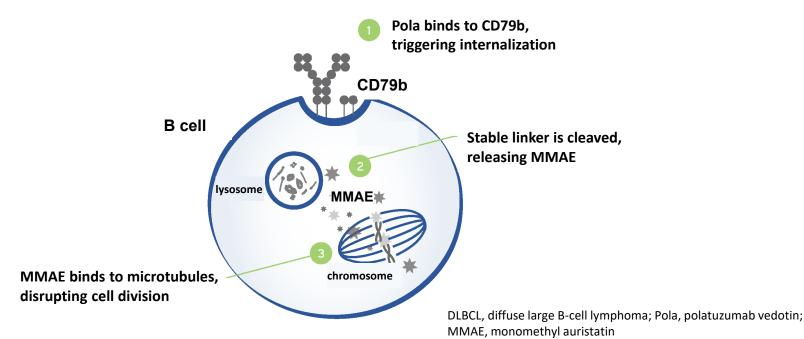


Polatuzumab Vedotin-piiq for First-Line Treatment of Diffuse Large B-cell Lymphoma


FDA Introductory Comments
Oncologic Drugs Advisory Committee Meeting
March 9, 2023

Yvette Kasamon, MD
Clinical Team Leader
Division of Hematologic Malignancies II
Office of Oncologic Diseases

Polatuzumab vedotin-piiq

 Accelerated approval 6/2019: in combination with bendamustine and a rituximab product for adult patients with relapsed or refractory DLBCL, not otherwise specified, after at least two prior therapies

Source: Modification of Applicant's figure

Post-marketing requirement

 Study GO39942 (POLARIX): randomized, double-blind, placebo-controlled trial of pola+R-CHP vs R-CHOP in untreated DLBCL

Evidentiary criteria for approval

Safety

 Sufficient information to determine that the drug is safe for use under the conditions prescribed, recommended, or suggested in proposed labeling

Evidentiary criteria for approval

Safety

 Sufficient information to determine that the drug is safe for use under the conditions prescribed, recommended, or suggested in proposed labeling

Substantial evidence of effectiveness

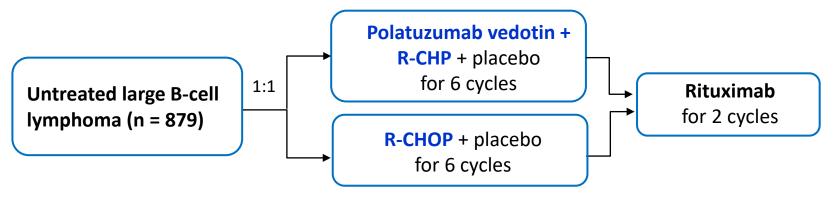
- Based on adequate and well-controlled investigations
- The drug will have the effect it purports or is represented to have under the conditions of use represented in proposed labeling
- For a single randomized trial to support an application, results must be sufficiently robust and compelling

Treatment landscape: newly diagnosed DLBCL

- Heterogeneous category
- R-CHOP is the usual standard
- Rituximab in first-line DLBCL: 3 RCTs with OS advantage

	Study 1 (n=632)		Study 2 (n=399)		Study 3 (n=823)	
	R-CHOP	СНОР	R-CHOP	CHOP	R-chemo	Chemo
HR for OS	0.	72	0.6	9	0.4	40
OS at 2 years*	74%	63%	69%	58%	95%	86%

^{*}Kaplan-Meier estimate

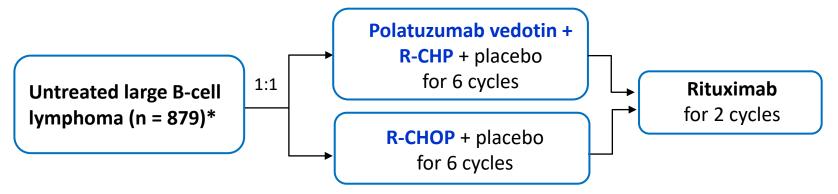

Source: USPI

POLARIX

Applicant's proposed indication: Polatuzumab vedotin in combination with R-CHP is indicated for the treatment of adult patients with previously untreated DLBCL

Regimen: Substitution of vincristine with polatuzumab vedotin in R-CHOP

Primary endpoint: PFS


Key secondary: modified EFS, CR rate, OS

POLARIX

Applicant's proposed indication: Polatuzumab vedotin in combination with R-CHP is indicated for the treatment of adult patients with previously untreated DLBCL*

Regimen: Substitution of vincristine with polatuzumab vedotin in R-CHOP

Primary endpoint: PFS

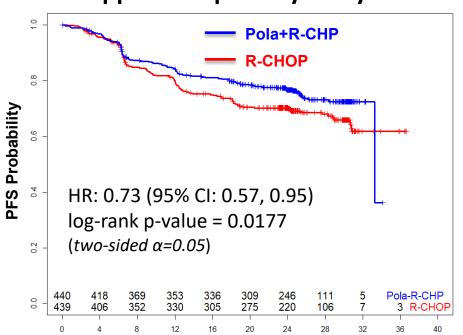
Key secondary: modified EFS, CR rate, OS

^{*} Includes DLBCL NOS (84%), HGBL (11%), and other large B-cell lymphomas (5%)

Main topics

- 1. Modest PFS benefit of pola+R-CHP
- 2. OS results
- 3. Other efficacy endpoints
- 4. Heterogeneity of study population

Main topics


1. Modest PFS benefit of pola+R-CHP

- 2. OS results
- 3. Other efficacy endpoints
- 4. Heterogeneity of study population

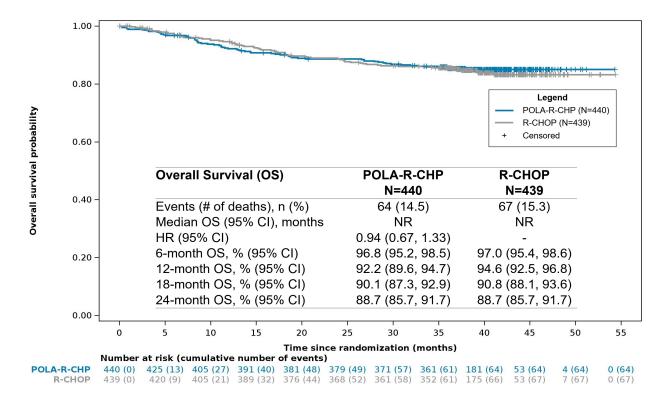
Modest PFS benefit of pola+R-CHP

Applicant's primary analysis

	Pola+R-CHP (N=440)	R-CHOP (N=439)	Difference
1 year	83.9%	79.8%	4.1%
2 years	76.7%	70.2%	6.5%

Uncertain contribution of pola to the overall regimen

Main topics


1. Modest PFS benefit of pola+R-CHP

2. OS results

- 3. Other efficacy endpoints
- 4. Heterogeneity of study population

POLARIX: no improvement in OS

NR, not reached Source: FDA analysis

Overall survival

- Key metric of both safety and efficacy
- Trial need not be powered for OS to provide important information
- Critical to the benefit-risk determination

Main topics

- 1. Modest PFS benefit of pola+R-CHP
- 2. OS results
- 3. Other efficacy endpoints
- 4. Heterogeneity of study population

No improvement in response rates

Response per BICR	Pola+R-CHP (N=440)	R-CHOP (N=439)	
Overall response rate	85.5%	83.8%	
(95% CI)	(81.8, 88.6)	(80.0, 87.2)	
CR rate	78.0%	74.0%	
(95% CI)	(73.8, 81.7)	(69.7, 78.1)	
Difference (95% CI)	3.9% (-1.9, 9.7)		
p-value (stratified)	0.1557*		

^{*} alpha allocation = 0.01

Other secondary endpoints: modest differences

Duration of response

	Pola+R-CHP (N=422)	R-CHOP (N=413)
2-year DOR rate (95% CI)	75.7% (71.0, 80.3)	71.7% (67.1, 76.2)
Difference (95% CI)	4.0% (-2.5, 10.5)	

Modified EFS

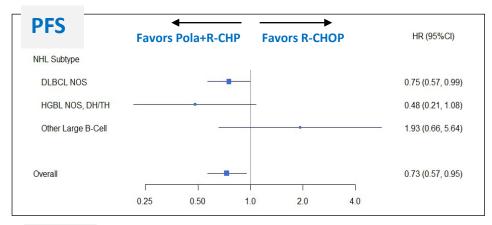
HR 0.75 (95% CI: 0.58, 0.96); p = 0.0244*

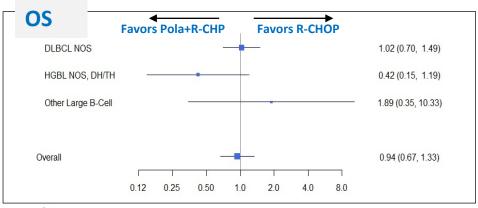
2-year difference: 6.2%

Disease-free survival

	Pola+R-CHP (N=381)	R-CHOP (N=363)
2-year DFS rate (95% CI)	81.8% (77.4, 86.2)	77.4% (72.7, 82.0)
Difference (95% CI)	4.4% (-1.9, 10.8)	

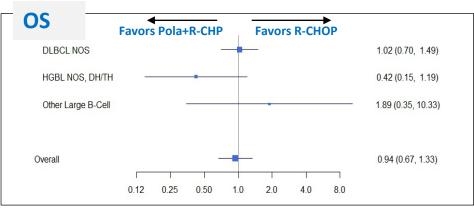
^{*} alpha allocation = 0.05


Main topics



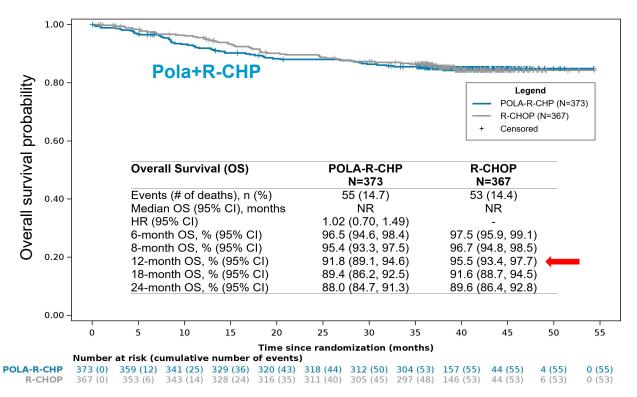
- 1. Modest PFS benefit of pola+R-CHP
- 2. OS results
- 3. Other efficacy endpoints
- 4. Heterogeneity of study population

Heterogenous population and outcomes


NHL, non-Hodgkin lymphoma; DH/TH, double-hit/triple-hit

www.fda.gov Source: FDA review

Heterogenous population and outcomes



	Pola+R-CHP	R-CHOP			
DLBCL NOS (n=740)	DLBCL NOS (n=740)				
CR rate	76.7%	74.9%			
Difference	1.7%				
HGBL (n=93)					
CR rate	88.4%	64.0%			
Difference	24.4%				
Other large B-cell lymphomas (n=46)					
CR rate	79.2%	81.8%			
Difference	-2.7	7%			

NHL, non-Hodgkin lymphoma; DH/TH, double-hit/triple-hit Source: FDA review

Heterogenous outcomes: Overall survival in DLBCL NOS

NR, not reached Source: FDA review

Selected safety findings

Outcome	Pola+R-CHP (N=435) %	R-CHOP (N=438) %
SAEs	34	31
Grade ≥ 3 AE	61	60
Fatal AEs	2.8ª	2.3

^a 3.0% counting fatal infection after PD Source: FDA analysis

Selected AEs	Pola+R-CHP (N=435) %		R-CHOP (N=438) %	
	All	Grade 3-4	All	Grade 3-4
Peripheral neuropathy	53 ^a	1.6	54ª	1.1
Neutropenia ^b	60	39	60	42
Febrile neutropenia	14	14	8	8
Infection	50	14	43	11

^a Resolution: **58%** (pola+R-CHP), **67%** (R-CHOP)

Source: Applicant's analysis

- Generally similar safety profiles and dose intensity
- ≥ 5% higher in pola+R-CHP arm:
 - Febrile neutropenia, infection, nausea, diarrhea
- Myelosuppression likely underestimated

^b Prophylactic filgrastim was required.

Regulatory perspectives

- Modest PFS benefit
- Lack of improvement in OS
- Other secondary endpoints have limitations
- Heterogeneous population and treatment effect
 - May impact generalizability
 - Uncertain OS findings in largest subgroup

Regulatory perspectives

- Modest PFS benefit
- Lack of improvement in OS
- Other secondary endpoints have limitations
- Heterogeneous population and treatment effect
 - May impact generalizability
 - Uncertain OS findings in largest subgroup
- Uncertain benefit-risk of pola+R-CHP in patients with previously untreated LBCL

Discussion topics

 Discuss the benefit-risk profile of pola+R-CHP for the proposed patient population with LBCL, including patients with DLBCL NOS, considering the results of the POLARIX trial.

 Based on the results of the POLARIX trial, specifically the OS results, discuss whether additional follow-up data from POLARIX should be required to inform the benefit-risk of polatuzumab vedotin in patients with LBCL in the frontline setting.

 Given the results of the POLARIX trial, does polatuzumab vedotin-piiq have a favorable benefit-risk profile in patients with previously untreated LBCL, including DLBCL NOS?

Polatuzumab vedotin-piiq BLA 761121 / Supplement 008

FDA Presentation
Oncologic Drugs Advisory Committee Meeting
March 9, 2023

Maryam S. Yazdy, MD
Division of Hematologic Malignancies II
Office of Oncologic Diseases

FDA Review Team

<u>Division of Hematologic Malignancies II</u>

Nicole Gormley, MD Yvette Kasamon, MD

Nicholas Richardson, DO, MPH

Maryam S. Yazdy, MD Bindu Kanapuru, MD

Laura Wall, MS, BSN

Theresa Carioti, MPH

Division of Biometrics IX

Wenjuan Gu, PhD Lisa Rodriguez, PhD Yuan Li Shen, PhD

Susan Jin, MS

Office of Oncologic Diseases

Richard Pazdur, MD Marc R. Theoret, MD Vishal Bhatnagar, MD

Division of Cancer Pharmacology I

Division of Pharmacometrics

Yue Xiang, PharmD

Robyn Konicki, PharmD

Jiang Liu, PhD

Ruby Leong, PharmD

Olanrewaju Okusanya, PharmD, MS

Brian Booth, PhD

Outline

- Main topics
 - Modest PFS benefit of pola+R-CHP
 - OS results
 - Other efficacy endpoints
 - Heterogeneity of study population

Other topics: safety, PROs

Applicant's Proposed Indication

Polatuzumab vedotin in combination with R-CHP is indicated for the treatment of adult patients with previously untreated DLBCL*

- Proposed dosage: 1.8 mg/kg IV every 21 days for 6 cycles
- Proposed pathway: Regular approval

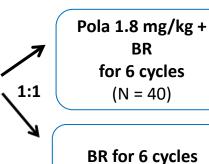
*Includes DLBCL NOS, HGBL (NOS, or with *MYC* and *BCL2* and/or *BCL6* rearrangements), and other large B-cell lymphomas (T-cell/histiocyte-rich LBCL, EBV+ DLBCL, ALK+ LBCL, and HHV8+ DLBCL)

DLBCL, diffuse large B-cell lymphoma; NOS, not otherwise specified; HGBL, high-grade B-cell lymphoma; LBCL, large B-cell lymphoma; R-CHP, rituximab, cyclophosphamide, doxorubicin, and prednisone; EBV, Epstein-Barr virus; ALK, anaplastic lymphoma kinase; HHV8, human herpesvirus 8

Polatuzumab Vedotin-piiq: Accelerated Approval in June 2019

Indication: In combination with bendamustine and a rituximab product for the treatment of adult patients with R/R DLBCL, NOS, after at least two prior therapies

Recommended dosage: 1.8 mg/kg IV every 21 days for 6 cycles


www.fda.gov R/R, relapsed or refractory

Polatuzumab Vedotin: Accelerated Approval Pivotal study GO29365

de novo DLBCL,
 R/R after ≥ 1
 prior therapy

 Ineligible for HSCT

(N = 40)

Efficacy per IRC	Pola + BR (N = 40)	BR (N = 40)
Response at End of Therapy		
ORR (95% CI)	45% (29, 62)	18% (7, 33)
CR	40% (25, 57)	18% (7, 33)
Best Overall Response		
ORR (95% CI)	58% (41, 73)	25% (13, 41)
CR	50% (34, 66)	23% (11, 38)
Duration of Response	(from n of 25)	(from n of 10)
≥ 6 months	64%	30%
≥ 12 months	48%	20%

Primary endpoint: CR rate per IRC at end of therapy

BR, bendamustine, rituximab; PN, peripheral neuropathy; HSCT, hematopoietic stem cell transplantation; ORR, objective response rate; CR, complete response; IRC, independent review committee

Source: FDA analysis

Polatuzumab Vedotin in DLBCL: Post-marketing Requirements

 Study GO39942 (POLARIX): randomized, double-blind, placebo-controlled trial of pola+R-CHP vs R-CHOP in previously untreated DLBCL; primary endpoint, PFS

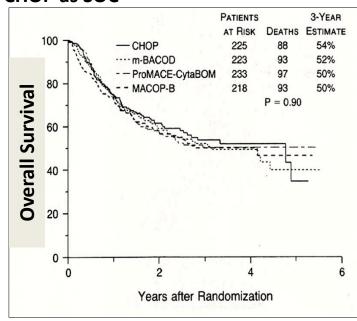
- Study MO40598 (POLARGO): randomized trial of pola+R-GemOx vs R-GemOx in R/R DLBCL; primary endpoint, overall survival
 - Preliminary results expected late 2024

R-CHOP, rituximab, cyclophosphamide, doxorubicin, vincristine and prednisone; pola+R-GemOx, polatuzumab vedotin, rituximab, gemcitabine, and oxaliplatin; PMR, post-marketing requirement; AA, accelerated approval

^{*}Verification of clinical benefit through either PMR could be adequate to fulfill the AA requirement.

Establishing CHOP as SOC for DLBCL

HOP vs CHOP

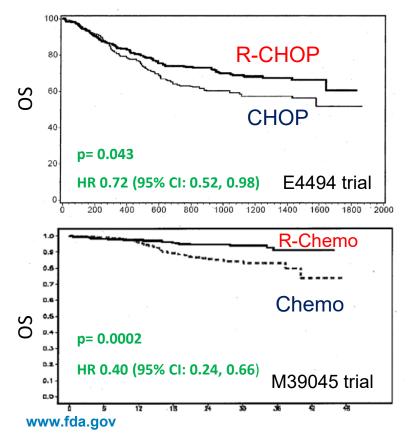

HYDROXYLDAUNOMYCIN (ADRIAMYCIN) COMBINATION CHEMOTHERAPY IN MALIGNANT LYMPHOMA

Eugene M. McKelvey, MD, Jeffrey A. Gottlieb, MD, Henry E. Wilson, MD, Arthur Haut, MD, Robert W. Talley, MD, Ronald Stephens, MD, Montague Lane, MD, Jess F. Gamble, MD, Stephen E. Jones, MD, Petre N. Grozea, MD, Jordon Gutterman, MD, Charles Coltman, Jr., MD, and Thomas E. Moon, PhD

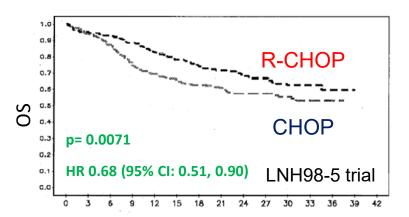
1 st generation	2 nd generation	3 rd generation
MOPP/C-MOPP	COP/BLAM	m-BACOD
ВАСОР	M-BACOD	ProMACE d1/MOPP d8
СНОР	ProMACE/MOPP	ProMACE-CytaBOM
COMLA		MACOP-B

For information on the regimens, refer to https://www.cancer.gov/about cancer/treatment/drugs

CHOP as SOC



Contribution of effect of vincristine in CHOP was never studied

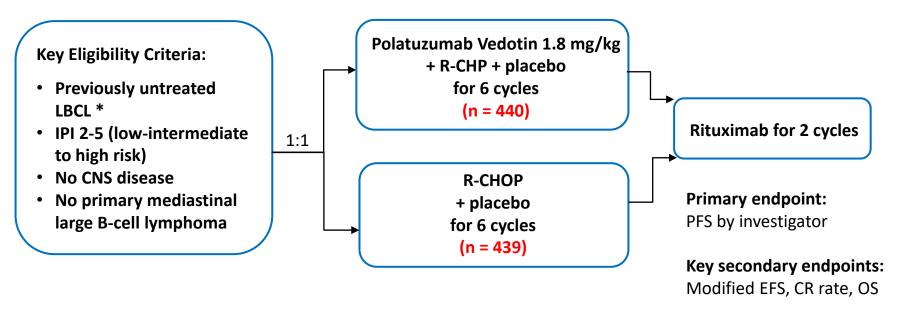

SOC, standard of care; HOP, doxorubicin, vincristine, and prednisone References: McKelvey et al. Cancer 1976;38(4):1484; Fisher et al , N Engl J Med 1993;328(14):1002; Major et al. Clin Adv Hematol Oncol 2021;19(11):698

Approval of Rituximab Based on 3 RCTs Demonstrating Overall Survival Benefit

R-CHOP has been standard of care for previously untreated DLBCL since 2006

RCT, randomized controlled trial; HR, hazard ratio; CI, confidence interval; R-chemo, rituximab + chemotherapy

RCTs with Unsuccessful Attempts to Improve R-CHOP


Trial	Experimental arm	N	PFS, experimental vs standard arm	Outcome
PRELUDE ¹	R-CHOP + enzastaurin maintenance	758	70% vs 71% (4 y)	Negative
PILLAR-2 ²	R-CHOP + everolimus maintenance	742	77% vs 78% (3 y)	Negative
CALGB 50303 ³	DA-EPOCH-R	524	79% vs 76% (2 y)	Negative
GOYA ⁴	Obinutuzumab-CHOP	1418	70% vs 67% (3 y)	Negative
REMoDL-B ⁵	R-CHOP + bortezomib	1128	75% vs 71% (2.5 y)	Negative
PHOENIX ⁶	R-CHOP + ibrutinib	838	71% vs 68% (3 y)	Negative
ROBUST ⁷	R-CHOP + lenalidomide	570	67% vs 64% (2 y)	Negative

DA-EPOCH-R; dose-adjusted etoposide, prednisone, vincristine, cyclophosphamide, doxorubicin, and rituximab; y, year

References: ¹Crump et al. J Clin Oncol 2016;34:2484. ²Witzig et al. Ann Oncol 2018;29(3):707. ³Bartlett et al. J Clin Oncol 2019; 37(21):1790. ⁴Vitolo et al. J Clin Oncol 2017;35(31):3529. ⁵Davies et al. Lancet Oncol 2019;20:649. ⁶Younes et al. J Clin Oncol 2019;37(15):1285, ⁷Nowakowski et al. J Clin Oncol 2021;39:1317.

POLARIX: Double-Blind Substitution Trial

^{*}DLBCL NOS, HGBL with *MYC* and *BCL2* and/or *BCL6* rearrangements, HGBL NOS, and other LGBLs (T-cell/histiocyte-rich LBCL, EBV+ DLBCL, ALK+ LBCL, and HHV8+ DLBCL)

IPI, International Prognostic Index; CNS, central nervous system; EFS, event-free survival; LBCL, large B-cell lymphoma

Substitution of Vincristine with Polatuzumab Vedotin

Pola+R-CHP	R-CHOP
Rituximab 375 mg/m ²	Rituximab 375 mg/m ²
Cyclophosphamide 750 mg/m ²	Cyclophosphamide 750 mg/m ²
Doxorubicin 50 mg/m ²	Doxorubicin 50 mg/m²
Placebo	Vincristine 1.4 mg/m ²
Polatuzumab vedotin 1.8 mg/kg	Placebo
Prednisone 100 mg daily D1-5	Prednisone 100 mg daily D1-5

www.fda.gov Source: FDA review

Trial Design Considerations

- FDA approves specific drugs and biologics
 - Based on understanding of the treatment effect of the product
- Generally, efficacy can be demonstrated using a superiority or noninferiority (NI) design
- POLARIX was designed as a superiority trial
 - NI design not possible
 - Lack of understanding of vincristine activity
 - Use of PFS as an endpoint

Trial Design Considerations

 With a superiority active control trial, the aim is to show superiority relative to the control

Trial Design Considerations

- With a superiority active control trial, the aim is to show superiority relative to the control
- With a superiority <u>substitution</u> trial, the aim is to show superiority relative to the control, in the setting of other agents

- R-CHP+pola versus R-CHP+vincristine
 - Challenging to interpret contribution of effect of pola because the activity of vincristine in the CHOP regimen is unknown

POLARIX Eligibility Criteria: Clarification

Previously untreated patients with CD20+ DLBCL, including the following diagnoses per 2016 WHO classification criteria:

- DLBCL, NOS including germinal center B-cell (GCB) type or activated B-cell (ABC) type
- HGBL, NOS
- HGBL with MYC and BCL2 and/or BCL6 rearrangements
- T-cell/histiocyte-rich large B-cell lymphoma
- EBV+ DLBCL, NOS
- ALK+ large B-cell lymphoma
- HHV8+ DLBCL, NOS

WHO, World Health Organization; DH/TH, double-hit / triple-hit Source: FDA review

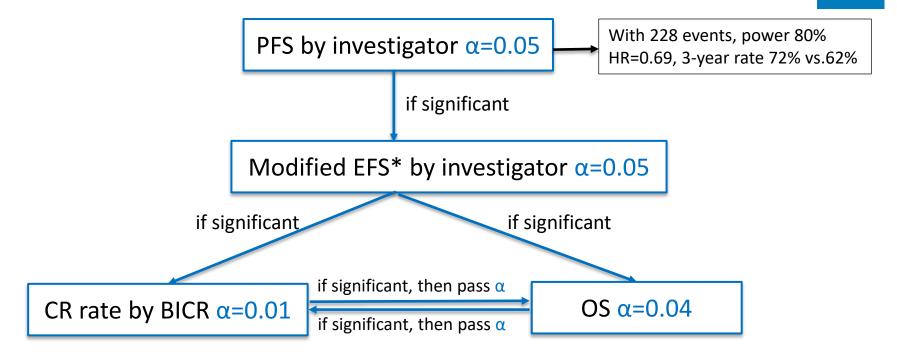
Lymphoma subgroups	Pola + R-CHP (N=440), %	R-CHOP (N=439), %
DLBCL NOS	85	84
HGBL (NOS or DH/TH)	10	11
Other LBCL*	5	5

^{*} T-cell / histiocyte-rich LBCL or EBV+ DLBCL Source: FDA review

Treatment Guidelines: Newly Diagnosed HGBL with MYC and BCL2 and/or BCL6 Translocations		
Clinical trial is recommended		
R-CHOP may be associated with a sub-optimal outcome.		
Could be considered for low-risk IPI patients. Dose adjusted EDOCH B.		
Dose-adjusted EPOCH-R		
R-HyperCVAD alternating with high-dose methotrexate and		
cytarabine		
R-CODOX-M alternating with R-IVAC		
Additional considerations		

Consolidation with autologous SCT can be considered

Source: Modified from NCCN Guidelines, version 2.2023


Central nervous system prophylaxis

- Treatment for HGBL may not be generalizable or applicable to a U.S. population
- More intensive chemotherapy backbones favored for HGBL

R-HyperCVAD: rituximab, cyclophosphamide, vincristine, doxorubicin, and dexamethasone; R-CODOX-M: rituximab, cyclophosphamide, vincristine, doxorubicin, and methotrexate; R-IVAC: rituximab, ifosfamide, etoposide, and cytarabine; SCT, stem cell transplantation; NCCN, National Comprehensive Cancer Network

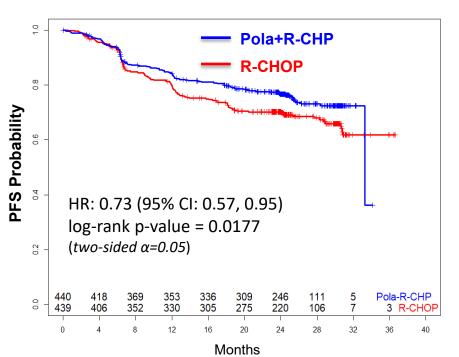
Testing Hierarchy and Alpha Allocation (2-sided)

^{*} Modified EFS (EFS efficacy) defined from randomization to the earliest occurrence of disease progression, relapse, death, initiation of new anti-lymphoma therapy (NALT) for efficacy reasons, or positive biopsy for residual disease. BICR, blinded independent committee review

Applicant's Primary PFS Analysis

- **PFS definition:** Time from date of randomization until the first occurrence of disease progression, relapse, or death from any cause.
- New anti-lymphoma treatment (NALT): includes all non-protocol new treatments for lymphoma
- Applicant's PFS analysis: Not censored for NALT or ≥2 missed assessments

Main topics


1. Modest PFS benefit of pola+R-CHP

- 2. OS results
- 3. Other efficacy endpoints
- 4. Heterogeneity of study population

Modest PFS Benefit of Pola+R-CHP

Applicant's Primary Analysis

	Pola+R-CHP	R-CHOP	Difference
	(N=440)	(N=439)	(95% CI)
1 year	83.9%	79.8%	4.1%
	(80.1, 87.1)	(75.6, 83.3)	(-1.0, 9.3)
2 years	76.7% (72.3, 80.5)	70.2% (65.5, 74.4)	6.5% (0.5, 12.5)

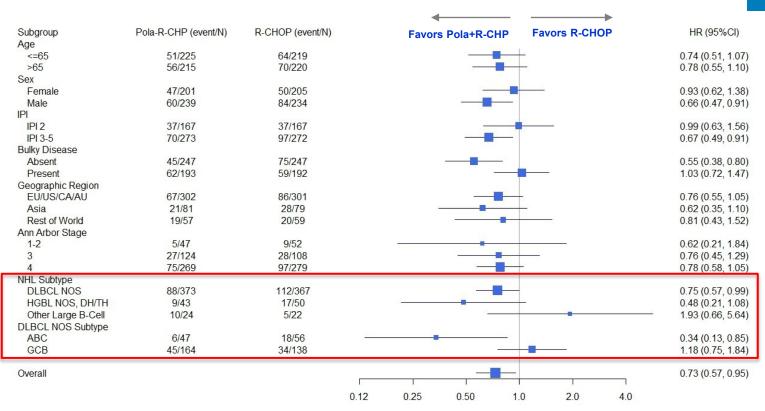
Contribution of effect of polatuzumab vedotin?

PFS Sensitivity Analyses: Modest Treatment Effect

PFS Analyses by Censoring Rules	Difference in 2-year PFS	HR (95% CI)	p-value		
Original Data					
NALT: Not Censor	6.5%	0.73 (0.57, 0.95)	0.0177		
≥2 Missed Assessments: Not Censor	0.5%	0.75 (0.57, 0.95)	0.0177		
Sensitivity Analyses on Original Data (Sensitivity Analyses on Original Data (nominal p-values)				
NALT: Censor	4.9%	0.77 (0.50, 1.01)	0.0567		
≥2 Missed Assessments: Not Censor	4.9%	0.77 (0.59, 1.01)	0.0567		
NALT: Censor	4.9%	0.77 (0.50, 1.01)	0.0541		
≥2 Missed Assessments: Censor	4.970	0.77 (0.59, 1.01)	0.0341		

PFS Sensitivity Analyses: Modest Treatment Effect

23


PFS Analyses by Censoring Rules	Difference in 2-year PFS	HR (95% CI)	Nominal p-value
Sensitivity analyses after recategorize	ing NALT		
NALT: Censor ≥2 Missed Assessment: Not Censor	6.1%	0.74 (0.57, 0.96)	0.0251
NALT: Censor ≥2 Missed Assessment: Censor	5.9%	0.75 (0.57, 0.97)	0.0308

IRC assessment of PFS was not available

www.fda.gov Source: FDA review

PFS Subgroup Results

Source: FDA analysis

Main topics

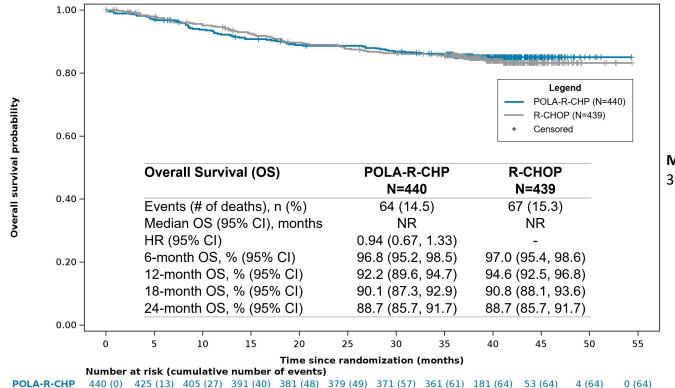
1. Modest PFS benefit of pola+R-CHP

2. OS results

- 3. Other efficacy endpoints
- 4. Heterogeneity of study population

Overall Survival

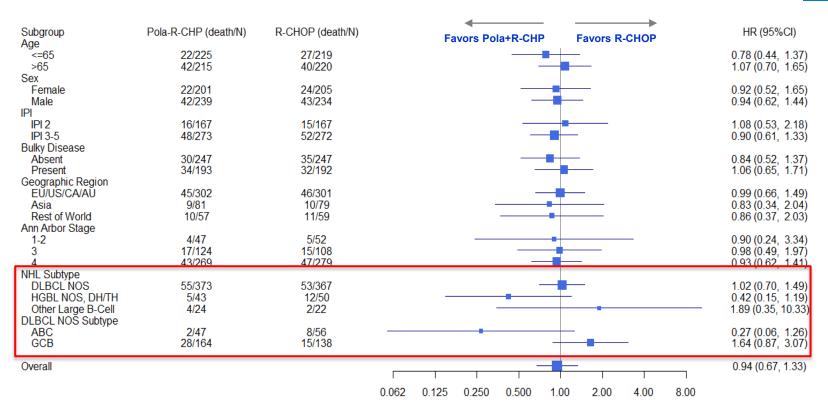
Clinically meaningful measure of safety and efficacy


 Inadequate statistical power could limit the ability to detect statistically significant OS improvements

FDA relies on an OS analysis to inform benefit-risk

 OS plays an important role in the benefit-risk determination in the context of totality of data

Lack of Improvement in OS: Final Analysis


Median Follow-up: 39.7 months

420 (9) 405 (21) 389 (32) 376 (44) 368 (52) 361 (58) 352 (61) 175 (66) 53 (67) 7 (67) 0 (67)

R-CHOP

OS Subgroup Results

Main topics

- 1. Modest PFS benefit of pola+R-CHP
- 2. OS results
- 3. Other efficacy endpoints
- 4. Heterogeneity of study population

Lack of Improvement in Response Rates

Response per IRC ITT population	Pola+R-CHP (N=440)	R-CHOP (N=439)
ORR (95% CI)	85.5% (81.8, 88.6)	83.8% (80.0, 87.2)
CR rate	78.0%	74.0%
(95% CI)	(73.8, 81.7)	(69.7, 78.1)
Difference (95% CI)	3.9% (-1.9, 9.7)	
p-value (stratified)	0.1557*	

^{*} alpha allocation = 0.01

Efficacy claims based on numerically higher CR rate are unsupported

www.fda.gov Source: FDA review 30

Modified EFS Results

31

	Pola+R-CHP (N=440)	R-CHOP (N=439)		
HR (95% CI)	0.75 (0.5	8, 0.96)		
Stratified p-value	0.0244			
1 year (95% CI)	82.5% (78.9, 86.1)	78.7% (74.8, 82.6)		
Differe	Difference (95% CI): 3.8% (-1.5, 9.2)			
2 years (95% CI)	75.6% (71.5, 79.7)	69.4% (65.0, 73.8)		
Difference (95% CI): 6.2% (0.1, 12.2)				

Limitation

Similar to primary PFS result, the difference is modest (6.2% at 2 years)

www.fda.gov Source: FDA review

Other Secondary Endpoints

Duration of response

	Pola + R-CHP (N=422)	R-CHOP (N=413)
Median	30.5 months	NE
(95% CI)	(30.5, NE)	(NE, NE)
2-year DOR rate	75.7%	71.7%
(95% CI)	(71.0, 80.3)	(67.1, 76.2)
Difference	4.0%	
(95% CI)	(-2.5, 10.5)	

Disease-free survival

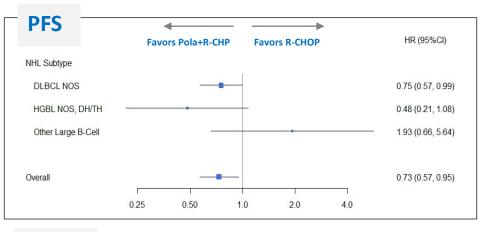
	Pola + R-CHP (N=381)	R-CHOP (N=363)
Median	30.5 months	NE
(95% CI)	(30.5, NE)	(NE, NE)
2-year DFS rate	81.8%	77.4%
(95% CI)	(77.4, 86.2)	(72.7, 82.0)
Difference	4.4%	
(95% CI)	(-1.9, 10.8)	

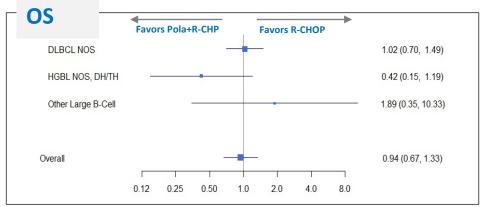
Limitations

- Results are modest.
- Exploratory; based on non-randomized subsets of patients and not controlled for Type I error rate.
- Applicant's analyses do not censor NALT, which makes it difficult to separate the effect of the investigational drug from the effect of NALT.

DOR, duration of response; DFS, disease-free survival; NE, not estimable Source: FDA review

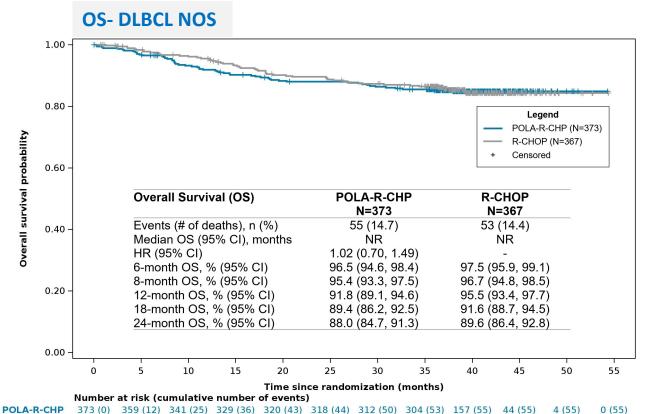
Main topics




- 1. Modest PFS benefit of pola+R-CHP
- 2. OS results
- 3. Other efficacy endpoints
- 4. Heterogeneity of study population

Heterogenous Patient Population and Outcomes

34



www.fda.gov Source: FDA review

353 (6) 343 (14) 328 (24) 316 (35) 311 (40) 305 (45) 297 (48) 146 (53) 44 (53)

4 (55) 0 (55) Source: FDA review 6 (53) 0 (53)

Heterogenous Patient Population and Outcomes

	Pola+R-CHP	R-CHOP	
DLBCL NOS	n= 373	n= 367	
PFS HR (95% CI)	0.75 (0.5	7, 0.99)	
OS HR (95% CI)	1.02 (0.70	0, 1.49)	
CR rate (95% CI)	76.7%	74.9%	
Difference (95% CI)	1.7% (-4.	7, 8.2)	
HGBL NOS, DH/TH	n= 43	n= 50	
PFS HR (95% CI)	0.48 (0.2)	0.48 (0.21, 1.08)	
OS HR (95% CI)	0.42 (0.1	0.42 (0.15, 1.19)	
CR rate (95% CI)	88.4%	64.0%	
Difference (95% CI)	24.4% (5.	8, 42.9)	
Other LBCL	n= 24	n= 22	
PFS HR (95% CI)	1.93 (0.66, 5.64)		
OS HR (95% CI)	1.89 (0.35, 10.33)		
CR rate (95% CI)	79.2%	81.8%	
Difference (95% CI)	- <mark>2.7%</mark> (-28.2, 22.9)		

Source: FDA review

Main Topics: Summary

- Pola+R-CHP
 - Demonstrated modest PFS benefit over R-CHOP
 - Did not improve CR rate
 - Did not improve OS
- The results of other secondary endpoints are modest.
- Heterogeneous treatment effect

Other Topics

- 1. Safety considerations
- 2. Inadequate assessment of PROs

Selected Safety Findings

Outcome	Pola+R-CHP (N=435) %	R-CHOP (N=438) %
SAEs	34	31
Grade ≥3 AE	61	60
Fatal AEs	2.8*	2.3

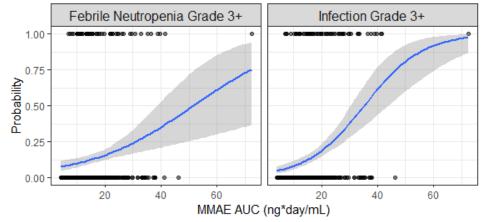
^{*3.0%} if fatal infection after PD is included Source: FDA analysis

Selected AEs	Pola+R-CHP (n=435) %		R-CHOP (n=438) %	
	All	Grade 3-4	All	Grade 3-4
Neutropenia ^a	60	39	60	42
Peripheral neuropathy	53 ^b	1.6	54 ^b	1.1
Infection	50	14	43	11
Febrile neutropenia	14	14	8	8

^a Prophylactic mandatory filgrastim: 90% (pola+R-CHP), 93% (R-CHOP)

Source: Applicant's analysis

- Incidence of febrile neutropenia, infections, nausea and diarrhea was at least 5% higher in the pola+R-CHP arm
- Underestimated incidence of neutropenia: labs required only at beginning of each cycle
- Uncertainty with impact on myelosuppression


^b Resolution: 58% (pola+R-CHP), 67% (R-CHOP)

Unknown if Lower Doses Could Reduce Toxicity Without Impacting Efficacy

- Uncertain efficacy and safety for doses lower than 1.8 mg/kg Q3W with R-CHP
 - Limited dose-finding in previously untreated DLBCL
- No clear association between polatuzumab vedotin exposure and OS or CR rate in subjects with untreated DLBCL
- Higher rates of Grade ≥3 febrile neutropenia and Grade ≥3 infection are associated with higher polatuzumab vedotin exposure

Q3W, every 3 weeks; AUC, area under the concentration-versus-time curve; MMAE, monomethyl auristatin E Data shown for Pola+R-CHP arm (n=429) of POLARIX. Source: FDA analysis

Other Topics

- 1. Safety considerations
- 2. Inadequate assessment of PROs

Patient-Reported Outcomes

- 1- PRO assessment strategies (instruments, assessment frequency, endpoints) were inadequate to measure tolerability.
- 2- EORTC-QLQ-C30, FACT-LYM, and FACT/GOG-NTX were administered sparsely and no "overall side effect bother" item (FACT GP5).
- 3- Exploratory endpoints; no anchor-based methods used.
- 4- Slightly higher patient-reported diarrhea, nausea, and decreased appetite in Pola+R-CHP arm during treatment period.
- 5- Although there were no major differences observed between arms, FDA disagrees with the Applicant that there was no detriment observed with pola+R-CHP compared to R-CHOP.

Conclusions

- Pola+R-CHP in patients with previously untreated LBCL
 - Modest PFS benefit
 - 6.5% absolute improvement in PFS at 2 years
 - Lack of improvement in CR rate
 - Lack of an OS benefit
- Heterogeneity of trial population and outcomes impacts generalizability of the findings
 - Variable results in DLBCL NOS with concerning OS results
- Uncertain benefit-risk of pola+R-CHP in patients with previously untreated LBCL, including patients with DLBCL NOS

Discussion Topics

 Discuss the benefit-risk profile of pola+R-CHP for the proposed patient population with LBCL, including patients with DLBCL NOS, considering the results of the POLARIX trial.

 Based on the results of the POLARIX trial, specifically the OS results, discuss whether additional follow-up data from POLARIX should be required to inform the benefit-risk of polatuzumab vedotin in patients with LBCL in the frontline setting.

Voting Question

 Given the results of the POLARIX trial, does polatuzumab vedotin-piiq have a favorable benefit-risk profile in patients with previously untreated LBCL, including DLBCL NOS?

Back-up Slides

PFS Results Sensitive to Small Change in Events

Scenario	Applicant's	Alternate	Events after Censoring			
Scenario	Approach	Approach	(Pola+R-CHP vs. R-CHOP)			
Original Data						
Event after NALT	Event	Censor	7 (1.6%) vs. 16 (3.6%)			
Event after ≥2						
consecutive missed	Event	Censor	4 (0.9%) vs. 1 (0.2%)			
assessments						
New PFS data (different categorization of NALT)						
Event after NALT	Event	Censor	6 (1.4%) vs. 7 (1.6%)			
Event after ≥2						
consecutive missed	Event	Censor	4 (0.9%) vs. 1 (0.2%)			
assessments						

Censoring 23 (2.6%) events caused change of statistical significance