Individuals using assistive technology may not be able to fully access the information contained in this file. For assistance, please call 800-835-4709 or 240-402-8010, extension 1. CBER Consumer Affairs Branch or send an e-mail to: occd@fda.hhs.gov and include 508 Accommodation and the title of the document in the subject line of your e-mail.

Pfizer/BioNTech COVID-19 Vaccines

Vaccines and Related Biological Products Advisory Committee

January 26, 2023

Presentation Outline

Variant-modified vaccine experience to date

Readiness to support future COVID-19 vaccine updates

Kena A. Swanson, Ph.D. Vice President, Viral Vaccines Vaccine Research and Development, Pfizer Inc.

Better-Matched Vaccines Restore Waning Immunity and Increase Protection Against Currently Circulating Strains

- Increase in hospitalizations corresponding to winter respiratory season in United States¹
 - >4000 hospitalizations and >300 deaths per day in US¹
- The role of better-matched COVID-19 vaccines:
 - Restore waning immunity against hospitalization observed ~3-6 months after vaccination²⁻⁴
 - Better neutralizing activity against current strains⁵
 - Increased protection against a range of Covid-19 outcomes including symptomatic illness, UC/ED visits, and hospitalizations⁶⁻⁹

UC/ED is urgent care or emergency department visits.

Centers for Disease Control and Prevention. COVID Data Tracker. Atlanta, GA: US Department of Health and Human Services, CDC; 2023, January 17. https://covid.cdc.gov/covid-data-tracker; 2. Surie et al. MMWR 2022. doi: 10.15585/mmwr.mm7142a3; 3. Tartof et al. Lancet Infect Dis 2022. doi: 10.1016/S1473-3099(22)00692-2; 4. Collie et al. N Engl J Med 2022. doi: 10.1056/NEJMc2210093; 5. Davis-Gardner et al. N Engl J Med 2022. doi: 10.1056/NEJMc2214293;
 Link-Gelles et al. MMWR 2022. doi: http://dx.doi.org/10.15585/mmwr.mm7148e1; 7. Tenforde et al. MMWR 2022. doi: 10.15585/mmwr.mm715152e1; 8. Surie et al. MMWR 2022. doi: 10.15585/mmwr.mm715152e2; 9. Arbel et al. Available at SSRN: https://dx.doi.org/10.2139/ssrn.4314067.

Preclinical Data Reliably Predicted Clinical Results for Variant-modified Vaccines – Supported Bivalent BA.4/5 Vaccine Authorization

Modified Vaccine	Age Group	Vaccine Regimen	Clinical Data	Preclinical Data
Beta monovalent	18 to 55 years			\checkmark
Omicron BA.1 monovalent	18 to 55 years			
Omicron BA.1 bivalent	18 to 55 years >55 years	////	\checkmark	\checkmark
Omicron BA.4/5 bivalent	6 months to 11 years 12 to 55 years >55 years	////	\checkmark	\checkmark
	🗡 Original Vaccii	ne Variant Vaccine		

Preclinical Data Reliably Predicted Clinical Results for Variant-modified Vaccines – Supported Bivalent BA.4/5 Vaccine Authorization

Modified Vaccine	Age Group	Vaccine Regimen	Clinical Data	Preclinical Data
Beta monovalent	18 to 55 years			\checkmark
Omicron BA.1 monovalent	18 to 55 years			
Omicron BA.1 bivalent	18 to 55 years >55 years	1111	\checkmark	\checkmark
Omicron BA.4/5 bivalent	6 months to 11 years 12 to 55 years >55 years	////	\checkmark	\checkmark
		ine Variant Vaccine		

Clinical Study Evaluated Bivalent Omicron BA.4/5-modified Vaccine as a Booster in Vaccine-experienced Participants ≥12 years

Comparison of Responses Between Bivalent and Original Monovalent Vaccines

Demographics for Bivalent Omicron BA.4/5-modified and Original Vaccine Comparator in Vaccine-Experienced Participants

	Vaccine Group			
	Bivalent BA.4/5			Original Vaccine
	12-17y	18-55y	>55y	>55y
	N=105	N=297	N=286	N=289
	n (%)	n (%)	n (%)	n (%)
Sex				
Male	58 (55.2)	104 (35.0)	129 (45.1)	134 (46.4)
Female	47 (44.8)	193 (65.0)	157 (54.9)	155 (53.6)
Age				
Median	15.0	41.0	65.0	66.0
Min, max	(12, 17)	(18, 55)	(56, 87)	(56, 87)
Previous SARS-CoV-2 infection status at study baseline				
Negative	26 (24.8)	84 (28.3)	110 (38.5)	246 (85.1)
Positive	79 (75.2)	213 (71.7)	176 (61.5)	41 (14.2)
Time since last dose of original vaccine prior to study vaccine (months)				
Median	8.4	11.3	11.5	6.3
Min, max	(5.6, 12.0)	(5.4, 13.0)	(5.5, 12.9)	(5.3, 13.0)

Previous SARS-CoV-2 infection status confirmed by medical history, serology and/or RT-PCR at study baseline

Omicron BA.4/5 GMR Superiority and Reference Strain GMR Non-inferiority Met for Bivalent BA.4/5 Vaccine >55y participants

Evaluable Participants With or Without Evidence of Previous Infection Through 1 Month After Vaccination

SARS-CoV-2 Neutralization Assay	Bivalent BA.4/5 GMT (95% CI) n=284-286	Original Vaccine GMT (95% CI) n=282-289	GMR (95% CI)	Conclusion
Omicron BA.4/5	4158.1 (3554.8, 4863.8)	938.9 (802.3, 1098.8)	2.91 (2.45, 3.44)	Superiority Met
Reference strain	16250.1 (14499.2, 18212.4)	10415.5 (9366.7, 11581.8)	1.38 (1.22, 1.56)	Non-inferiority Met

Omicron BA.4/5 GMR Superiority Criterion: the lower bound of the 95% confidence interval for the GMR is >1

Reference strain GMR Non-inferiority Criterion: the lower bound of the 95% confidence interval for the GMR is >0.67 and the point estimate of the GMR is ≥ 0.8

Omicron BA.4/5 Seroresponse Also Met Non-inferiority Criterion

(Lower bound of the 95% confidence interval for the percentage difference is greater than -5)

GMRs and associated 95% CIs were calculated using a linear regression model with terms of baseline neutralizing titer and vaccine group. Omicron BA.4/5 & Reference strain NT50 measured using validated 384-well assay

Omicron BA.4/5 GMR Non-inferiority Met for Bivalent BA.4/5 Vaccine Responses in 18-55y to >55y Participants

Evaluable Participants With or Without Evidence of Previous Infection Through 1 Month After Vaccination

SARS-CoV-2	Bivalent BA.4/5 GMTs (95% CI)			
Neutralization	18-55y	>55y	GMR	Conclusion
Assay	n=297-296	n=284-286	(95% CI)	
Omicron BA.4/5	4455.9 (3851.7, 5154.8)	4158.1 (3554.8, 4863.8)	0.98 (0.83, 1.16)	18-55y non-inferior to >55y
Reference strain	16323.3	16250.1	Similar GMTs	
	(14686.5, 18142.6)	(14499.2, 18212.4)	(descriptive analysis)	

Omicron BA.4/5 GMR Non-inferiority Criterion: the lower bound of the 95% confidence interval for the GMR is >0.67

Omicron BA.4/5 Seroresponse Also Met Non-inferiority Criterion

(Lower bound of the 95% confidence interval for the percentage difference is greater than -10)

GMR and associated 95% CI were calculated using a linear regression model with terms of baseline neutralizing titer and vaccine group. Omicron BA.4/5 & Reference strain NT50 measured using validated 384-well assay

Bivalent Omicron BA.4/5 Elicits Improved Omicron BA.4/5 Neutralizing Response Compared to Original Vaccine Across Age Groups

By Previous SARS-CoV-2 Infection Status at Study Baseline

Higher Omicron Sublineage Neutralizing Responses with Bivalent BA.4/5 Vaccine Regardless of Prior SARS-CoV-2 Infection Participants >55 years of age

Participants *Without* Prior SARS-CoV-2 Infection at Baseline

Participants *With* Prior SARS-CoV-2 Infection at Baseline

Pre = Pre-dose 4; Post = 1-month post dose 4; FFRNT₅₀ = 50% fluorescent focus reduction neutralization titers; GMFR = geometric mean fold rises; GMT = geometric means of neutralization titers; The whiskers indicate 95% CI. N~20/vaccine group by baseline infection status

Bivalent BA.4/BA.5 Vaccine Post-Authorization Studies

Modified Vaccine	Age Group	Vaccine Regimen	Clinical Data
Omicron BA.4/BA.5 bivalent	6 months to 11 years 12 to 55 years >55 years	1111 	\checkmark
Omicron BA.4/BA.5 bivalent Booster	5 to 11 years	////	\checkmark
Omicron BA.4/BA.5 bivalent Primary series	6 months to 5 years	111 1	Ongoing
Omicron BA.4/BA.5 bivalent Booster	6 months to 5 years	////	\checkmark

Clinical Study to Evaluate Bivalent Omicron BA.4/5-modified Vaccine in Vaccine-Experienced Participants 6M to <5 years

Immunogenicity and Safety of 4th Dose of Bivalent BA.4/5 (3 µg) (n = ~300)

Safety and immunogenicity was assessed in a subset of 60 participants. Median interval from Dose 3 to 4th Dose Booster was ~6.5 months.

Note: Subset includes the first 24 and 36 participants enrolled in \geq 6 months to <2 years age group and \geq 2 years to <5 years age group, respectively Additional evaluations in 6M to <5 years:

1. 3^{rd} and 4^{th} doses Bivalent BA.4/5 (3 µg) vaccine (n = ~200)

2. 4th dose of Bivalent BA.4/5 for safety (n=~ 3600)

Bivalent Omicron BA.4/5 Booster Elicits Improved Omicron BA.4/5 Neutralizing Response Compared to 3-Dose Original Vaccine Primary Series 6M to <5 years

Evaluable Participants With and Without Evidence of Infection

Comparisons were matched by age, baseline status and interval

Note: Subset includes the first 24 and 36 participants enrolled in \geq 6 months to <2 years age group and \geq 2 years to <5 years age group respectively GMT=Geometric mean titer; NT50=50% neutralizing titer

Bivalent Omicron BA.4/5 Elicits Improved Omicron BA.4/5 Neutralizing Response Compared to Original Vaccine

Evaluable Participants With and Without Evidence of Infection

Note: Subset includes the first 24 and 36 participants enrolled in \geq 6 months to <2 years age group and \geq 2 years to <5 years age group respectively Bivalent BA.4/5: Pre = Pre-dose 4; Post = 1-month post dose 4; BNT162b2 Pre = Pre-dose 3; Post = 1-month post dose 3 GMT=Geometric mean titer; NT50=50% neutralizing titer

Bivalent Variant-Modified Vaccines Demonstrate Comparable Safety Profile and Improved Effectiveness Compared to Original Vaccine

Safety profile for bivalent vaccines (BA.1 and BA.4/5) consistent with original vaccine
The benefit-risk profile for the original and the bivalent vaccine in authorized populations continues to be favorable

Effectiveness

- Bivalent BA.4/5 enhances protective immunity against circulating Omicron sublineages
- Benefits both SARS-CoV-2 naïve and those with prior infection

Factors Impacting Future Vaccine Updates

Effectiveness & Disease Severity

- 1. Real world effectiveness
- 2. Clinical phenotype

Evidence Collection

- 1. Immunology
 - Antigenic distance
 - Immune escape
 - Immune imprinting
- 2. Epidemiology
 - Populations
 - Localization
 - Transmissibility
- 3. Valency

Readiness to Support Future COVID-19 Vaccine Updates

Adapt the flu model and pathway to enable:

- Later Strain Selection
- Shortened Review (~30-day approval post final submission)

Pfizer/BioNTech can support for off-cycle strain selection if needed

Note: Southern Hemisphere Influenza strain selection happens September/October timeframe.

Conclusions

- Extensive clinical experience for variant-modified vaccines demonstrating safety across age groups
- Demonstrated effectiveness of bivalent vaccine against COVID-19 due to Omicron sublineages – better-matched vaccines offer improved protection

- An established model for vaccine strain selection and approval is critical to enable access to optimally matched vaccines
 - Updates driven by variant epidemiology and vaccine effectiveness
 - Adapt new model based on existing flu model

Pfizer/BioNTech COVID-19 Vaccines

Vaccines and Related Biological Products Advisory Committee

January 26, 2023

