Daprodustat for the Treatment of Anemia of Chronic Kidney Disease

October 26, 2022

GSK

Cardiovascular and Renal Drugs Advisory Committee

Introduction

Janet van Adelsberg, MD

Medicines Development Leader, Daprodustat Vice President GSK

Daprodustat: New Oral Treatment for Patients with Anemia of CKD

- Oral option for patients and physicians to individualize care and meet treatment needs
- Member of new drug class: Hypoxia-inducible factor prolyl hydroxylase inhibitors (HIF-PHI)
 - Increases production of endogenous erythropoietin
- Short half life: 1-4 hours
- Can be administered once daily (QD) or three times weekly (TIW)
 - Effective dose range: 1 to 24 mg (QD), 2 to 48 mg (TIW)
- No need to adjust dose for dialysis or use of phosphate binders and oral iron

Daprodustat Clinical Studies Demonstrated Positive Benefit-Risk Across Populations

Study/ Population	Study/ Population Design		Duration	Ν
ASCEND-NHQ (205270) Not on Dialysis	Randomized (1:1) Double-blind vs placebo Superiority	QD	28 weeks	614
ASCEND-ND (200808) Not on Dialysis	Randomized (1:1) Open-label vs darbepoetin Noninferiority	QD	Event-driven Median = 1.9 yr	3872
ASCEND-ID (201410) Incident dialysis ¹	Randomized (1:1) Open-label vs darbepoetin Noninferiority	QD	52 weeks	312
ASCEND-TD (204837) Hemodialysis	Randomized (2:1) Double-blind vs epoetin Noninferiority	TIW	52 weeks	407
ASCEND-D (200807) Hemodialysis or peritoneal dialysis	Randomized (1:1) Open-label vs epoetin alfa (HD) or darbepoetin (PD) Noninferiority	QD	Event-driven Median = 2.5 yr	2964

1. Dialysis to be initiated within 6 weeks or receiving dialysis treatment for < 90 days

Analysis Definitions

Definition	Abbreviation
Events occurring on or after randomization	ITT ^{1, 2, 3, 4, 5}
Events occurring on or after treatment start and on or be date of study completion/withdrawal or:	fore the earlier of the
Last dose + 28-day ascertainment period	LDD + 28 days ^{1, 2, 3, 4, 5}
Last dose + 1 day ascertainment period	LDD + 1 days ^{1, 2, 3, 4, 5}
Last dose + dosing frequency*	LDD + DF ^{1, 3}
Last dose + dosing frequency* + 28-day ascertainment period	LDD + DF + 28 days ^{1, 3}
Events occurring on or after treatment start	mITT ^{1, 3}
	DefinitionEvents occurring on or after randomizationEvents occurring on or after treatment start and on or be date of study completion/withdrawal or:Last dose + 28-day ascertainment periodLast dose + 28-day ascertainment periodLast dose + 1 day ascertainment periodLast dose + dosing frequency*Last dose + dosing frequency* + 28-day ascertainment periodEvents occurring on or after treatment start

weeks = 14 days; every 4 weeks = 28 days

1. GSK Briefing Document; 2. Singh et al, NEJM 2021 (Non-Dialysis); 3. Singh et al, NEJM 2021 (Non-Dialysis Supplemental Material); 4. Singh et al, NEJM 2021 (Dialysis);

5. Singh et al, NEJM 2021 (Dialysis Supplemental Material).

Highlights of the FDA's Briefing Document:

- GSK conducted five adequate and well-controlled trials
 - Key design elements including margins for non-inferiority, endpoints (Hb, MACE), comparators (ESAs) and primary analysis methods (ITT) agreed with FDA
- In ASCEND-ND and ASCEND-D
 - Co-primary objectives met
 - Daprodustat demonstrated non-inferiority relative to ESA controls for CV safety and efficacy based on pre-specified ITT analyses
- Efficacy of daprodustat to raise Hb is not in question
- Agenda will focus on discussion points raised by FDA

Agenda: Important Topics Raised in FDA's Briefing Document

Unmet Need	Kirsten Johansen, MD Professor of Medicine, University of Minnesota Nephrology Division Director, Co-Director, Chronic Disease Research Group Hennepin County Medical Center
 Clinical Trial Results Demographics & Disposition, Efficacy including Quality of Life 	Alexander Cobitz, MD, PhD Clinical Development Lead, Daprodustat Senior Medical Director, GSK
 Cardiovascular Safety Endpoints, Subgroups, Thromboembolism, Heart Failure 	Kaivan Khavandi, MBChB, PhD, MCRP VP, Clinical Development, GSK
Differential Dosing Frequency & On-Treatment Analysis Bias	Kevin Carroll, PhD Chief Statistician KJC Statistics Ltd.
 General Safety Gastric erosions/GI bleeds, Acute Kidney Injury 	Heather Stein, MD Vice President, Safety Evaluation and Risk Management Global Safety, GSK
Clinical Perspective	Ajay Singh, MBBS, FRCP Senior Associate Dean for Postgraduate Medical Education Director, Master in Medical Sciences in Clinical Investigation (MMSCI) Program Harvard Medical School Renal Physician, Brigham and Women's Hospital

External Committee Members Involved With Protocol Development

	Ajay Singh	Brigham and Women's Hospital, Boston, MA, USA	
	John McMurray	Glasgow University, Glasgow, UK	
Members	Vlado Perkovic	University of New South Wales, Sydney,	
	Scott Solomon	Brigham and Women's Hospital, Boston, MA, USA	
	Kevin Carroll	KJC Statistics, Cheshire, UK	
	Ajay Singh	Brigham and Women's Hospital, Boston, MA, USA	
	Vivekanand Jha	The George Institute for Global Health, New Delhi, India	
	Gregorio T. Obrador	Universidad Panamericana, Mexico City, Mexico	
	Christoph Wanner	University Hospital Würzburg, Würzburg, Germany	
Steering Committee Members	Andrzej Wiecek	Medical University of Silesia, Katowice, Poland	
	Kirsten L. Johansen	University of Minnesota, Minneapolis, MN, USA	
	Sushrut S. Waikar	Boston Medical Center, Boston, MA, USA	
	David Wheeler	University College London, London, UK	
	lain Macdougall	King's College Hospital, London, UK	
Clinical Events Classification Chair	Renato D. Lopes	Duke Clinical Research Institute, Durham, NC, USA	

Additional Experts

Tara Barker, MS

Global Safety GSK

Allison Blackorby, MS

Statistics GSK

Tim Hart, PhD

Nonclinical GSK

Tom Keely, PhD

Health-Related Quality of Life GSK

Kelly Mahar, PhD

Clinical Pharmacology GSK

Janet Wittes, PhD

Statistician Wittes LLC

Vlado Perkovic, MBBS PhD FRACP FASN FAHMS

Cardiorenal Expert Dean of Medicine and Health, and Scientia Professor University of New South Wales

Unmet Need for Patients with Anemia of CKD

Kirsten L. Johansen, MD, FASN

Nephrology Division Director, Hennepin County Medical Center

Co-Director, Chronic Disease Research Group

ASCEND Steering Committee Member

- > 1 in 7 (15%) of US adults or 37 million people, estimated to have CKD¹
- Anemia of CKD affects 4.8 million patients²
- Present in 87% of patients receiving hemodialysis³
- Associated with reduced QoL, higher rates of CV comorbidities, hospitalizations, and mortality⁴⁻⁸

1. Preventing Chronic Disease (nih.gov) access on June 6, 2022; 2. Stauffer, 2014; 3. USRDS, 2021; 4. Wittbrodt, et al., 2022; 5. Babbit, 2012; 6. Palaka et al. 2020; 7. Thorp et al. 2009; 8. Lamerato et al. 2022;

Comparison of Anemia of CKD Mean SF-36 Vitality Domain Scores with Healthy US Population, Heart Failure, and COPD

Significant Barriers to Access Exist

- Currently available therapies are injectable and often require inclinic administration and cold-chain storage
- Patient preference surveys
 - a significant proportion of patients preferred oral medications over injectable¹
- Burden falls more heavily on disadvantaged groups, those living in rural areas or who rely on caregivers for transportation²

Increasing Use of Home Dialysis in the US

- 13.1% of prevalent dialysis population on home dialysis
- In many regions, particularly rural, 1 in 4 patients on home dialysis
- Patients on home dialysis face barriers related to injectable therapy

Unadjusted utilization (%) of home dialysis among prevalent ESRD patients undergoing dialysis, 2017-2018

Predominant Treatment in ND Patients is Transfusions

Proportion of stage 3–5 non-dialysis-dependent CKD patients with anemia

Commercially-insured patients Aged 18 – 63

Medicare-covered patients Aged 66 – 85

74% of patients were not treated

66% of patients were not treated

Incidence of Transfusions Strongly Associated with Hb Level¹

CO-16

Baseline Hb (g/dL)	n at risk	Rate per 100PY		Α	djusted Rate	Ratio			Adjusted Rate Ratio (95% CI)
≥ 12.0	13,757	4.2	•		1 1 1				0.31 (0.28, 0.34)
11.0 - 11.99	27,702	6.3		•					0.57 (0.54, 0.61)
10.0 - 10.99	12,979	12.0		(Reference
9.0 – 9.99	5,697	24.5			●				1.84 (1.73, 1.96)
8.0 - 8.99	2,588	61.5			 	•			4.08 (3.83, 4.35)
7.0 – 7.99	1,101	112.9			 		•		7.04 (6.58, 7.53)
< 7.0	730	191.7			1			•	12.87 (12.05, 13.74)
			0.25	0.5	1 2	4	8	16	
		Associat transfusio	ated with lower RBC ion rate vs reference		Associated transfusior	with hig n rate vs	gher RBO referen	C ce	

1. Adjusted for age, sex, CKD stage, Charlson Comorbidity Index, baseline comorbidities, baseline HCRU, prior RBC transfusion use, prior ESA or oral/IV iron use 1 Data on File. 2022N518136_00

Transfusion Associated With Short and Long-term Risks

CO-17

Significant Unmet Need in Treatment of Anemia of CKD

- Underutilized injectable therapies in large subset of patients
- Undertreated patients
 - suffer lower QoL
 - at higher risk of receiving transfusions
- Logistical challenges impact vulnerable patients more

There remains a significant need for novel, accessible treatment options for this patient population

Clinical Trial Results

Alexander R. Cobitz, MD, PhD

Clinical Development Lead, Daprodustat Senior Medical Director GSK

Clinical Endpoints Across ASCEND Studies

	ASCEND-NHQ N = 614	ASCEND-ND N = 3,872	ASCEND-D N = 2,964	ASCEND-TD N = 407	ASCEND-ID N = 312					
	Efficacy: Mean change in Hgb f	rom baseline to the avera	age during the primary e	valuation period (non-inf	eriority*)					
Primary		Safety: Time to first Adjudicated	fety: me to first Adjudicated MACE (non-inferiority)							
Principal Secondary	 Efficacy: Mean change in SF-36 Vitality Hgb increase of ≥ 1 g/dL 	 Safety: MACE (superiority) MACE + thromboern MACE + hospitalizat Safety: Time to CKD progression 	bolic events ion for heart failure							
Secondary / Exploratory		 Efficacy: % within Hgb target % with first occurrent 	range nce of RBC or whole bloo	d transfusion on-treatme	ent					
Superiority for NHO										

ASCEND-NHQ

Double-blind, placebo-controlled study in patients not on dialysis

Daprodustat Superior to Placebo for Hgb Change from Baseline ^{CO-22} With Fewer Transfusions in Daprodustat vs. Placebo ASCEND-NHQ

Note: ITT Hgb analysis including observed and imputed data. On-treatment summary of transfusions. EP = Evaluation Period (Weeks 24 – 28)

Daprodustat Superior to Placebo in Improving SF-36 Vitality Score ASCEND-NHQ

Notes: Scoring 0 to 100. * Endpoint was adjusted for multiplicity Data after treatment discontinuation/rescue were imputed in these analyses. 35% of patients had imputed values. ** Endpoint was not adjusted for multiplicity ***Model-adjusted value using imputed data **CO-23**

CO-24

Active-Controlled Studies ASCEND-ND, ASCEND-ID, ASCEND-TD, ASCEND-D

Key Design Elements of Active-Controlled Phase 3 Studies

- Major exclusions included
 - Class IV heart failure, recent MI, acute coronary syndrome or stroke, uncontrolled hypertension
- Patients remained in study even if discontinued randomized treatment
- ND patients remained in study if dialysis initiated or changed

Exposure, Demographics and Baseline Characteristics

- > 6000 patients treated with daprodustat resulting in ~6700 PY exposure
 - ~ 1500 patients treated >2 years
- Demographics and baseline characteristics similar between treatment groups
 - Representative of US population with CKD
- Renal characteristics generally similar between treatment groups
- Baseline CV characteristics well-balanced
 - Patients frequently had history of hypertension, diabetes and CV disease

Baseline Characteristics of US Patients

		ASCEI	ND-ND	ASCE	END-D	
ITT		Dapro N = 492	Darbe N = 489	Dapro N = 425	ESA N = 421	
Mean age		67.5	67.5	58.2	58.1	
Gender - Female		45%	45%	44%	42%	
Black or African Am	erican in US region	33%	33%	40%	38%	
Diabetes		67%	70%	68%	67%	
Stroke		8%	8%	8%	10%	
MI		8%	9%	10%	11%	
Cancer		9%	6%	6%	4%	
Heart failure		21%	17%	25%	25%	
Current hypertensio	n	97%	97%	96%	97%	
Hospitalization with	in 6m prior to screening	10%	6%	10%	11%	
	Stage 2/3	22%	26%	-	-	
Baseline CKD Stage	Stage 4	52%	53%	-	-	
	Stage 5	27%	21%	-	-	

CO-27

Disposition: High Study Completion Across Active-Controlled Studies

	ASCEND-ND N = 3,872		ASCEND-ID N = 312		ASCEND-TD N = 407		ASCEND-D N = 2,964	
_ ITT	Dapro	Darbe	Dapro	Darbe	Dapro	ESA	Dapro	ESA
Randomized, n	1,937	1,935	157	155	270	137	1,487	1,477
Completed study	97%	97%	99%	97%	> 99%	99%	92%	92%
Vital status known	> 99%	> 99%	100%	> 99%	100%	100%	98%	98%
Discontinued treatment*	38%	38%	29%	25%	29%	28%	53%	53%
Adverse event	13%	11%	12%	6%	10%	8%	16%	16%
Stopping criteria met	8%	8%	5%	6%	9%	10%	16%	15%
Other**	17%	18%	11%	14%	10%	10%	21%	22%
Began dialysis	35%	34%	-	-	-	-	-	-

* Includes patients who died while taking treatment. If these patients are excluded: ND: 29%, 29%; ID: 22%, 21%; TD: 26%, 26%; D: 45%, 45%.

**Other also includes: lost to follow-up, sponsor terminated study treatment, investigative site closed, missing.

Daprodustat Non-Inferior to ESA for Primary Hgb Endpoints Active-Controlled Studies

				Adjusted Mean Hgb		
		Adjusted Mear	n Hgb Difference	Difference (95% CI)	Dapro	ESA
Non-Dialysis						
ASCEND-ND	Mixed prior ESA use		•	0.08 (0.03, 0.13)	1,937	1,935
Incident Dialys	is					
ASCEND-ID	Limited prior ESA use	-		- 0.10 (-0.34, 0.14)	157	155
Dialysis						
ASCEND-TD	Prior ESA use			- 0.05 (-0.21, 0.10)	270	137
ASCEND-D	Prior ESA use		•	0.18 (0.12, 0.24)	1,487	1,477
		-1 -0.75 -0.5 -0	.25 0 0.25 0.5	5		
	Dapro	Inferior Dapro Non	inferior			

Note: ITT Hgb analyses including observed and imputed data.

ASCEND-ND vs darbepoetin alfa; ASCEND-ID vs darbepoetin alfa; ASCEND-D vs recombinant human erythropoietin; ASCEND-TD vs recombinant human erythropoietin

Similar Incidence of First Transfusion Across Treatment Groups Active-Controlled Studies

1. First occurrence of RBC or whole blood transfusion during on-treatment period

ASCEND-TD vs darbepoetin alfa; ASCEND-ID vs darbepoetin alfa; ASCEND-D vs recombinant human erythropoietin, ASCEND-ND vs darbepoetin alfa

Efficacy Summary

- Daprodustat met primary Hgb endpoint in all 5 phase 3 trials
- Daprodustat superior to placebo and non-inferior to ESA
 - Achieved and maintained target Hgb levels
- Daprodustat superior to placebo in improving vitality on SF-36
- Fewer daprodustat-treated patients had transfusions than placebo

CO-32

Cardiovascular Safety

Kaivan Khavandi, MBChB, PhD, MRCP

Disease Area Head, Cardiovascular Vice President, Clinical Development GSK

Major Adverse Cardiovascular Events (MACE): Co-Primary Safety Endpoint in 2 CV Outcomes Trials: ASCEND-ND, ASCEND-D

- Composite measure of
 - All-cause mortality (ACM)
 - Precedented in trials of anemia of CKD: agreed with FDA
 - Non-fatal myocardial infarction (MI)
 - Non-fatal stroke
- Clinical Events Classification group
 - Duke Clinical Research Institute external and independent
 - Blinded to treatment allocation
 - Adjudicated all events that might have constituted MACE

MACE Statistical Assumptions in CVOT Studies ASCEND-ND, ASCEND-D

- Non-inferiority design using ITT approach to preserve the balance afforded by randomization
- Cox Proportional Hazards regression model adjusted for treatment and randomization stratification factors
- Non-inferiority established if upper limit of two-sided 95% CI for the hazard ratio < 1.25
 - Prospectively defined
 - Agreed with FDA

MACE: Daprodustat Non-Inferior to ESA on Co-Primary Endpoint in ASCEND-ND and ASCEND-D

Non-inferiority established for MACE upper limit of 2-sided 95% CI for HR lower than pre-specified 1.25 margin

Consistent MACE Findings in Daprodustat CVOTs and All Other ASCEND Studies

ASCEND-NHQ (28 weeks), First MACE rates:

4.9% Daprodustat; 6.2% placebo

CO-36
MACE by Regional Subgroups in ASCEND-ND and ASCEND-D

		ASCEND-ND			ASCEND-D				
ІТТ	Dapro n/N	Darbe n/N	н	azard F	Ratio (95% CI)	Dapro n/N	ESA n/N	На	azard Ratio (95% CI)
Asia Pacific	56/494	78/494	-		0.70 (0.49, 0.98)	20/142	33/143	-	0.59 (0.34, 1.03)
Eastern Europe/ South Africa	67/344	59/343		•	1.18 (0.83, 1.68)	92/419	82/416		• 1.14 (0.84, 1.53)
Western Europe/ Canada/ ANZ/ Israel	57/312	62/314	_	-	0.88 (0.61, 1.25)	68/288	92/284	-	0.70 (0.51, 0.96)
Latin America	78/295	67/295		•	1.22 (0.88, 1.69)	57/213	48/213		• 1.19 (0.81, 1.74)
USA	120/492	105/489		•	1.19 (0.91, 1.54)	137/425	139/421		0.96 (0.75, 1.21)
		0.2	25	1	4		0.:	25 1	
		Favor	s Dapro	Favo	ors Darbe		Favo	rs Dapro	Favors ESA

No Clinical Features Associated with Treatment Group Difference for MACE Compared with Primary Analysis

CO-38

ITT			ASCEND-ND Hazard Ratio (95%)	CI)		ASCEND-D Hazard Ratio (95% Cl)
	< 65 years		_	0.89 (0.68, 1.15)	-		0.96 (0.78, 1.17)
Age	65-75 years		•	1.12 (0.88, 1.42)	•	-	0.91 (0.71, 1.17)
	≥ 75 years		•	1.08 (0.85, 1.38)			1.00 (0.72, 1.39)
History of	Νο			1.04 (0.80, 1.34)			1.00 (0.81, 1.24)
diabetes	Yes	-	•	1.05 (0.89, 1.25)	•		0.87 (0.72, 1.06)
History of	Νο			0.97 (0.79, 1.19)		•	1.10 (0.87, 1.39)
disease [*]	Yes	-	•	1.09 (0.89, 1.33)	-		0.85 (0.71, 1.01)
		0.5 1	2		0.5 1	2	
		Favors Dapro	Favors Darbe		Favors Dapro	Favors ESA	

*CVD history was defined as having a yes response to any of the following medical history conditions: angina pectoris, myocardial infarction, stroke, coronary artery disease, transient ischemic attack, heart failure, atrial fibrillation, cardiac arrest, and/or valvular heart disease.

All-Cause Mortality: Similar Between Treatment Groups in Non-Dialysis and Dialysis Patients

CO-39

	ASCEI	ND-ND	ASCE	ND-D
Adjudicated Cause of death, N (%) ITT	Dapro N = 1,937	Darbe N = 1,935	Dapro N = 1,487	ESA N = 1,477
All cause mortality	301 (15.5%)	298 (15.4%)	294 (19.8%)	300 (20.3%)
Cardiovascular	89 (4.6%)	70 (3.6%)	96 (6.5%)	91 (6.2%)
Non-cardiovascular	149 (7.7%)	148 (7.6%)	132 (8.9%)	155 (10.5%)
Undetermined	63 (3.3%)	80 (4.1%)	66 (4.4%)	54 (3.7%)

CV Mortality, rather than ACM:

- Analysis includes deaths with a CV primary cause of death + undetermined deaths with presumed sudden/CV primary cause of death [ASCEND-ND: 20 (dapro), 22 (darbe); ASCEND-D: 21 (dapro), 30 (ESA)]
- Excludes ~2/3 deaths
- <u>Assumes deaths are non-informative</u>, i.e., entirely independent of disease status, or randomized treatment

Fatal/Non-Fatal MI: Generally Similar Incidence Between ^c Treatment Groups

	ASCEN	ND-ND	ASCE	ND-D
ІТТ	Daprodustat	Darbepoetin	Daprodustat	ESA
	N = 1,937	N = 1,935	N = 1,487	N = 1,477
First occurrence of adjudicated MI (fatal or non-fatal) n (%)	103 (5.3%)	97 (5.0%)	114 (7.7%)	137 (9.3%)
Incidence rate per 100 PY	2.94	2.76	3.34	4.08
(95% CI)	(2.40, 3.56)	(2.24, 3.36)	(2.76, 4.01)	(3.43, 4.83)
Absolute rate difference per 100 PY	0.	18	-0.	74
(95% CI)	(-0.61	, 0.97)	(-1.66,	, 0.18)
Hazard ratio	1.	06	0. 3	81
(95% CI)	(0.80,	(1.40)	(0.63 <i>,</i>	1.04)

Fatal/Non-Fatal Stroke: Incidence Rate Across Studies

	ASCEN	ND-ND	ASCE	ND-D
ΙΤΤ	Daprodustat	Darbepoetin	Daprodustat	ESA
	N = 1,937	N = 1,935	N = 1,487	N = 1,477
First occurrence of adjudicated stroke (fatal or non-fatal) n (%)	45 (2.3%)	34 (1.8%)	43 (2.9%)	51 (3.5%)
Incidence rate per 100 PY	1.26	0.95	1.23	1.48
(95% CI)	(0.92, 1.69)	(0.66, 1.33)	(0.89, 1.66)	(1.10, 1.94)
Absolute rate difference per 100 PY	0.	31	-0.	25
(95% CI)	(-0.18	, 0.80)	(-0.79	, 0.30)
Hazard ratio	1.	33	0. 3	84
(95% CI)	(0.85 <i>,</i>	2.07)	(0.56,	1.25)

Stroke Findings in ASCEND Program

ITT	Absolute Rate Differ	rence per 100 PY (95% Cl)		Dapro	ESA
			Events, n (%)	45 (2%)	32 (2%)
ASCEND-ND	•	0.3 (-0.2, 0.8)	Rate per 100 PY	1.3	1.0
			95% CI	0.9, 1.7	0.7, 1.3
			Events <i>,</i> n (%)	1(0.6%)	1 (0.6%)
ASCEND-ID		0 (-1.7, 1.7)	Rate per 100 PY	0.6	0.6
			95% CI	0.0, 3.4	0.0, 3.4
			Events, n (%)	8 (3%)	0
ASCEND-TD		2.9 (0.9, 5.0)	Rate per 100 PY	2.9	0
	1		95% CI	1.3, 5.8	0.0, 2.6
			Events, n (%)	43 (3%)	51 (3%)
ASCEND-D	- -	-0.3 (-0.8, 0.3)	Rate per 100 PY	1.2	1.5
	 		95% CI	(0.9, 1.7)	1.1, 1.9
-5	0 5	10			
Favors	Dapro Favors ESA				

Principal Secondary Endpoint: MACE + TEE

		ASCEND-ND			ASCEND-D	
n (%) ITT	Daprodustat N = 1,937	Darbepoetin N = 1,935	HR (95% CI)	Daprodustat N = 1,487	ESA N = 1,477	HR (95% CI)
First occurrence MACE or thromboembolic events	422 (21.8%)	405 (20.9%)	1.06 (0.93, 1.22)	497 (33.4%)	543 (36.8%)	0.88 (0.78, 1.00)
MACE	363 (18.7%)	358 (18.5%)	-	326 (21.9%)	340 (23.0%)	-
Thromboembolic events	59 (3.0%)	47 (2.4%)	-	171 (11.5%)	203 (13.7%)	-

- Designed to allow assessment of risk for thromboembolic events or heart failure, inclusive of general CV risk
- Overcomes limitations and bias of competing risk when assessing endpoints individually

Thromboembolic events were adjudicated and include DVT, PE and vascular access thrombosis

Data on Thromboembolic Events

	ASCEN	ID-ND	ASCE	ND-D
ΙΤΤ	Daprodustat N = 1,937	Darbepoetin N = 1,935	Daprodustat N = 1,487	ESA N = 1,477
Fatal and nonfatal thromboembolic events, n (%)				
First occurrence of thromboembolic events	64 (3.3%)	51 (2.6%)	185 (12.4%)	215 (14.6%)
Incidence rate per 100 PY (two-sided 95% CI)	1.81 (1.39, 2.31)	1.43 (1.07, 1.89)	5.66 (4.87, 6.54)	6.75 (5.88, 7.72)
Absolute rate difference per 100 PY (95% CI)	0.37 (-0.1	22, 0.97)	-1.09 (-2.	31, 0.12)
Hazard Ratio				
Estimate (two-sided 95% CI for HR)	1.27 (0.8	38, 1.84)	0.84 (0.0	69, 1.02)

Adjudicated thromboembolic events comprised of deep vein thrombosis, pulmonary embolism and vascular access thrombosis.

Thromboembolic Events in ASCEND-ND and ASCEND-D

		ASCEND-ND		ASCE	ND-D	
n (%)	ІТТ	Daprodustat N = 1,937	Darbepoetin N = 1,935	Daprodustat N = 1,487	ESA N = 1,477	
First Occurrence thromboembolic event		64 (3.3%)	51 (2.6%)	185 (12.4%)	215 (14.6%)	
Venous thromboembolism		20 (1.0%)	20 (1.0%)	23 (1.5%)	20 (1.4%)	
Deep vein thrombosis		14 (0.7%)	19 (1.0%)	17 (1.1%)	14 (0.9%)	
Pulmonary embolism		6 (0.3%)	1 (0.1%)	6 (0.4%)	6 (0.4%)	
Fatal pulmonary embolism		1 (0.1%)	1 (0.1%)	2 (0.1%)	1 (0.1%)	
Vascular access thrombosis		44 (2.3%)	31 (1.6%)	162 (10.9%)	195 (13.2%)	

Data on Thromboembolic Events Across ASCEND Program

ITT	Absolute Rate Difference per 100 PY (95% CI)		Dapro	ESA
		Events <i>,</i> n (%)	64 (3.3%)	51 (2.6%)
ASCEND-ND	0.4 (-0.2, 1.0)	Rate per 100 PY	1.8	1.4
		95% CI	1.4, 2.3	1.1, 1.9
		Events <i>,</i> n (%)	10 (6.4%)	12 (7.7%)
ASCEND-ID	-1.3 (-7.1, 4.4)	Rate per 100 PY	6.2	7.6
		95% CI	3.0, 11.4	3.9, 13.2
		Events, n (%)	27 (10.0%)	17 (12.4%)
ASCEND-TD	-2.7 (-9.9, 4.5)	Rate per 100 PY	10.2	12.8
		95% CI	6.7, 14.8	7.5, 20.5
		Events <i>,</i> n (%)	185 (12.4%)	215 (14.6%)
ASCEND-D	-1.1 (-2.3, 0.1)	Rate per 100 PY	5.7	6.8
		95% CI	4.9 <i>,</i> 6.5	5.9, 7.7
-20	-10 0 10 Favors Dapro Favors ESA			

Principal Secondary Endpoint: MACE + HHF

		ASCEND-ND			ASCEND-D		
n (%) ITT	Daprodustat N = 1,937	Darbepoetin N = 1,935	HR (95% CI)	Daprodustat N = 1,487	ESA N = 1,477	HR (95% CI)	
First occurrence MACE or hospitalization for HF	444 (22.9%)	417 (21.6%)	1.09 (0.95, 1.24)	425 (28.6%)	433 (29.3%)	0.97 (0.85, 1.11)	
<u>Recurrent events*</u>			1.09 (0.93, 1.29)			0.90 (0.76, 1.07)	
MACE	337 (17.4%)	335 (17.3%)	-	340 (22.9%)	360 (24.4%)	-	
Hospitalization for HF	107 (5.5%)	82 (4.2%)	_	85 (5.7%)	73 (4.9%)	-	

*Post-hoc: rate ratio estimates based on a negative binomial model

Data on Hospitalization for Heart Failure

		ASCEND-ND			ASCEND-D		
n (%) ITT	Daprodustat N = 1,937	Darbepoetin N = 1,935	HR (95% CI)	Daprodustat N = 1,487	ESA N = 1,477	HR (95% CI)	
Hospitalization for HF	140 (7.2%)	115 (5.9%)	1.22 (0.95, 1.56)	112 (7.5%)	101 (6.8%)	1.10 (0.84 <i>,</i> 1.45)	
<u>Recurrent events*</u>			1.45 (1.09, 1.94)			1.03 (0.76, 1.40)	

*Post-hoc: rate ratio estimates based on a negative binomial model

Post-hoc: All-cause Mortality + HHF in ASCEND Program

ASCEND-D: Outcomes Overall and by Pre-existing Heart Failure

- No increase in risk of hospitalization for heart failure in ASCEND-D, when accounting for the competing risk of death:
 - Irrespective of prior history of heart failure

ASCEND-ND: Outcomes Overall and by Pre-existing Heart Failure

- No increase in incident heart failure in patients without prior history of heart failure (87% of study population)
- Increased incidence of worsening heart failure in patients with a prior history of heart failure (13% of study population)

ASCEND-ND: Outcomes in Those Without History of Heart Failure

CO-52

ІТТ	HR (95% CI)	HR (95% CI)	Dapro N = 1,671	Darbe N = 1,67 <u>8</u>		
MACE		0.99 (0.84, 1.16)	286 (17.1%)	299 (17.8%)		
ACM		0.99 (0.82, 1.18)	229 (13.7%)	241 (14.4%)		
MI		0.97 (0.70, 1.35)	72 (4.3%)	75 (4.5%)		
Stroke		1.20 (0.71, 2.02)	31 (1.9%)	26 (1.5%)		
Hospitalization for HF		1.08 (0.79, 1.46)	86 (5.1%)	81 (4.8%)		
ACM+HHF		1.02 (0.87, 1.21)	289 (17.3%)	292 (17.4%)		
MACE+HHF		1.02 (0.88, 1.19)	331 (19.8%)	334 (19.9%)		
0.125 0.25 0.5 1 2 4						

Favors Dapro Favors Darbe

Heart Failure Summary

- Across both populations, ASCEND trials supports no increased risk of incident heart failure, with additional supporting data from:
 - Absence of non-clinical findings for cardiac toxicity
 - Absence of adverse echo changes on LVEF in Phase 2 studies up to 24wks
 - Absence of plausible mechanism for direct myocardial injury
- Dialysis: No evidence of increased risk of ACM or HHF for daprodustat compared with ESA, irrespective of prior heart failure status
- Non-dialysis patients with concomitant heart failure: risk of worsening heart failure
 - History of heart failure subgroup may have contributed to broader CV outcomes: similar rates between treatment groups in those without history of heart failure

MACE: Analysis of ASCEND-ND On-Treatment Results Led to Further Investigation

	ASCEND-ND		ASCEND-D		
ITT	Daprodustat N = 1,937	Darbepoetin N = 1,935	Daprodustat N = 1,487	ESA N = 1,477	
First occurrence of MACE	378 (19.5%)	371 (19.2%)	374 (25.2%)	394 (26.7%)	
HR	1.	03	0.9	93	
(95% CI)	(0.89)	, 1.19)	(0.81,	1.07)	

Pre-Specified On-Treatment (LDD + 28 days)

	ASCE	ND-ND	ASCEND-D		
Supportive On-Treatment Analyses, n (%)	Daprodustat N = 1,937	Darbepoetin N = 1,935	Daprodustat N = 1,487	ESA N = 1,477	
Analysis of time to first occurrence of MACE, n	1,937	1,937 1,933		1,474	
First occurrence of on treatment adjudicated MACE	274 (14.1%)	202 (10.5%)	255 (17.2%)	271 (18.4%)	
Adjusted HR	1	40	0.96		
(95% CI)	(1.17, 1.68)		(0.81, 1.14)		

Differential Dosing Frequency & On-Treatment Analysis Bias

Kevin J Carroll, PhD

Chief Statistician

KJC Statistics Ltd.

ASCEND Executive Steering Committee Member

'On-Treatment' Analyses When DF Differs Between Arms

- Primary ITT analyses, agreed with FDA, respect randomization and provide the best reflection of the effect of a treatment policy
- 'On-Treatment' analyses planned to supplement ITT Primary Analysis
 - Pre-specified on-treatment definition: Last dose date + 28 days
- However, differential dosing frequency can introduce substantial bias if not accounted for in the analysis

'On Treatment' Events : Daily vs Monthly Dosing

'On Treatment' Events : Daily vs Monthly Dosing

Possible Approaches to Address the Bias

- Redefine 'On-Treatment' as date of last dose + Dosing Frequency
 - Dosing Frequency = 1, 2 or 4 weeks for Darbe
 - Dosing Frequency = 1 day for Dapro
 - Effective in reducing bias
- Use the Date of Decision to Stop Dosing
 - CRF collected Date of Decision to Stop Dosing
 - For Darbe, this can be considered as a substitute for what the date of last dose might have been if dosing had been daily
 - Effective in reducing bias

MACE First 'On-Treatment' Event Analyses in ASCEND-ND Corrected Definition For Differential Dosing Frequency

ITT	Pre-Specified On-		
Events on / after	Treatment		
randomization	Last dose date + 28d		
HR (95% CI)	HR (95% CI)		
1.03 (0.89, 1.19)	1.40 (1.17, 1.68)		
Events 378 v 371	Events 274 v 202		

Post-Hoc	Post-Hoc	Post-Hoc	Post-Hoc
On-Treatment	On-Treatment	On-Treatment	On-Treatment
Last dose date + DF	Last dose date + DF + 28d	Date of Decision to Stop	Date Decision to Stop + 28d
HR (95% Cl)	HR (95% CI)	HR (95% CI)	HR (95% Cl)
1.09 (0.89, 1.33)	1.18 (0.99, 1.40)	1.06 (0.89, 1.27)	1.16 (0.99, 1.37)
Events 192 v 189	Events 275 v 248	Events 246 v 240	Events 302 v 268

- All 'On-Treatment' analyses carry a common set of issues and biases
- No allowance for differential dosing frequency can seriously bias 'On-Treatment' analyses
- Pre-planned 'On-Treatment' analyses in ASCEND program did not account for differential dosing frequency
- Correction for differential dosing frequency provides results more in keeping with Primary ITT analysis

General Safety

Heather Stein, MD, MPH

Vice President, Safety Evaluation

and Risk Management

Global Safety

GSK

Evaluation of Esophageal and Gastric Erosions in the Cardiovascular Outcomes Trials

LDD + DF	ASCEN	ND-ND	ASCEND-D		
Esophageal and gastric erosions AESI by preferred term, n (%)	Dapro N = 1,937	Darbe N = 1,933	Dapro N = 1,482	ESA N = 1,474	
GI hemorrhage	20 (1.0%)	9 (0.5%)	16 (1.1%)	22 (1.5%)	
Gastritis erosive	14 (0.7%)	8 (0.4%)	14 (0.9%)	14 (0.9%)	
Upper GI hemorrhage	14 (0.7%)	10 (0.5%)	4 (0.3%)	6 (0.4%)	
Gastric ulcer	4 (0.2%)	6 (0.3%)	7 (0.5%)	12 (0.8%)	

CO-63

AEs in the AESI of esophageal and gastric erosions occurring in ≥ 10 patients in any treatment group

Imbalance in Gastric Erosions/GI Hemorrhage Seen in Opposite Directions in the Cardiovascular Outcomes Trials

	ASCEND-ND			ASCEND-D						
		Darbe	Dolot:			Dapro	ESA	Del	ative Diele	
	N = 1,937	N = 1,933	Relati	ve kisk (.95% CI)	N = 1,482	N = 1,4/4	Kei	ative Risk	(95% CI)
AESI gastric erosion/GI hemorrhage, n (%)	70 (3.6%)	48 (2.5%)	-	-	1.46 (1.01, 2.09)	60 (4.0%)	82 (5.6%)	•		0.73 (0.53, 1.01)
Serious AESI gastric erosion/GI hemorrhage, n (%) (GSK definition)	39 (2.0%)	23 (1.2%)	_	•	1.79* (1.07, 3.00)	38 (2.6%)	34 (2.3%)	-	•	1.15* (0.72, 1.82)
Serious AESI gastric erosion/GI hemorrhage, n (%) (FDA definition)	47 (2.4%)	31 (1.6%)			1.61* (1.02, 2.53)	44 (3.0%)	44 (3.0%)	_	-	1.03* (0.68, 1.57)
		0.2 Favor	25 1 rs Dapro Fa	4 avors Dar	be		0.2 Favor	25	1 4 Favors ES	SA SA

Totality of Data Does Not Support an Increased Risk for Gastric Erosions/GI Hemorrhage Relative to ESAs

CO-65

	ASCEND-NHQ		ASCEND-ND*		ASCEND-D*		
Gastric erosion/GI hemorrhage (LDD+DF)	Dapro N = 308	Placebo N = 306	Dapro N = 1,937	Darbe N = 1,933	Dapro N = 1,482	ESA N = 1,474	
Patients with event, n (%)	2 (0.6%)	3 (1.0%)	70 (3.6%)	48 (2.5%)	60 (4.0%)	82 (5.6%)	
Of the patients with AESI of gastric erosion (GSK definition), n (%)							
Drug-related	0	0	0	1 (2.1%)	0	0	
Continued treatment	1 (50.0%)	2 (66.7%)	60 (85.7%)	38 (79.2%)	53 (88.3%)	76 (92.7%)	
Resolved/resolving	2 (100.0%)	2 (66.7%)	54 (77.1%)	33 (68.8%)	43 (71.7%)	57 (69.5%)	

Expert Review Conclusion: "In light of the fact that no difference was seen in confirmed clinically significant disease without another documented cause in ASCEND D, the difference in ASCEND ND could be due to the play of chance or represent a true difference between study groups in the risk of erosive disease in this study population."

Acute Kidney Injury

ASCEND-ND: Post-hoc Analyses of Serious AKI (FDA Definition)

Time Period	Dapro N = 1,937	Darbe N = 1,933	HR (95% CI)
OT (LDD+DF)	77 (4.0)	56 (2.9)	1.45 (1.03, 2.05)
AKI	70	50	
Anuria	0	1	
Cardiorenal syndrome	2	2	
Oliguria	1	0	
Renal tubular necrosis	1	0	
Tubulointerstitial nephritis	1	2	
Nephropathy toxic	2	1	
mITT, on and off treatment	94 (4.9)	64 (3.3)	1.48 (1.08, 2.03)

ASCEND-ND: No Difference in Time to First Occurrence of CKD Progression

ASCEND-ND: Decline in On-Treatment eGFR Similar Between Treatment Groups

ASCEND-NHQ: On-Treatment eGFR Decline Less with Daprodustat than Placebo

Proposed Proactive Pharmacovigilance and Risk Management in the Post-Marketing Setting

Pharmacovigilance

- In-stream review of individual case safety reports
- Monthly signal detection
- Regular literature review

Risk Minimization

- Labelling
 - Warnings & Precautions
 - Adverse Drug Reactions

Daprodustat Has Similar CV Safety as ESAs and an Acceptable General Safety Profile

- Placebo-controlled study: daprodustat well tolerated; no differences in MACE
- Both CVOTs met co-primary safety endpoint: Risk of MACE non-inferior to ESAs

- Risk of hospitalization for heart failure appears to be increased in non-dialysis patients with a history of heart failure
 - Risk mitigation proposal: labeling and prescriber education materials
- Most frequently reported AEs were common events of target populations
- No increased risk of malignancy, gastric erosions/GI hemorrhage, or AKI
- Safety issues with other HIF-PHIs not observed with daprodustat, including DILI
- Benefit/risk is favorable for both ND and D patients
CO-73

Clinical Perspective

Ajay Singh, MBBS, FRCP (UK), MBA

ASCEND Executive Steering Committee Chair

Senior Associate Dean for Postgraduate Medical Education Director, Master in Medical Sciences in Clinical Investigation Program

Harvard Medical School

Physician, Renal Division, Brigham and Women's Hospital

Unmet Need Exists in Non-Dialysis Dialysis Patients with Anemia of CKD

- Clinic-based therapies for ND and home therapy patients are challenging and represent a bottleneck
 - Challenging logistics
 - Disparities in accessing anemia therapy
- Home dialysis (Peritoneal dialysis (~11% of patients)
 - Rural patients may be hours from dialysis center
 - National initiatives focused on increasing home dialysis

Not Treating Anemia of CKD Has Risks

- Risk of transfusion
 - Allosensitization & impact on transplant availability
 - Risk of acute volume overload and hyperkalemia
 - AEs of liberal blood transfusion
 - Infection
- Reduced health-related quality of life

ASCEND Program Summary

- Well-designed and well-conducted study
 - Rigorous follow up and internal validity
 - Representative patient population
- Efficacy for daprodustat in both the D and ND population isn't being debated
- The FDA raised important concerns in the ND population
 - On Treatment MACE
 - US versus non-US
 - The CV endpoint analysis
 - Heart Failure
 - AKI
 - Gl erosions

ASCEND Trials Demonstrated Favorable Benefit-Risk Assessment for Daprodustat

- Convenient and flexible treatment option
- Important advance for dialysis and non-dialysis patients
- Additional tool for nephrologists to effectively care for patients
- Similar efficacy and a safety profile comparable to ESA in the pre-specified ITT population for both D and ND CKD patients

Daprodustat could represent an oral alternative to ESA for treating patients across the spectrum of anemia of CKD CO-77

Daprodustat for the Treatment of Anemia of Chronic Kidney Disease

October 26, 2022

GSK

Cardiovascular and Renal Drugs Advisory Committee

Gastrointestinal Hemorrhage in the Cardiovascular Outcomes Trials

	ASCEN	ND-ND	ASCEND-D			
LDD + DF	Dapro	Darbe	Dapro	ESA		
GI Hemorrhage SMQ, n (%)	N = 1,937	N = 1,933	N = 1,482	N = 1,474		
Any event	62 (3%)	55 (3%)	69 (5%)	77 (5%)		
GI hemorrhage	20 (1%)	9 (<1%)	16 (1%)	22 (1%)		
Upper GI hemorrhage	14 (<1%)	10 (<1%)	4 (<1%)	6 (<1%)		
Rectal hemorrhage	7 (<1%)	8 (<1%)	4 (<1%)	10 (<1%)		
Hematochezia	5 (<1%)	3 (<1%)	10 (<1%)	10 (<1%)		
Hemorrhoidal hemorrhage	2 (<1%)	3 (<1%)	13 (<1%)	8 (<1%)		
Any serious event	36 (2%)	32 (2%)	34 (2%)	31 (2%)		
GI hemorrhage	12 (<1%)	7 (<1%)	12 (<1%)	12 (<1%)		
Upper GI hemorrhage	12 (<1%)	7 (<1%)	4 (<1%)	4 (<1%)		

AEs in the GI Hemorrhage SMQ in ≥ 10 patients in any treatment group Post-hoc, Safety Population

The CKD-AQ Provides Supportive Evidence Showing the Impact of Dapro on QoL: ASCEND-NHQ

On-treatment analysis CKD-AQ = Chronic Kidney Disease Anemia Symptoms Questionnaire PO-26

ASCEND-ND: Summary of Concordance Between Investigator Reported and Adjudicated MACE During Time Period for Follow-Up of CV Events

	Investigator-Reported Event Type						
	Treatment Total N = 3,872						
Adjudicated Event Type	MACE ^a	Not MACE ^ь	No Reported Event ^c				
MACE	790	146	2				
Not MACE	101	491	0				
Did not meet criteria ^d	1	1	0				
Cases sent for adjudication	892	638	2				
Concordance		84%					

a. Investigator-reported MACE includes all investigator-reported death, MI and stroke (primary ischemic stroke, primary intracranial hemorrhage, retinal/ocular hemorrhage or infarction, unknown type of stroke) events.

b. Investigator-reported not MACE incudes unstable angina, non-ischemic chest pain, transient ischemic attack, and referred MI and stroke events deemed not an endpoint by the investigator

c. Event was manually triggered by the CEC

d. CEC determined that the event did not meet criteria for adjudication

Characterization of Worsening Heart Failure

More adjudicated events determined by PI	<u>More dialysis initiation</u> in cohort with				
as fluid overload (rather than HF)	Hospitalization for HF across treatment arms				
Dapro Darbe	ITT population HHF cohort				
45/140 (32%) vs. 29/115 (25%)	~1/3 vs. ~2/3				
No risk observed in ASCEND-D (HRs <1)	No increase in Mortality despite higher				
ACM + Hospitalization for heart failure	number of HHF in daprodustat arm				
Overall Recurrent event analysis* No history of heart failure History of heart failure 0.5 1 2	Dapro Darbe 47/140 (33.6%) vs. 45/115 (39.1%)				

HF-4

Post-hoc

MACE and Principal Secondary by US vs Non-US Region ASCEND-ND adjusted for baseline covariates

				ASCE	ND-ND)*				ASCE	END-D	
		Dapro	Darbe	Ha	azard Ra	atio (95% CI)	p-value	Dapro	ESA	Haz	ard Ratio (95% CI)	p-value
MACE	US	24%	21%	-	•	1.10 (0.84, 1.43)	0.3789	32%	33%	-	0.96 (0.76, 1.21	.)
	Non-US	18%	18%		•	0.95 (0.80, 1.13)		22%	24%	•	0.92 (0.77, 1.10	— 0.7905))
MACE + thromboembolic event	US	28%	23%			1.15 (0.90, 1.48)	0.2163	41%	43%	•	0.93 (0.75, 1.14)
	Non-US	20%	20%		•	0.95 (0.81, 1.12)		30%	34%	•	0.87 (0.75, 1.01	0.0110
MACE + Hospitalization for heart failure	US	29%	24%			1.18 (0.92, 1.51)	0.2555	38%	37%	•	1.03 (0.82, 1.28	3)
	Non-US	21%	21%		•	1.00 (0.85, 1.17)	0.2555	25%	26%	•	0.94 (0.79, 1.11	— 0.5344 .)
			0.	25	1	4			0.	25 1	. 4	
			Favo	rs Dapro	Favo	ors Darbe			Favo	rs Dapro	Favors ESA	

*model adjusted for baseline eGFR and Baseline History of Heart Failure; model for MACE+TEE is also adjusted for history of VTE, age >=75 years, and vascular access at randomization

SG-62

ASCEND-ND: All-cause Mortality + HHF in ASCEND-ND: Screening Cardiac Subgroup vs. History of Heart (4-term Definition)

HF-69

 83-89% of events in the 4-term definition were derived from those with heart failure, irrespective of the presence of the other 3 medical history terms

*4-term subgroup was pre-specified to include any of: pulmonary hypertension; left ventricular systolic dysfunction; left ventricular disastolic dysfunction; heart failure

MACE by Dose Categories Based on the Dose at the Time of the Event QU-5 (Events per 100 Person-Years) *On-treatment; Adjusted for Dosing Frequency*

Post-hoc