

¹³¹I-Omburtamab for neuroblastoma with central nervous system or leptomeningeal metastases

Oncologic Drugs Advisory Committee (ODAC) Meeting

FDA Introductory Comments October 28, 2022

Amy Barone, MD Cross Disciplinary Team Leader Division of Oncology 2 Office of Oncologic Diseases

APPLICANT'S PROPOSED INDICATION

OMBLASTYS is indicated for the treatment of central nervous system/leptomeningeal (CNS/LM) metastases in pediatric patients with neuroblastoma following standard multimodality treatment for CNS disease.

Proposed dosage: Two doses (25 to 50 millicuries based on age) given 4 weeks apart as intracerebroventricular infusions

Proposed pathway: Traditional approval

Basis for the Application

- Study 03-133
 - Single-arm study conducted by Memorial Sloan Kettering Cancer Center (MSKCC),
 - Applicant obtained the rights to commercial development (2015)
 - Overall survival (OS) endpoint compared to an external control (EC)
- Study 101 (supportive)
 - Multicenter, single-arm study
 - Response data systematically collected

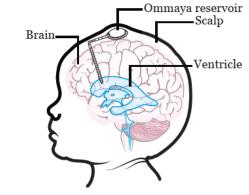
FDA

- Neuroblastoma background
- Regulatory framework for approval and use of external controls
- Study 03-133 and External Control
- Key efficacy issues
- Discussion topic and voting question for ODAC

FDA

- Neuroblastoma background
- Regulatory framework for approval and use of external controls
- Study 03-133 and External Control
- Key efficacy issues
- Discussion topic and voting question for ODAC

www.fda.gov


Neuroblastoma with CNS/LM Metastases

- Disease background
 - Childhood cancer of neural crest origin (e.g., adrenal gland)¹
 - 650 cases diagnosed per year in the US²
 - 6% of patients with high-risk NBL who experience metastatic relapse include metastases to the CNS parenchyma or LM³
- No approved or curative therapies
 - Surgery
 - Radiation therapy (e.g., craniospinal irradiation) has been suggested to provide benefit in single-arm studies
 - Off-label systemic chemotherapy (e.g., temozolomide and irinotecan)

¹PDQ[®] PDQ Neuroblastoma ²SEER Cancer Statistics Review ³Berlanga 2021

¹³¹I-omburtamab

- Radiolabeled monoclonal antibody
 - Binds to B7-H3 expressed on neuroblastoma cells
 - Beta-emission from iodine-131 causes cell death
- "When administered directly into the intraventricular space...¹³¹I-omburtamab will reach and target B7-H3 expressing tumor cells in the entire CSF compartment, including micrometastatic CNS disease" (Applicant Briefing Document)
- Mechanistic plausibility: Lack of robust clinical or preclinical data to support parenchymal tumor uptake via CSF delivery

Source: Applicant Briefing Document, ref Memorial Sloan Kettering Cancer Center Frequently Asked Questions About Ommaya Reservoirs and Ommaya Taps for Pediatric Patients

FDA

- Neuroblastoma background
- Regulatory framework for approval and use of external controls
- Study 03-133 and External Control
- Key efficacy issues
- Discussion topic and voting question for ODAC

www.fda.gov

Evidence of Effectiveness for Approval

^{21 CFR 314.126} A drug or biologic must demonstrate substantial evidence of effectiveness through **adequate and well controlled studies**

Under certain circumstances...FDA can conclude that <u>one</u> <u>adequate and well-controlled clinical investigation plus</u> <u>confirmatory evidence</u> is sufficient to establish effectiveness.

> - Demonstrating Substantial Evidence of Effectiveness for Human Drug and Biological Products *Guidance for Industry*

Relevant Endpoints in Oncology Trials

- Overall survival (OS)
 - "Gold standard"
 - Direct measure of clinical benefit and easy to measure
 - Randomized controlled trial
- Objective response rate (ORR)
 - Direct measure of intervention
 - Can be assessed in a single-arm study

FDA Guidance, Clinical study Endpoints for the Approval of Cancer Drugs and Biologics (December 2018) 10

OS should be evaluated in randomized studies

• ECs can have reliability and interpretability challenges

• Apparent differences in outcome may arise from factors other than the investigational drug

 Randomized studies minimize the effect of known and unknown differences between populations

FDA

Characteristics strengthening level of support for effectiveness by an EC

- High unmet medical need with a well-defined natural history •
- The EC population is very similar to treatment group
- Concomitant treatments that affect the primary endpoint are not substantially different
- Evidence of change in the established progression of disease (e.g., tumor shrinkage)

FDA guidance for industry, Demonstrating Substantial Evidence of Effectiveness for Human Drug and Biological Products, (2019) and Rare Diseases: Common Issues in Drug Development (2019) 12

Key Regulatory History

FDA

- Applicant considered a randomized controlled trial (RCT) infeasible and proposed an EC
- Consistent FDA advice:
 - Cautioned re: complexity of EC-controlled trials
 - Ability to interpret an EC-based OS comparison would largely depend on the comparability of the populations
 - Isolation of the treatment effect of ¹³¹I-omburtamab from other CNSdirect therapies important
 - Response rate data needed to establish effectiveness

FDA

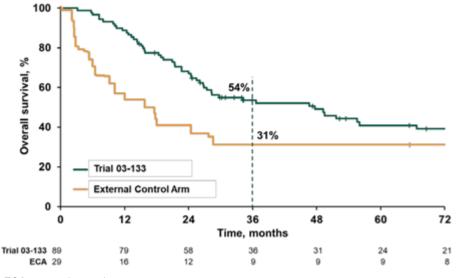
- Neuroblastoma background
- Regulatory framework for approval and use of external controls
- Study 03-133 and External Control
- Key efficacy issues
- Discussion topic and voting question for ODAC

www.fda.gov

Study 03-133 Pre-Omburtamab Treatment

Time	Recommended Treatment for CNS Relapse
Week -12	Resection when possible
Week -11	Irinotecan
Week -10	Craniospinal irradiation
Week -5	Irinotecan and Temozolomide
	Carboplatin if systemic disease present
	Stem cell rescue if necessary
Study start	¹³¹ I-omburtamab administration

Proposed External Control



- Central German Childhood Cancer Registry (CGCCR)
 - Patients diagnosed between 1990 and 2015
 - 99% of children diagnosed with cancer in Germany enrolled in registry
 - Patients followed until 18 years old
- 85 patients identified who received at least one treatment for CNS relapse
 - Missing data regarding frequency and type of treatments

	Study 03-133	External Control
Number of Treatments	Surgery, radiation, chemo (recommended)	At least 2 (including radiation)
Enrollment	2004-2019	1990-2015

Applicant's Primary OS Analysis (Study 03-133)

(source: Applicant Briefing document)

	Trial 03-133 ¹³¹ I-omburtamab	External Control Arm
3-years OS rate, %	54	31
Median OS, years	4.0	1.3
Hazard Ratio (95% CI)	0.58 (0.31,	1.09)
Log-rank P value	0.0544	4
	CI=	confidence intervals

ECA=external control arm

Key Issue: Clinically important differences between the study and control populations are likely to bias results in favor of the study arm

www.fda.gov

FDA

- Neuroblastoma background
- Regulatory framework for approval and use of external controls
- Study 03-133 and External Control
- Key efficacy issues
- Discussion topic and voting question for ODAC

www.fda.gov

Major Efficacy Review Issues

- 1. The External Control is not a relevant comparator due to clinically important differences between the populations
- 2. Comparisons of survival not reliable
- 3. Lack of supportive response rate data

1. The EC is not a relevant comparator due to clinically important differences in the populations

	Study 03-133	External Control
Concomitant therapy (e.g., radiation)	95% patients received CSI	No patient received CSI
Baseline Clinical Status	Well enough to travel and recover from intensive treatment	Unknown
Treatment era	2005-2018	1991-2020
Unknown	Example: Differences in clinical care between the United States and Germany.	

2. Comparisons of survival not reliable

- No statistical method can overcome uncertainty created with an EC that is not fit-for-purpose
- Multiple sensitivity analyses conducted:
 - OS differences between populations attenuated when adjusting for some sources of bias

Apparent differences in survival cannot be attributed to ¹³¹I-omburtamab

3. Lack of supportive response rate data

• Response data collected in Study 101

- Issues
 - Lack of confirmation of response
 - Baseline assessment of disease
 - Concerns for measurement error
 - Timing of response in relation to other CNS-directed therapy

Cannot conclude that ¹³¹I-omburtamab contributed to any apparent difference in survival

- If the German registry data are not an appropriate comparator, the externally controlled trial cannot be adequate and wellcontrolled
- Variable results of statistical analyses highlight uncertainties regarding causal effect of ¹³¹I-omburtamab
- Insufficient data to support mechanistic plausibility and objective response in CNS/LM disease

FDA

- Neuroblastoma background
- Regulatory framework for approval and use of external controls
- Study 03-133 and External Control
- Key efficacy issues
- Discussion topic and voting question for ODAC

Discussion Topic

Discuss whether data provided by the Applicant isolates the treatment effect of ¹³¹I-omburtamab from the effects of multimodality therapy for CNS/LM relapse, or if additional data are needed.

Voting Question

The Applicant has provided a comparison of ¹³¹I-omburtamab following multimodality treatment in single-arm Study 03-133 to an external control derived from a German registry.

Has the Applicant provided sufficient evidence to conclude that ¹³¹I-omburtamab improves overall survival?

OMBLASTYS[™] (¹³¹I-Omburtamab) for neuroblastoma with central nervous system or leptomeningeal metastases

FDA Presentation Oncologic Drugs Advisory Committee (ODAC) Meeting October 28, 2022

Gautam U. Mehta, MD

Clinical Reviewer, Nervous System, Pediatrics and Rare Cancers Division of Oncology 2, Office of Oncologic Diseases

FDA Review Team

Richard Pazdur, Director, Oncology Center of Excellence (OCE)	Donna Rivera, Associate Director of Pharmacoepidemiology, OCE
Paul Kluetz, Supervisory Deputy Director (Acting), Office of Oncologic Diseases	Catherine Lerro, Epidemiology Reviewer, OCE
Harpreet Singh, Director, Division of Oncology 2 (DO2)	Anthony Fotenos, Team Leader, Division of Imaging and Radiation Medicine
Martha Donoghue, Deputy Director, DO2	Donika Plyku, Reviewer, Division of Imaging and Radiation
Amy Barone, Cross Disciplinary Team Leader, DO2	Yuan-Li Shen, Deputy Division Director, Division of Biometrics V (DBV)
Gautam Mehta, Clinical Reviewer, DO2	Pallavi Mishra-Kalyani, Supervisory Mathematical Statistician, DBV
Marjilla Seddiq, Clinical Reviewer, DO2	Joyce Cheng, Statistics Team Leader, DBV
Jeanne Fourie Zirkelbach, Team Leader, Clinical Pharmacology	Somak Chatterjee, Statistics Reviewer, DBV
Catherine Bulik, Reviewer, Clinical Pharmacology	Yen-Chih Lin, Reviewer, Center for Devices and Radiologic Health
Christy John, Reviewer, Clinical Pharmacology www.fda.gov	Dhanalakshmi Kasi, Reviewer, Chemistry Manufacturing and Controls

Applicant's Proposed Indication

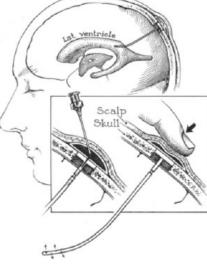
OMBLASTYS is indicated for the treatment of central nervous system/leptomeningeal (CNS/LM) metastases in pediatric patients with neuroblastoma following standard multimodality treatment for CNS disease.

Proposed dose: Two doses of 50 millicurie (mCi) administered 4 weeks apart as intracerebroventricular infusions

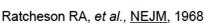
Proposed pathway: Traditional approval

- Study 03-133 design and use of external control
- Major efficacy issues
 - 1. Differences in the trial and external control populations
 - 2. Reliability of comparisons of survival
 - 3. Lack of supportive response rate data
- Safety considerations

www.fda.gov


Limited Mechanistic Plausibility of Intraventricular Therapy for CNS Metastases

- "¹³¹I-omburtamab will reach and target B7-H3-expressing tumor cells in the <u>entire CSF compartment</u>" (*Applicant's Briefing Document*)
- 70+% in each trial had CNS parenchymal metastases
 Not in the "CSF compartment"
- CSF administration of drugs results in limited brain penetration*
- Lack of robust nonclinical or PET evidence to support mechanism of targeted parenchymal tumor uptake


CSF = cerebrospinal fluid PET = positron emission tomography

www.fda.gov

*Blasberg RG, *et al.,* <u>J Pharm Exp</u>, 1975 Yan Q, *et al.*, <u>Exp Neurol</u>, 1994

FDA

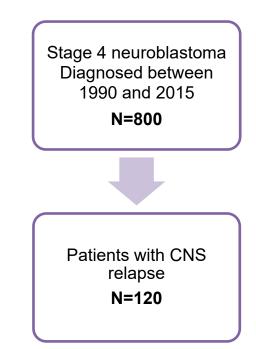
Evidence of Effectiveness for Traditional Approval

Under certain circumstances...FDA can conclude that <u>one</u> <u>adequate and well-controlled clinical investigation plus</u> <u>confirmatory evidence</u> is sufficient to establish effectiveness.

> - Demonstrating Substantial Evidence of Effectiveness for Human Drug and Biological Products *Guidance for Industry*

Primary Evidence of Efficacy: Study 03-133

Study	Study 03-133
Status	Completed (2004-2019)
Design	Single-center, single-arm trial
Primary Efficacy Endpoint	3-year Overall Survival (OS) rate
Tumor Responses	Not routinely assessed
Sample Size	94


Use of an External Control in the Current Application

- Breakthrough therapy designation granted in May 2017 based on a <u>comparison to literature</u>
- External Control *could* provide context for single-arm trial with time-to-event primary endpoint
 - Lack of available therapy as control
 - High unmet need

Central German Childhood Cancer Registry (CGCCR)

- Largest data source identified by Applicant documenting outcomes of children with neuroblastoma and CNS relapse
- ≥95% of children diagnosed with cancer in Germany enrolled in registry
 - Patients diagnosed between 1990 and 2015
 - Patients followed until 18 years old

FDA

Regulatory Framework for Approval

Adequate and Well-Controlled Trial(s)

Substantial Evidence of Effectiveness

Benefit-Risk Assessment

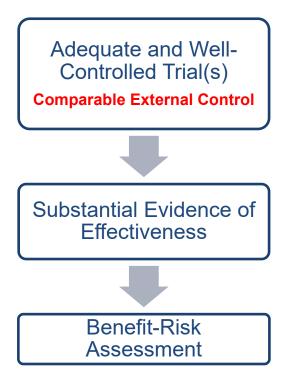
FDA

Major Efficacy Review Issues

- 1. The External Control is not a relevant comparator due to clinically important differences between the populations
- 2. Comparisons of survival not reliable due to bias and sample size

3. Lack of response data to verify anti-tumor activity

Major Efficacy Review Issues



- 1. The External Control is not a relevant comparator due to clinically important differences between the populations
- 2. Comparisons of survival not reliable due to bias and sample size

3. Lack of response data to verify anti-tumor activity

External Control Population Must Be Comparable

For Adequate and Well-Controlled Trials "the following types of control are recognized:

 (v) Historical control. The results of treatment with the test drug are compared with experience historically derived from the adequately documented natural history of the disease or condition, or from the results of active treatment, in comparable patients or populations."

- 21 CFR 314.126

FDA Efficacy Analyses

- FDA's analysis population includes patients treated at the proposed recommended dose and with <u>no missing data</u> (complete cases only)
- FDA consistently advised Applicant that <u>multiple sensitivity</u> <u>analyses would be conducted</u> during the review given uncertainties introduced by comparison to External Control

External Control Limited to Patients Receiving Post-CNS Relapse Therapy to Improve Comparability

Baseline Covariate	Study 03-133 (n=94*)	CGCCR (n=120)
Age at neuroblastoma diagnosis, mean ± SD (years)	3.0 ± 2.2	3.0 ± 2.6
MYCN Amplified	51 (54%)	52 (43%)
Time from neuroblastoma diagnosis to CNS relapse, mean (months)	19.8 ± 13.0	19.4 ± 18.2
Any post-CNS relapse chemotherapy, radiation therapy, or surgery	94 (100%)	79 (66%)
Primary analysis population: Patients who received post-CNS relapse radiation therapy and at least one other modality of treatment and complete case data	77 (82%)	34 (28%)

www.fda.gov *Includes only patients who received the proposed recommended dose

Pre-¹³¹I-Omburtamab Treatment for CNS Relapse

Time	Suggested Pre-treatment for Study 03-133	
Week -12	Resection when possible	
Week -11	Irinotecan	
Week -10	Craniospinal irradiation	
Week -5	Irinotecan and Temozolomide	
	Carboplatin if systemic disease present	
	Stem cell rescue if necessary	
Study start	¹³¹ I-omburtamab administration	

Imbalance in Timing and Type of Post-Relapse Radiation Therapy (RT)

FDA

Study 03-133	External Control
(n=77)	(n=34)
Median time from relapse to first RT	Median time from relapse to first RT
was <mark>21 days</mark> (3, 266)	was <mark>69 days</mark> (3, 414)
95% of patients received craniospinal irradiation 18 or 21 Gray +/- boost	No patient received craniospinal irradiation No further details on type/dose of RT available

Imbalance in Frequency and Type of Post-Relapse Chemotherapy

Study 03-133	External Control
(n=77)	(n=34)
99% received chemotherapy post-	88% received chemotherapy post-
relapse, prior to omburtamab	relapse
Most patients received	Most patients received topotecan/etoposide
<u>temozolomide/irinotecan</u>	No patients reported to have received temozolomide or irinotecan

FDA

Extent of Treatment Intensity Unknown in Study 03-133

- Post-¹³¹I-omburtamab therapies not systematically recorded
- Likely a large unmeasured imbalance in overall treatment intensity received by Trial and External Control patients

Major Issue: External Control <u>Not</u> Fit for Purpose of Comparison

- Fundamental known differences:
 - No patient in external control received craniospinal irradiation
 - Differences in types of chemotherapy received
- Potential for additional <u>unknown differences:</u>
 - Trial patients likely to be healthier than intended use population
 - Additional treatment following ¹³¹I-omburtamab not captured
 - Differences in clinical care in U.S. and Germany
 - Dose/type of CNS radiation not captured for external control

Major Efficacy Review Issues

- 1. The External Control is not a relevant comparator due to clinically important differences between the populations
- 2. Comparisons of survival not reliable due to bias and sample size

3. Lack of response data to verify anti-tumor activity

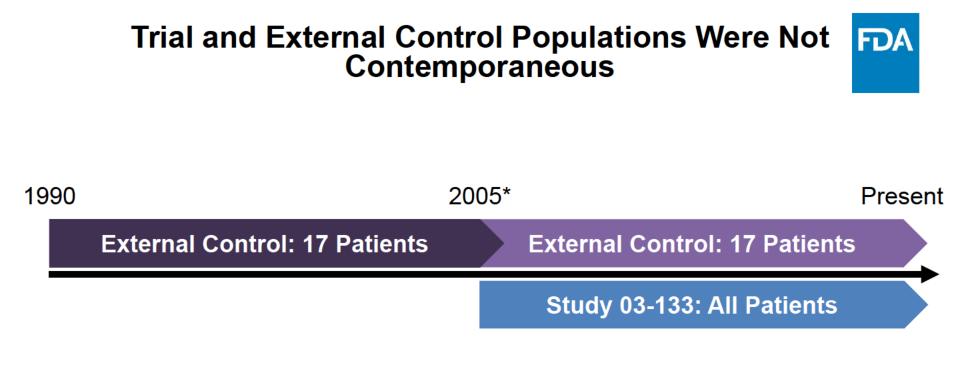
Statistical Approach to Survival Analyses

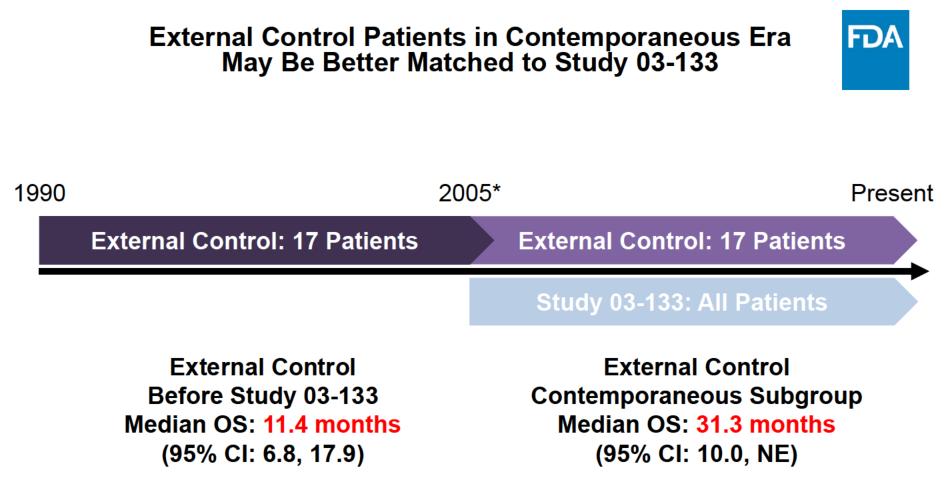
- Major sources of bias
 - Population selection
 - Differences in study time periods
 - Index date selection
- Approaches to mitigate affect of bias in analysis

Statistical Approach to Survival Analyses

- Major sources of bias
 - Population selection
 - Differences in study time periods
 - Index date selection
- Approaches to mitigate affect of bias in analysis

External Control Subgroups Receiving More Modalities of Post-CNS Relapse Therapy were More Similar to Trial

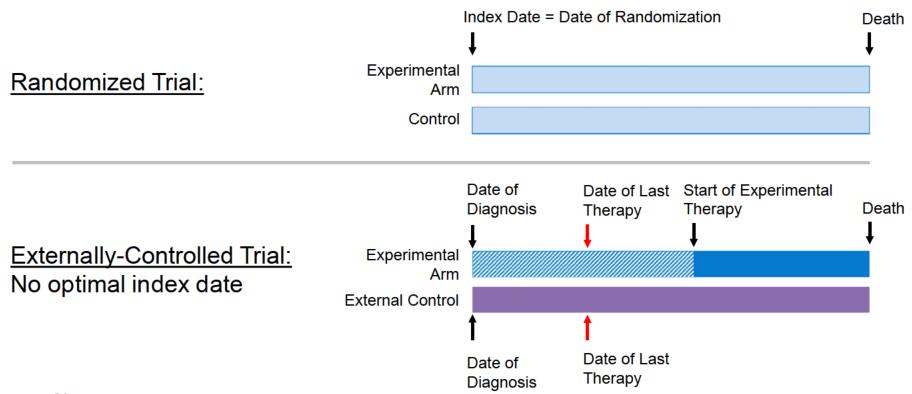

Group	Treatment Modalities	Study 03-133 (n=94)	External Control (n=120)
Group 1	Received at least one post-relapse therapy	84 (89%)	74 (62%)
Group 2	Received post-relapse radiation therapy and at least one other therapy (surgery or chemo)	77 (82%)	34 (28%)
Group 3	Received post-relapse radiation therapy, surgery, and chemotherapy	63 (67%)	21 (18%)

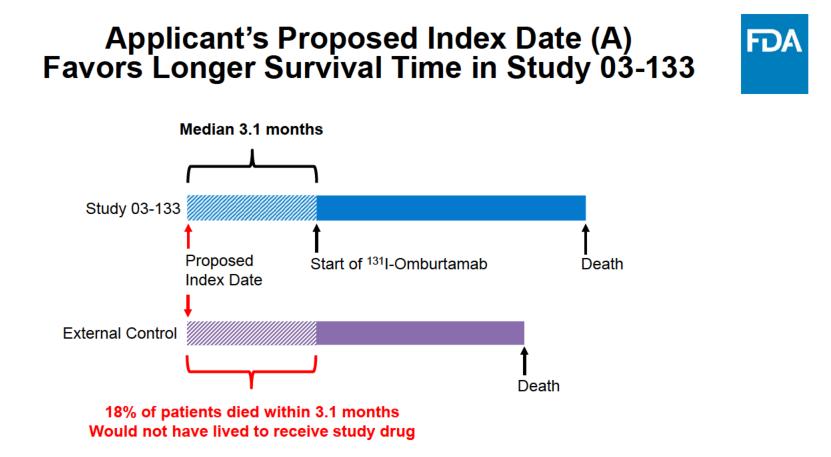

Greater Survival with More Modalities of Post-CNS Relapse Therapy

		External Control	
Group	Treatment Modalities	N	Median OS* (months)
Group 1	Received at least one post-relapse therapy	74	10.0 (95% CI: 6.9, 15.2)
Group 2	Received post-relapse radiation therapy and at least one other therapy (surgery or chemo)	34	16.6 (95% CI: 9.8, 31.3)
Group 3	Received post-relapse radiation therapy, surgery, and chemotherapy	21	29.8 (95% CI: 11.7, NE)

*Overall Survival (OS) defined as time from CNS relapse to death CI = confidence interval, NE = not evaluable

FDA


Choice of Index Date in a Randomized Trial



Death

Choice of Index Date in an Externally-Controlled Trial

Concern: Unfair comparison results in bias in favor of ¹³¹I-Omburtamab treatment group

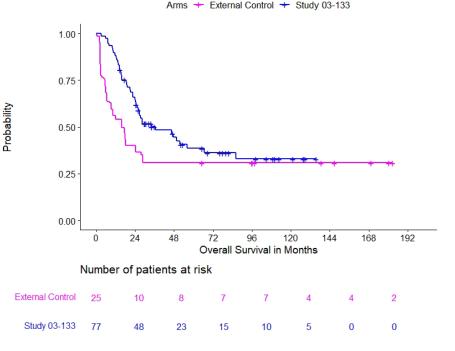
Effects of Major Sources of Bias

- Population selection and confounding
 - External control patients with more treatments were more similar to Study 03-133 and survived longer
- Differences in study time periods
 - External control patients diagnosed in the era contemporaneous with Study 03-133 lived longer than patients diagnosed before Study 03-133 began
- Index date selection
 - Use of the Applicant's proposed index dates for survival analyses favors survival in Study 03-133

Statistical Approach to Survival Analyses

- Major sources of bias
 - Population selection
 - Differences in study time periods
 - Choice of index date
- Approaches to mitigate affect of bias in analysis

Approach to Control for Major Bias



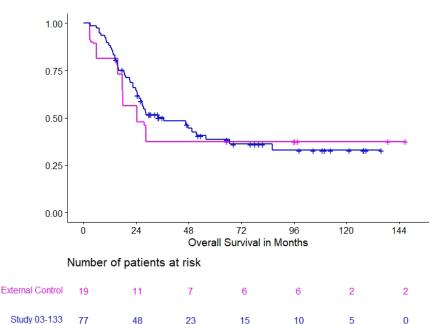
- Population selection and confounding
 - Limit comparison to Modality Group 2: patients who received radiation therapy and at least one other therapy
 - Propensity score-based weighting
- <u>Differences in study time periods</u>
 - Limit comparison to contemporaneous patients
- Index date selection
 - Use start of ¹³¹I-omburtamab treatment for index date in Study 03-133

Primary Analysis Adjusts for Only Some Aspects of Selection Bias

	Study 03-133 (N=77)	External Control (N=34)
Weighted sample size, N	77	24.8
Hazard ratio (95% CI)	0.62 (0.32	2, 1.20)

- Limiting to patients with radiation therapy plus at least 1 other therapy helps make the populations more comparable
- However, we know there are other major prognostic differences across populations, including treatment era

www.fda.gov


Restricting Analysis to Contemporaneous Subgroup Reduces Observed Differences in Survival

[>]robability

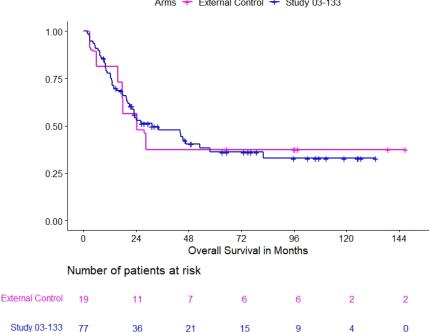
	Study 03-133 (N=77)	External Control (N=17)
Weighted sample size, N	77	19.3
Hazard ratio (95% CI)	0.91 (0.41, 2.02)	

 When comparing patients with CNS relapse in the same era as those in Trial 03-133 (2005-present) the Kaplan-Meier curves of OS come closer together

• Sample size is now extremely small

Arms + External Control + Study 03-133

FDA


Calculating OS Time from Start of ¹³¹I-Omburtamab **Demonstrates Impact of Index Date Selection**^{*}

[>]robability

	Study 03-133 (N=77)	External Control (N=17)
Weighted sample size, N	77	19.3
Hazard ratio (95% CI)	1.02 (0.48, 2.16)	

Sample size remains very small \mathbf{O}

Trial patients are still more heavily ٠ treated than External Control patients

Arms External Control + Study 03-133

FDA

Major Issue: Survival Analyses Unable to Establish a Treatment Effect

- Survival analyses limited by several known sources of biases
- Adjusting analyses to create more similar populations results in small sample sizes and greater uncertainty, but diminishing differences in survival
- Cannot control for important unmeasured baseline prognostic factors (e.g., type of RT) and receipt of post-¹³¹I-omburtamab treatment
- Variable results of statistical analyses highlight uncertainties regarding causal effect of ¹³¹I-omburtamab

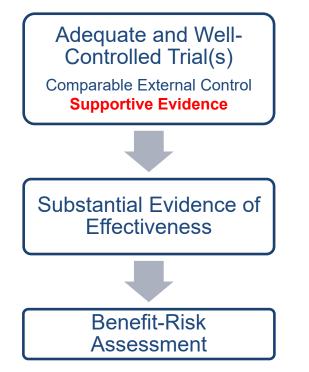
Major Efficacy Review Issues

- 1. The External Control is not a relevant comparator due to clinically important differences between the populations
- 2. Comparisons of survival not reliable due to bias and sample size

3. Lack of response data to verify anti-tumor activity

Tumor Response Data in Study 101 were Unable to Verify Anti-Tumor Activity

Baseline Assessment


- 1. Diagnosis of leptomeningeal disease
- 2. Contribution of effect of ¹³¹I-omburtamab

Response Assessment

- 1. Lack of confirmed responses
- 2. Concerns for measurement error

Supportive Evidence Required for Traditional Approval

"Under certain circumstances...FDA can conclude that **one adequate and wellcontrolled clinical investigation <u>plus</u> confirmatory evidence** is sufficient to establish effectiveness."

> - Demonstrating Substantial Evidence of Effectiveness for Human Drug and Biological Products *Guidance for Industry*

FDA

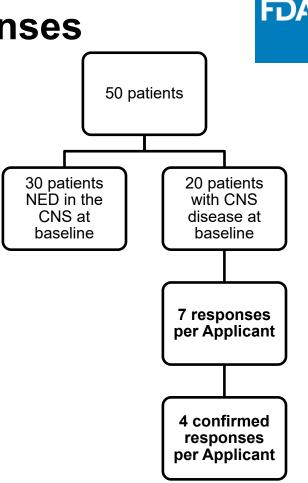
Study 101: Supportive Trial

Study	101
Status	Ongoing (2017-present)
Design	Multi-center, single-arm trial
Primary Efficacy Endpoint	3-year OS rate
Tumor Responses	5-, 10-, 26-week imaging Blinded independent central review RANO-BM and EANO-ESMO (LM) for response assessment
Sample Size	50

RANO-BM = Response Assessment in Neuro-Oncology Brain Metastases

www.fda.gov

EANO-ESMO = European Association of Neuro-Oncology-European Society for Medical Oncology


Protocol-Specified Pre-¹³¹I-Omburtamab Treatment for CNS Relapse

Time	Protocol-Specified Pre-treatment for Trial 101	
Week -12	Resection when possible	
Week -11	Irinotecan	
Week -10	Craniospinal irradiation	
Irinotecan and TemozolomideWeek -5Carboplatin if systemic disease present		
Study start	¹³¹ I-omburtamab administration	

FDA

Study 101 Responses

- Patients were heavily pre-treated and had minimal CNS disease at baseline
 - 47 of 48 (98%) CSF cytology negative at baseline
 - 30 of 50 (60%) with no evidence of disease (NED) in CNS per blinded independent central review

Inadequate Diagnosis of Leptomeningeal Metastasis (LM)

- All patients with LM were <u>CSF cytology negative</u> at baseline
- Clinical sequelae not incorporated into assessment
- EANO-ESMO diagnostic criteria*
 - Positive cytology required for "confirmed" LM diagnosis
 - Clinical signs required for "probable" LM diagnosis
 - Patients met criteria for "possible" LM diagnosis at baseline

Uncertainty with Contribution of Effect

FDA

• Inadequate time from radiation therapy or chemotherapy to baseline scan in half of confirmed responders

Limited washout of prior therapies creates uncertainty regarding the contribution of effect of ¹³¹I-omburtamab

Lack of Confirmation of Response

- Only 4 patients with reported **confirmed** responses
 - RANO-BM*: "For non-randomised trials in which CNS response is the primary endpoint, confirmation of partial response or complete response at least 4 weeks later is necessary"
 - Most received chemotherapy between initial response and confirmation

Lack of confirmation of response raises concerns for measurement error and lack of durability with treatment

*Lin NU, *et al*., <u>Lancet Oncol</u>, 2015

Concern for Measurement Error

- Disagreement between primary reviewers in all cases
 - All required adjudication
 - Second reviewer recorded <u>no evidence of disease</u> at baseline for most reported responders

Lack of agreement between reviewers raises concerns for measurement error

Major Issue: No Reliable Evidence of Anti-Tumor Activity

- Baseline Assessment
 - 1. Diagnosis of leptomeningeal disease
 - 2. Contribution of effect of ¹³¹I-omburtamab
- Response Assessment
 - 1. Lack of confirmed responses
 - 2. Concerns for measurement error

No unequivocal tumor response in Study 101

Major Issue: No Reliable Evidence of Anti-Tumor Activity

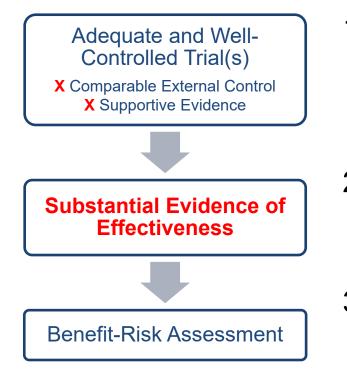
Applicant's Briefing Document: "¹³¹I-omburtamab will reach and target B7-H3-expressing tumor cells in the entire CSF compartment, including micro-metastatic CNS disease."

- Limited biologic plausibility of intraventricular therapy for CNS parenchymal metastases:
 - These lesions are not in the <u>CSF compartment</u>
 - Present in most patients in both studies
- Limited evidence of <u>micro-metastatic disease</u> in these studies
 - Only one patient had positive CSF cytology at baseline (developed progressive disease)

Key Safety Concerns

1. Risks from off-target radiation exposure

2. Risks associated with placement and use of Ommaya reservoir or shunt


Key Safety Concerns

- Myelosuppression, chemical meningitis, infusion-related reactions, neurotoxicity, and late effects from radiation exposure
- 41-50% of patients experienced a serious adverse event
 - Myelosuppression
 - 1 fatal adverse reaction (intracranial hemorrhage)
- 19-28% did not receive second dose due to adverse reactions

FDA Concerns Regarding Evidence of Effectiveness

- 1. The External Control is not a relevant comparator due to clinically important differences between the populations
- 2. Comparisons of survival not reliable due to bias and sample size
- 3. Lack of response data to verify antitumor activity

Discussion Topic

Discuss whether data provided by the Applicant isolates the treatment effect of ¹³¹I-omburtamab from the effects of multimodality therapy for CNS/LM relapse, or if additional data are needed.

Voting Question

The Applicant has provided a comparison of ¹³¹I-omburtamab following multimodality treatment in single-arm Study 03-133 to an external control derived from a German registry.

Has the Applicant provided sufficient evidence to conclude that ¹³¹I-omburtamab improves overall survival?

BACKUP SLIDES SHOWN

Craniospinal Irradiation (CSI) for CNS Relapse

- Only retrospective analyses to date
- Suggests role for craniospinal irradiation in long-term survival
- Comparative analysis from MSKCC (Croog V.J. *et al.*):
 - "our findings suggest that targeting the entire neuraxis with CSI rather than delivering focal RT is an important component of management along with IO-RIT."
 - Outcomes by RT cohort:

Vital Status	CSI (n=16)	No CSI (n=13)
Alive, n (%)	13 (81%)	0
Alive, NED	10	0
Alive, non-CNS relapse	2	0
Alive, CNS relapse	1	0
Time CNS relapse to last contact/death (mos), median (range)	28.4 (1.5, 62.7)	8.8 (4.2, 23.9)

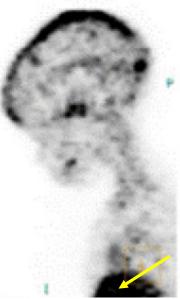
www.fda.gov Croog, V. J., Kramer, K., *et al.* (2010). Whole neuraxis irradiation to address central nervous system relapse in high-risk neuroblastoma. *Int J of Rad Onc, Biol and Phys*, *78*(3), 849–854.

Reported Confirmed Responses

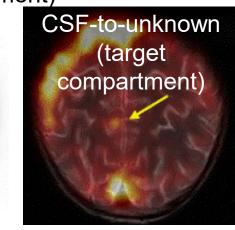
Reported	BIRC	Scan					
Response	Reviewer	Baseline	5 weeks	10 weeks	26 weeks	Factors Limiting Assessment	
	1	LM	SD	SD	SD	 CSF cytology negative Received TMZ between 10 and 26 	
1	2*	LM	SD	CR	CR	week scans	
2	1	LM + parenchymal	PR	PR	PR	 CSF cytology negative 30-day washout period from radiation 	
2	2*	LM	CR	CR	CR	therapy to baseline MRI	
3	1*	LM + parenchymal	SD	PR	CR	 19-day washout period from chemotherapy and 29-day washout from radiation therapy to baseline MRI ¹³¹I-omburtamab given 60 days after 	
3 -	2	NED	NED	PD	PD	 baseline MRI[^] Received TMZ, IRN, and DTX between first response and "confirmation" scan 	
	1*	Parenchymal	SD	CR	CR	No target lesions at baselineReceived naxitamab + GM-CSF	
4	2	NED	NED	NED	NED	between first response and "confirmation" scan	

*denotes adjudicated response selected by reviewer 3

DTX= dinutuximab, IRN=irinotecan, LM=leptomeningeal, NED=no evidence of disease, CR=complete response, PR=partial response, SD=stable disease, PD= progressive disease, BICR=blinded independent central review, TMZ=temozolomide

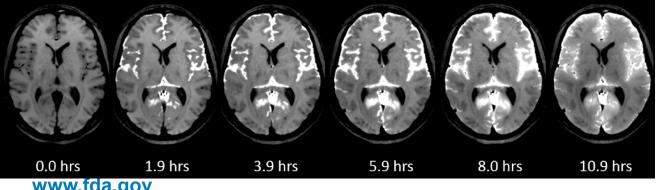

Analyses Adjusting for Multiple Sources of Bias Concurrently Improves Ability to Evaluate the Causal Effect of ¹³¹I-Omburtamab

	Description	OS Hazard Ratio (95% CI)	N 03-133/ECA
Applicant's proposed Primary analysis	Modality Group 2 patients	0.62 (0.32, 1.20)	77/34
Removing Differences in Treatment Era	EC patients with CNS relapse in the same time period as 03-133	0.91 (0.41, 2.02)	77/17
	EC patients from NB04 only	0.89 (0.39, 2.02)	77/19
Sensitivity Analyses for Immortal Time Bias	Start of ¹³¹ I-omburtamab infusion (index D) for 03-133	1.02 (0.48, 2.16)	77/17
	Excluding EC patients with early	1.03 (0.45, 2.35)	77/15
Improving Similarity by Prior Treatment	Modality Group 3 patients	1.05 (0.45, 2.45)	63/12
	0.5 1 1.5	2 2.5	
	Favors ¹³¹ I-omburtamab Favors	Control	


www.fda.gov *Deaths in the median time period between Index A and start of Start of ¹³¹I-omburtamab therapy in Study 03-133 (3.1 months) 4

Delivery to LM vs CNS target compartments

Study 03-133: ¹²⁴I-omburtamab PET



CSF-to-LM (target compartment)

CSF-to-circulation (off-target compartment)

Small molecule contrast on MRI after intrathecal admin

- No therapeutic radioactive drug or biologic has been approved for ventricular administration
- Except for single unknown lesion example, no imaging or radiation dosimetry data from LM and CNS compartments has been submitted for review
- Among CNS lesions from 42 patients with ¹²⁴Iomburtamab PET co-investigation under Study 03-133, the number with visible uptake remains unknown
- Internal radiation delivery to the LM compartment is likely higher and more consistent than radiation delivery to the CNS compartment
- Additional investigation of ¹²⁴I-omburtamab for selection of CNS patients may be needed to determine whether patients with no CNS uptake benefit

www.fda.gov Source: sponsor submission 10/21/2022 (top); Dyke JP *et al.* <u>Clinical Imaging</u> 68 (2020) 1–6 (bottom) FDA