

Dose Scale Analysis to Support Bioequivalence Assessment

Statistical Approaches to Establishing Bioequivalence Draft Guidance March 14, 2023

Meng Hu, PhD

Division of Quantitative Methods and Modeling, Office of Research and Standards OGD | CDER | U.S. FDA

Disclaimer

This presentation reflects the views of the speaker and should not be considered to represent advice or guidance on behalf of the U.S. Food and Drug Administration

Outline

- Pharmacodynamic (PD) equivalence studies
- Dose-scale analysis for PD studies
 - What it is and when to use it
 - Recommendations
- Considerations and challenges
 - Model fitting methods
 - Bootstrap implementation

Therapeutic equivalence of generic drugs

PHARMACEUTICAL EQUIVALENCE

• Same active ingredient(s), strength, dosage form, route of administration

BIOEQUIVALENCE (BE)

 No significant difference in the rate and extent of absorption

ED)

PD studies recommended in product-specific guidance (PSG)

- Oral inhalation drug products e.g., albuterol sulfate
- Locally acting gastrointestinal (GI) drug products e.g., orlistat, acarbose
- Topical corticosteroid

BE based on PK or PD endpoints

- No exposure for placebo (or baseline correction)
- 90% CI around exposure ratio can be used for BE

- Nonlinear dose-response: response does not increase proportionally with dose
- Placebo effect can be large
- 90% CI around PD response ratio often should not be used for BE

What is it?

Dose-scale analysis

Allow the assessment of relative bioavailability on dose scale, not original scale of PD response

Suggest equivalence of the amount of drug reaching the site of action

www.fda.gov

Dose-scale analysis: E_{max} model

Fitted curves for T or R using Emax model

$$y = E_0 + \frac{E_{max} * Dose * F^i}{ED_{50} + Dose * F^i}$$
(Ref: $i = 0$; Test: $i = 1$)

Where y = Response, Dose = Administered dose, $E_0 = \text{Baseline response}$ in the absence of the drug, $E_{\text{max}} = \text{Fitted maximum drug effect}$, $ED_{50} = \text{Dose required to produce 50\%}$ the fitted maximum effect, and i = Treatment indicator (0 = Ref, 1 = Test), with the understanding that $F^0 = 1$ and that F^1 is the relative potency used to evaluate bioequivalence.

E_{max} model fitting: available statistical methods

Naïve average data (NAD)

Naïve pooled data (NPD)

Nonlinear mixed effect modeling (NLME)

FDA

- Mean data → one data point per dose for each formulation
- Data from all individuals pooled as if coming from one single individual

$$\mathbf{Y}_{\text{mean}} = E_0 + \frac{E_{max} * Dose * F^i}{ED_{50} + Dose * F^i}$$

www.fda.gov

$$\mathbf{Y} = E_0 + \frac{E_{max} * Dose * F^i}{ED_{50} + Dose * F^i} \qquad \mathbf{Y}_0$$

• All individual data

$$E_{0,i} = E_0 + \eta_i$$

$$Y_{obs,i,j} = E_{0,i} + \frac{E_{max} * Dose * F^i}{ED_{50} + Dose * F^i} + \varepsilon_{i,j}$$
9

NAD

- Actively reduces available observation
- No direct estimate of variability
- Biased if BSV is large
- Potential bias if individuals have different amount of data, or aberrant observation

NPD

- Preferable to NAD approach
- Biased if BSV is large
- Potential bias as data coming from nonstandard designs can be pooled together

BSV = between subject variability

NLME

- Characterize between-subject variability (BSV) and residual unexplained variability (RUV)
- Handle rich or sparse data with missing value
- ✓ Recommended for E_{max} model fitting

Calculating 90% CI for F

	Directly from NLME	Bootstrap procedure
•	Directly from the point estimate of logF and its standard error calculated using NLME modeling	 Generate "sample dose-response dataset" Bootstrap sampling with replacement
		 Estimate F Fitting the E_{max} model to each "sample dose-response dataset"
		 Compute 90% CI for F Efron's bias corrected and accelerated (BCa) method

Calculating of 90% CI for F: bootstrap sample

Various ways to generating "sample dose-response dataset" for crossover study with multiple dose-response observations per subject

 Bootstrap sampling unit should be the *subject* (remaining all the data from T and R), in order to maintain the correlation of observations within subject

Practical Considerations

Fitting E_{max} model

NLME approach is preferred

Incorporates BSV, less sensitive to aberrant observation

NLME has been routinely used in ANDA submission and assessment

Modeling software: NONMEM, SAS, R, etc.

Results are generally consistent with the same model structure and parameter settings

Computing 90% CI of F using bootstrap

- Resample original dose-response observations at subject level
- Minimum of 1000 bootstraps are typically needed
- Recommend following the bootstrap procedure in the PSG
- Prespecify modeling software and computation method for 90% CI

• • • • • • •

 Applicants are encouraged to discuss significant differences or alternative approaches with OGD

- The dose-scale analysis has been used to demonstrate PD equivalence for locally acting drug products with a nonlinear dose-response relationship
- When finalized, the guidance will reflect the Agency's current thinking and recommendations
- Towards reliable dose-scale analysis:

Summary

<u>Study</u>: appropriate planning, pilot study <u>Data</u>: state how missing data will be handled in protocol <u>Model</u>: provide sufficient justification for alternative approaches that are not in the guidance (e.g., using BE trial simulations)

