tel		•	Use of Repo	ort	Reference test
Client Address					
Test Samp	le	L-Valine (Va	alPro)-40		
Manuf. Da	ite	2019.12.21.	6		
Lot. No		NGVAL1912	221		· · · · · · · · · ·
Quantity (I	kg)	-			
Test Item((s)	Specifi	cation	Test Result	Test method used
L-Valine(dry base)		Not less t	han 70 %	(b) (4) HPLC
Moisture (Loss o	n drying)	Not more	than 5 %		AOAC 934.01
* Information					
* Temperature : (2 * The results show The Test Report of	20~28) °C, wn in this cannot be	, Relative Hun test report re reproduced, e	nidity : (30~60) % fer only to the sa except in full.	6 Imple tested ur (6)(4)	less otherwise stated.
Approved by Tech	nnical Mar	nager		- 4	
		15			Oct, 06, 2021
	CJ Re	search In	stitute of Bi	iotechnolo	gy

55, Gwanggyo-ro 42beon-gil, Yeongtong-gu, Suwon-si,

Gyeonggi-do, 16495, Korea

www.cj.co.kr

CJ CHEILJEDANG

TEL: 031) 8099-2450 FAX: 031) 8099-2918

Certificate of analysis

Certificate No.	2021-PR-115		Receipt	No.	2	2021-AN-082
Client		-	Date of R	eceipt	1	2020.12.23.
Client Name	· · · · · · · · · · · · · · · · · · ·	2.	Date of	Test		2020.12.24.
Client Tel		-	Use of R	eport	R	eference test
Client Address				4		
Test Samp	ole	L-Valine (Va	lPro)-25			
Manuf. Da	ite	2019.12.22.	2			
Lot. No		NGVAL1912	222			
Quantity (I	kg)	i	1.			
Test Item(s)		Specifi	cation	Test Result	2	Test method used
L-Valine(dry base)		Not less than 70 %			(b) (4	HPLC
Moisture (Loss o	n drying)	Not more than 5 %				AOAC 934.01
* Information					-	
* Temperature : (2 * The results show The Test Report of	20~28) °C, wn in this cannot be	Relative Hun test report re reproduced, e	nidity : (30~60 fer only to the except in full.) % sample teste	ed unl	ess otherwise stated.
Approved by Tech	hnical Mar	hager		, and the second s		Oct, 06, 2021
	CJ Re	search In	stitute of	Biotechn	olog	уу

55, Gwanggyo-ro 42beon-gil, Yeongtong-gu, Suwon-si,

Gyeonggi-do, 16495, Korea

www.cj.co.kr

CJ CHEILJEDANG

TEL: 031) 8099-2450 FAX: 031) 8099-2918

Certificate of analysis

Certificate No.	2021-PR-116		Receipt	No.	2021-AN-083
Client		-	Date of Re	ceipt	2020.12.23.
Client Name		2	Date of 1	lest l	2020.12.24.
Client Tel			Use of Re	port	Reference test
Client Address		1		-	
Test Samp	ole	L-Valine (Va	lPro)-40		
Manuf. Da	ite	2019.12.22.	2		
Lot. No		NGVAL1912	222		
Quantity (kg)	-			
Test Item	(s)	Specifi	cation	Test Result	Test method used
L-Valine(dry base)		Not less t	han 70 %	(b) (d	HPLC
Moisture (Loss o	n drying)	Not more than 5 %			AOAC 934.01
* Information					
* Temperature : (* The results show The Test Report of	20~28) °C, wn in this cannot be	Relative Hun test report re reproduced, e	nidity : (30~60) fer only to the except in full.	% sample tested un ®(4)	less otherwise stated.
Approved by Tech	hnical Mar	nager			
		-	1	-	Oct, 06, 2021
	CJ Re	search In	stitute of l	Biotechnolo	av

55, Gwanggyo-ro 42beon-gil, Yeongtong-gu, Suwon-si,

Gyeonggi-do, 16495, Korea

www.cj.co.kr

CJ CHEILJEDANG

TEL: 031) 8099-2450 FAX: 031) 8099-2918

Certificate of analysis

Certificate No.	2021-PR-117		Receipt	No.	2021-AN-084
Client		-	Date of Re	ceipt	2020.12.23.
Client Name			Date of	lest 🛛	2020.12.24.
Client Tel			Use of Re	port	Reference test
Client Address				÷	
Test Sam	ple	L-Valine (Va	lPro)-25		
Manuf. Date		2019.12.23.	6		
Lot. No	NGVAL1912	223			
Quantity ((kg)				
Test Item	Item(s) Specification		cation	Test Result	Test method used
L-Valine(dry	L-Valine(dry base)		han 70 %	(6)	HPLC
Moisture (Loss o	on drying)	Not more than 5 %			AOAC 934.01
* Information					
* Temperature : (* The results sho The Test Report Approved by Tec	20~28) °C, own in this cannot be chnical Mar	Relative Hun test report re reproduced, e mager	nidity ; (30~60) fer only to the except in full.	% sample tested ur (b)(4)	nless otherwise stated.
	CJ Re	search In	stitute of	Biotechnolo	Oct, 06, 2021 9 9

55, Gwanggyo-ro 42beon-gil, Yeongtong-gu, Suwon-si,

Gyeonggi-do, 16495, Korea

www.cj.co.kr

CJ CHEILJEDANG

TEL: 031) 8099-2450 FAX: 031) 8099-2918

Certificate of analysis

Certificate No	2021_DD_118		Peceint	No		021-AN-085
certificate No.	LUL	1-110	Receipt	NO.		0000 10 00
Client	_		Date of Re	eceipt		2020.12.23.
Client Name		22. 	Date of	Test		2020.12.24.
Client Tel		•	Use of Re	eport	R	eference test
Client Address				-		10112
Test Sam	ple	L-Valine (Va	lPro)-40			
Manuf. Da	ate	2019.12.23.				
Lot. No	0	NGVAL1912	223			
Quantity ((kg)	-				
Test Item	Test Item(s)		cation	Test Result		Test method used
L-Valine(dry base)		Not less than 70 %			(0) (4)	HPLC
Moisture (Loss o	on drying)	Not more than 5 %				AOAC 934.01
* Information						
* Temperature : (* The results sho The Test Report	(20~28) °C, own in this cannot be	Relative Hun test report re reproduced, e (6)	nidity : (30~60) fer only to the except in full.) % sample teste	ed unl	ess otherwise stated.
Approved by Tec	hnical Mar	ager				Oct 06 2021
	CJ Re	search In	stitute of	Biotechn	olog	3y

55, Gwanggyo-ro 42beon-gil, Yeongtong-gu, Suwon-si,

Gyeonggi-do, 16495, Korea

www.cj.co.kr

CJ CHEILJEDANG

TEL: 031) 8099-2450 FAX: 031) 8099-2918

Certificate of analysis

C					2021 411 000	
Certificate No.	202	1-PR-119	Receipt N	lo.	2021-AN-086	
Client		-	Date of Rec	eipt	2021.03.26.	
Client Name		÷.	Date of Te	est	2021.04.30.	
Client Tel		÷	Use of Rep	ort I	Reference test	
Client Address			-			
Test Sam	ple	L-Valine (Va	lPro)-25			
Manuf. D	ate	2019.12.21.				
Lot. No)	NGVAL191221				
Quantity	(kg)	-				
Test Item	(s)	Specific	cation	Test Result	Test method used	
L-Valine(dry base)		Not less than 70 %		(0) (4	HPLC	
Moisture (Loss o	on drying)	Not more than 5 %			AOAC 934.01	
* Information						
* Temperature : (* The results sho The Test Report	20~28) °C, wn in this cannot be	Relative Hun test report re reproduced, e	nidity : (30~60) fer only to the s except in full. (b) (4)	% ample tested un ®(4)	less otherwise stated.	
Approved by Tec	hnical Mar	ager				
					Oct, 06, 2021	
	CJ Re	search In	stitute of B	iotechnolo	gy	
					12	

55, Gwanggyo-ro 42beon-gil, Yeongtong-gu, Suwon-si,

Gyeonggi-do, 16495, Korea

www.cj.co.kr

CJ CHEILJEDANG

TEL: 031) 8099-2450 FAX: 031) 8099-2918

Certificate of analysis

Certificate No.	2021-PR-120		Receipt	No.	2021-AN-087
Client		÷	Date of Re	eceipt	2021.03.26.
Client Name		<u>ب</u>	Date of	Test	2021.04.30.
Client Tel			Use of Re	port	Reference test
Client Address				-	
Test Sam	ole	L-Valine (Va	lPro)-25		
Manuf. Da	ate	2019.12.22.	e e e e e e e e e e e e e e e e e e e		
Lot. No		NGVAL1912	222		
Quantity (kg)	-			
Test Item	(s)	Specific	cation	Test Result	Test method used
L-Valine(dry	L-Valine(dry base) Not le		han 70 %	(6	HPLC
Moisture (Loss o	on drying)	Not more than 5 %			AOAC 934.01
* Information					
* Temperature : (* The results sho The Test Report o	20~28) ℃, wn in this cannot be	Relative Hun test report re reproduced, e	nidity : (30~60) fer only to the except in full.	% sample tested u (0)(4)	inless otherwise stated.
Approved by Tec	hnical Mar	nager			Toby III
	CJ Re	search In	stitute of	Biotechnolo	Oct, 06, 2021

55, Gwanggyo-ro 42beon-gil, Yeongtong-gu, Suwon-si,

Gyeonggi-do, 16495, Korea

www.cj.co.kr

CJ CHEILJEDANG

TEL: 031) 8099-2450 FAX: 031) 8099-2918

Certificate of analysis

Certificate No.	2021-PR-121		Receipt	No.	2	021-AN-088
Client		-	Date of R	eceipt	1	2021.03.26.
Client Name		21	Date of	Test		2021.04.30.
Client Tel			Use of R	eport	R	eference test
Client Address				÷		
Test Samp	ble	L-Valine (Va	lPro)-25		-	
Manuf. Da	ate	2019.12.23.	£ 1			
Lot. No		NGVAL1912	223			
Quantity (kg)	1.				
Test Item	(s)	Specification		Test Resu	lt	Test method used
L-Valine(dry base)		Not less than 70 %			(b) (4)	HPLC
Moisture (Loss o	n drying)	Not more than 5 %				AOAC 934.01
* Information						
* Temperature : (* The results sho The Test Report o	20~28) ℃, wn in this cannot be	Relative Hun test report re reproduced, e	nidity : (30~60 Ifer only to the except in full.) % sample tes	ted unl	ess otherwise stated.
Approved by Tec	hnical Mar	nager		(0)	(4)	0 + 00 2021
	CJ Re	search In	stitute of	Biotechi	nolog	Uct, 06, 2021
CJ Research Institute of Biotechnology

55, Gwanggyo-ro 42beon-gil, Yeongtong-gu, Suwon-si,

Gyeonggi-do, 16495, Korea

www.cj.co.kr

CJ CHEILJEDANG

TEL: 031) 8099-2450 FAX: 031) 8099-2918

Certificate of analysis

Certificate No.	2021-PR-122		Receipt No.		2021-AN-089		
Client		-	Date of R	eceipt		2021.06.25.	
Client Name			Date of	Test	2021.08.26.		
Client Tel		•	Use of Re	eport	Reference test		
Client Address				-			
Test Sam	ole	L-Valine (Va	lPro)-25				
Manuf. Date		2019.12.21.					
Lot. No		NGVAL191221					
Quantity (kg)						
Test Item(s)		Specification		Test Result		Test method used	
L-Valine(dry base)		Not less than 70 %			(b) (4)	HPLC	
Moisture (Loss on drying)		Not more than 5 %				AOAC 934.01	
* Information							
* Temperature : (* The results sho The Test Report o	20~28) °C, wn in this cannot be	Relative Hun test report re reproduced, e (b)	nidity : (30~60) fer only to the except in full.) % sample teste	ed unl	ess otherwise stated.	
Approved by Tec	hnical Mar	ager		(U) (4		a han	
	CJ Re	search In	stitute of	Biotechn	olog	Oct, 06, 2021	

CJ BIO-AD form 100-01 REV.01

CJ Research Institute of Biotechnology

55, Gwanggyo-ro 42beon-gil, Yeongtong-gu, Suwon-si,

Gyeonggi-do, 16495, Korea

www.cj.co.kr

CJ CHEILJEDANG

TEL: 031) 8099-2450 FAX: 031) 8099-2918

Certificate of analysis

Certificate No.	202	I-PR-123 Receipt N		lo. 2021-AN-090				
Client		÷	Date of Re	ceipt	2021.06.25.			
Client Name		-2 ¹ .	Date of Test		2021.08.26.			
Client Tel			Use of Re	port	Reference test			
Client Address								
Test Sample		L-Valine (ValPro)-25						
Manuf. Date		2019.12.22.						
Lot. No		NGVAL191222						
Quantity (kg)		-						
Test Item(s)		Specification		Test Result	Test method used			
L-Valine(dry base)		Not less than 70 %		(6)	HPLC			
Moisture (Loss on drying)		Not more than 5 %			AOAC 934.01			
* Information								
* Temperature : (* The results sho The Test Report	20~28) °C, wn in this cannot be	Relative Hun test report re reproduced e (b)(nidity : (30~60) fer only to the s except in full.	% sample tested u (®)(4)	nless otherwise stated.			
Approved by Tec	hnical Man	ager						
					Oct, 06, 2021			
	CJ Re	search In	stitute of I	Biotechnolo	рду			

CJ BIO-AD form 100-01 REV.01

CJ Research Institute of Biotechnology

55, Gwanggyo-ro 42beon-gil, Yeongtong-gu, Suwon-si,

Gyeonggi-do, 16495, Korea

www.cj.co.kr

CJ CHEILJEDANG

TEL: 031) 8099-2450 FAX: 031) 8099-2918

Certificate of analysis

Certificate No. 2021-PR-124 Receipt No. 2021-AN-091 Client - Date of Receipt 2021.06.25. Client Name - Date of Test 2021.08.26. Client Tel - Use of Report Reference test Client Address - - - Test Sample L-Valine (ValPro)-25 - - Manuf. Date 2019.12.23. - - Quantity (kg) - - - - Test Item(s) Specification Test Result Test method used L-Valine(dry base) Not less than 70 % HPLC AOAC 934.01 * Information * 1 - - - * Information * Cor-28) °C, Relative Humidity : (30~60) % * - - * The results shown in this test report refer only to the sample tested unless otherwise stated. - - - Approved by Technical Manager CJ Research Institute of Biotechnology Oct, 06, 202* 									
Client - Date of Receipt 2021.06.25. Client Name - Date of Test 2021.08.26. Client Tel - Use of Report Reference test Client Address - - - Test Sample L-Valine (ValPro)-25 - - Manuf. Date 2019.12.23. - - Quantity (kg) - - - - Test Item(s) Specification Test Result Test method used L-Valine(dry base) Not less than 70 % - - - Moisture (Loss on drying) Not more than 5 % AOAC 934.01 - - * Information * - - - - - * Information * - </td <td>Certificate No.</td> <td>202</td> <td>1-PR-124</td> <td colspan="2">PR-124 Receipt No.</td> <td colspan="2">2021-AN-091</td>	Certificate No.	202	1-PR-124	PR-124 Receipt No.		2021-AN-091			
Client Name - Date of Test 2021.08.26. Client Address - Use of Report Reference test Client Address - - Test Sample L-Valine (ValPro)-25 - Manuf. Date 2019.12.23. - Quantity (kg) - - Test Item(s) Specification Test Result Test method used L-Valine(dry base) Not less than 70 % AOAC 934.01 * Information * AOAC 934.01 * The results shown in this test report refer only to the sample tested unless otherwise stated. The Test Report cannot be reproduced. except in full. (a) (4) Approved by Technical Manager (a) (4) Oct, 06, 202' CJ Research Institute of Biotechnology Oct, 06, 202'	Client		-	Date of Receipt		2021.06.25.			
Client Tel - Use of Report Reference test Client Address - - Test Sample L-Valine (ValPro)-25 - Manuf. Date 2019.12.23. - Lot. No NGVAL191223 - Quantity (kg) - - Test Item(s) Specification Test Result L-Valine(dry base) Not less than 70 % HPLC Moisture (Loss on drying) Not more than 5 % AOAC 934.01 * Information * * * Test Report cannot be report refer only to the sample tested unless otherwise stated. The Test Report cannot be reproduced, except in full. Approved by Technical Manager (b)(4) Oct, 06, 202* CJ Research Institute of Biotechnology Oct, 06, 202*	Client Name			Date of T	est	2021.08.26.			
Client Address - Test Sample L-Valine (ValPro)-25 Manuf. Date 2019.12.23. Lot. No NGVAL191223 Quantity (kg) - Test Item(s) Specification Test nethod used HPLC L-Valine(dry base) Not less than 70 % Moisture (Loss on drying) Not more than 5 % * Information * * Temperature : (20~28) °C, Relative Humidity : (30~60) % * The results shown in this test report refer only to the sample tested unless otherwise stated. The Test Report cannot be reproduced. except in full. Approved by Technical Manager (9)(4) Oct, 06, 2027 CJ Research Institute of Biotechnology	Client Tel		-	Use of Rep	port	Reference test			
Test Sample L-Valine (ValPro)-25 Manuf. Date 2019.12.23. Lot. No NGVAL191223 Quantity (kg) - Test Item(s) Specification Test Result L-Valine(dry base) Not less than 70 % HPLC Moisture (Loss on drying) Not more than 5 % AOAC 934.01 * Information * * * Temperature : (20~28) °C, Relative Humidity : (30~60) % * The results shown in this test report refer only to the sample tested unless otherwise stated. The Test Report cannot be reproduced, except in full. Ø(4) Approved by Technical Manager Ø(4) Oct, 06, 202* CJ Research Institute of Biotechnology Oct, 06, 202*	Client Address								
Manuf. Date 2019.12.23. Lot. No NGVAL191223 Quantity (kg) - Test Item(s) Specification Test Result Test method used L-Valine(dry base) Not less than 70 % HPLC Moisture (Loss on drying) Not more than 5 % AOAC 934.01 * Information * Temperature : (20~28) °C, Relative Humidity : (30~60) % * The results shown in this test report refer only to the sample tested unless otherwise stated. The Test Report cannot be reproduced, except in full. (9)(4) Approved by Technical Manager (9)(4) Oct, 06, 202' CJ Research Institute of Biotechnology Oct, 06, 202'	Test Sample		L-Valine (ValPro)-25						
Lot. No NGVAL191223 Quantity (kg) - Test Item(s) Specification Test Result Test method used L-Valine(dry base) Not less than 70 % HPLC Moisture (Loss on drying) Not more than 5 % AOAC 934.01 * Information * Temperature : (20~28) °C, Relative Humidity : (30~60) % * * The results shown in this test report refer only to the sample tested unless otherwise stated. Description Approved by Technical Manager (b) (4) Oct, 06, 202* CJ Research Institute of Biotechnology Oct, 06, 202*	Manuf. Date		2019.12.23.						
Quantity (kg) - Test Item(s) Specification Test Result Test method used L-Valine(dry base) Not less than 70 % HPLC Moisture (Loss on drying) Not more than 5 % AOAC 934.01 * Information * Test report cannot be reproduced. except in full. * The results shown in this test report refer only to the sample tested unless otherwise stated. The Test Report cannot be reproduced. except in full. (b) (4) Approved by Technical Manager (b) (4) Oct, 06, 202* CJ Research Institute of Biotechnology Oct, 06, 202*	Lot. No		NGVAL191223						
Test Item(s) Specification Test Result Test method used L-Valine(dry base) Not less than 70 % HPLC Moisture (Loss on drying) Not more than 5 % AOAC 934.01 * Information * * * Temperature : (20~28) °C, Relative Humidity : (30~60) % * * The results shown in this test report refer only to the sample tested unless otherwise stated. The Test Report cannot be reproduced, except in full. (b) (4) Approved by Technical Manager (b) (4) CJ Research Institute of Biotechnology	Quantity	(kg)	-						
L-Valine(dry base) Not less than 70 % HPLC Moisture (Loss on drying) Not more than 5 % AOAC 934.01 * Information * * * Temperature : (20~28) °C, Relative Humidity : (30~60) % * * The results shown in this test report refer only to the sample tested unless otherwise stated. The Test Report cannot be reproduced. except in full. (*)(4) Approved by Technical Manager (*)(4) Oct, 06, 202* CJ Research Institute of Biotechnology Oct, 06, 202*	Test Item	ı(s)	Specifi	cation	Test Result	Test method used			
Moisture (Loss on drying) Not more than 5 % AOAC 934.01 * Information * * Temperature : (20~28) °C, Relative Humidity : (30~60) % * * The results shown in this test report refer only to the sample tested unless otherwise stated. The Test Report cannot be reproduced, except in full. Approved by Technical Manager (b) (4) Oct, 06, 202* CJ Research Institute of Biotechnology	L-Valine(dry base)		Not less than 70 %		(6) (4	HPLC			
 * Information * Temperature : (20~28) °C, Relative Humidity : (30~60) % * The results shown in this test report refer only to the sample tested unless otherwise stated. The Test Report cannot be reproduced. except in full. (b) (4) Approved by Technical Manager Oct, 06, 202' CJ Research Institute of Biotechnology 	Moisture (Loss on drying)		Not more than 5 %			AOAC 934.01			
* Temperature : (20~28) °C, Relative Humidity : (30~60) % * The results shown in this test report refer only to the sample tested unless otherwise stated. The Test Report cannot be reproduced. except in full. (b) (4) Approved by Technical Manager Oct, 06, 202 CJ Research Institute of Biotechnology	* Information								
Approved by Technical Manager Oct, 06, 202 CJ Research Institute of Biotechnology	* Temperature : (* The results sho The Test Report	(20~28) ℃, own in this cannot be	, Relative Hun test report re reproduced, e	nidity : (30~60) fer only to the s except in full.	% ample tested un	less otherwise stated.			
Oct, 06, 202	Approved by Teo	chnical Mar	nager		(0) (4)				
CJ Research Institute of Biotechnology					0.97	Oct, 06, 2021			
		CJ Re	search In	stitute of E	Biotechnolo	ду			

CJ BIO-AD form 100-01 REV.01