

Comparative Clinical Endpoint in Bioequivalence Studies

Fairouz Makhlouf

Deputy Director Division of Biometrics VIII, Office of Biostatistics CDER | US FDA

WEBINAR: A Deep Dive: FDA Draft Guidance on Statistical Approaches to Establishing Bioequivalence – March 14, 2023

Outline

- Reasons for conducting comparative clinical endpoint bioequivalence (BE) studies
- Role of product specific guidance (PSG)
- Comparative Clinical Endpoint Study:
 - Study Design
 - Endpoints
 - Analysis Populations
- Types of Hypothesis Testing:
 - Equivalence
 - Superiority

Why Clinical Endpoint BE Studies?

- Conducted when more informative than other approaches
 - Dosage form is intended to deliver the drug locally
 - Topical products (cream, gel, ointment)
 - Ophthalmic products
 - The drug substance does not reach the site of action through the systemic circulation
 - Metered-dose inhalers
 - Nasal spray

Product Specific Guidance (PSG)

- FDA publishes PSGs for generic products
 - Ensure consistency across generic applications for the same Reference Listed Drug (RLD)
- The PSG outlines recommendations
 - Study Design
 - Endpoints
 - Study Population
 - Criteria to establish Bioequivalence
- PSGs can be found at: <u>https://www.accessdata.fda.gov/scripts/cder/psg/index.cfm</u>

Comparative Clinical Endpoint BE Study

- Study Design
- Endpoints
- Analysis Populations

Study Design

- Randomized Parallel-arm studies — Test/Reference/Placebo
- Compare Test and Reference products to establish BE
- Compare Test and Reference separately to placebo for assay sensitivity

Analysis Populations

- Modified Intent-to-Treat (MITT)
 - used to assess assay sensitivity
 - randomized subjects, at least one dose of products
- Per Protocol (PP)
 - used to assess Bioequivalence
 - randomized subjects, at least one dose of products, met protocol

Clinical Endpoints

- Continuous
 - Examples:
 - lesion counts (mean percent reduction from baseline)
 - average scales over several assessments
- Binary
 - Examples:
 - cure/no cure
 - success/failure

Types of Statistical Hypothesis Tests

- > Equivalence
- > Superiority

Hypothesis Testing: Equivalence

• To establish BE, the following compound hypothesis is tested

 H_0 : Test is either worse than Reference by θ_1 or Test is better than Reference by θ_2 H_1 : Test is not worse than Reference by θ_1 and Test is not better than Reference by θ_2

- Rejection of the null hypothesis supports the conclusion of equivalence of the two products
- This is the Two-One Sided Test (Schuirmann, 1987)

Hypothesis Testing: Equivalence

• For a continuous endpoint

$$H_0: \frac{\mu_T}{\mu_R} \le \theta_1 \text{ or } \frac{\mu_T}{\mu_R} \ge \theta_2 \text{ vs}$$

$$H_1:\theta_1 < \frac{\mu_T}{\mu_R} < \theta_2$$

 μ_{T} = mean of the primary endpoint for the Test group μ_{R} = mean of the primary endpoint for the Reference group

• H_0 is rejected if the 90% confidence interval for the ratio of the means between T and R products $({}^{\mu_T}/{}_{\mu_R})$ is contained within the interval $[\theta_1, \theta_2]$

Hypothesis Testing: Equivalence

• For a binary endpoint

 $H_0: \pi_T - \pi_R \leq \Delta_1 \text{ or } \pi_T - \pi_R \geq \Delta_2 vs$

 $H_1:\Delta_1 < \pi_T - \pi_R < \Delta_2$

 π_T = the success rate of the primary endpoint for the Test group π_R = the success rate of the primary endpoint for the Reference group

• H_0 is rejected if the 90% confidence interval for the difference of the success rates between T and R products $(\pi_T - \pi_R)$ is contained within the interval $[\Delta_1, \Delta_2]$

Hypothesis Testing: Superiority

- Superiority: To show that Test and Reference are superior to Placebo
- Done to establish assay sensitivity
 - Let Drug A be Test or Reference

 H_0 : Drug A is not better than Placebo H_1 : Drug A is better than Placebo

• Rejection of the null hypothesis supports the conclusion that Drug A (Test or Reference) is superior to Placebo

Hypothesis Testing – Superiority

• For a continuous endpoints we test

$$H_0: \frac{\mu_A}{\mu_{pbo}} = 1 vs$$
$$H_1: \frac{\mu_A}{\mu_{pbo}} \neq 1$$

 μ_{A} = mean of the primary endpoint for the Drug A μ_{pbo} = mean of the primary endpoint for the placebo

• Rejecting the null at 5% level of significance supports the superiority of Drug A over Placebo

Hypothesis Testing – Superiority

• For a binary endpoints we test

$$H_0: \pi_A - \pi_{pbo} = 0 vs$$
$$H_1: \pi_A - \pi_{pbo} \neq 0$$

 π_A = the success rate of the primary endpoint for Drug A π_{po} = the success rate of the primary endpoint for Drug B

• Rejecting the null at 5% level of significance supports the superiority of Drug A over Placebo

Conclusion

- Reason for conducting comparative clinical endpoint bioequivalence (BE) studies
- Role of product specific guidance
- Study Design/Endpoints/Analysis Population
- Types of Hypothesis Testing