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1 Introduction 

This document provides a set of test problems that can be used for verifcation of cardiac 
modeling software, i.e., to test that the model has been implemented in software correctly. 
These test problems are a Regulatory Science Tool created by FDA’s Ofce of Science and 
Engineering Laboratories (OSEL) within the Center for Devices and Radiological Health 
(CDRH). 

Cardiac electrophysiological or electro-mechanical simulation software typically solve well-
established equations that govern the propagation of electrical waves through the heart. 
One activity required for demonstrating the credibility of a computational model is code 
verifcation [1]. Code verifcation is the process of determining if a mathematical model, and 
algorithms for solving the model, have been correctly implemented in the software. However, 
code verifcation is challenging with complex models. The tool provides a set of test problems 
with known analytic solutions, which cardiac model developers can solve using their software 
and thereby test if the electrophysiology modeling software has been implemented correctly. 

Test problems are provided for the monodomain, bidomain and bidomain-with-bath equa-
tions. The monodomain and bidomain equations are sets of partial diferential equations 
coupled to ordinary diferential equations that have been used for many decades to model 
electrical activity in the heart. The bidomain-with-bath equations are a related set of equa-
tions which govern electrical felds generated in the heart and surrounding torso. 

Nine test problems are provided in this document, for testing the following computational 
models: monodomain in 1D, 2D and 3D; bidomain in 1D, 2D and 3D; bidomain-with-bath 
in 1D, 2D, and 3D. Values of each of the following is specifed in each test problem: 

• The geometrical domain 

• Tissue conductivities, surface-area-to-volume ratio, capacitance 

• Sub-model of cellular dynamics 

• Initial conditions 

• Boundary conditions 

• Stimulus current (zero) 

Also provided for each test problem is: 

• Exact analytic solution of test problem. 

The user (cardiac model developer) should specify each of the above inputs in their software, 
solve the model, and compare their solution with the exact solution provided. They can then 
confrm the correct implementation of their software by verifying that the error converges to 
zero at the expected convergence rate as the spatial and temporal discretization parameters 
are reduced. 

All test problems where originally published in [6]; see that article for background infor-
mation and discussion. Note that the bidomain-with-bath problems are all essentially 1D 
problems, in that the solution is dependent on x only, and not y or z, regardless of dimen-
sion. Construction of genuinely 2D/3D model problems for the bidomain-with-bath model is 
an open problem. See [6] for results of evaluating the cardiac solver Chaste [4] using these 
test problems, including error norms and theoretical orders of convergence appropriate for 
the numerical schemes used in Chaste. Also see [3] for a second example of a cardiac solver 
tested using these test problems. 
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2 Mathematical models 

Let Ω denote the geomerical domain, with boundary ∂Ω. The monodomain equations are 
a set of diferential equations governing the propagation of electrical waves through excitable 
tissue. They are a simplifcation of the bidomain equations (below) under the assumption 
that intra- and extra-cellular conductivities are proportional. The monodomain equations 
are [2]: � � 

∂V 
I(stim)χ Cm + Iion(u, V ) −∇ · (σ∇V ) = , (1)

∂t 
∂u 

= f (u, V ) , (2)
∂t 

where V ≡ V (t, x) is the transmembrane voltage, Cm is the specifc capacitance of the cell 
membrane, χ is the membrane surface-area-to-volume ratio, σ is the bulk conductivity and 
I(stim) is a stimulus current. u ≡ u(t, x) is a vector of state variables representing the current 
state of the cell at location x, and Iion and f are prescribed functions, which together make 
up the cell model. Typical boundary conditions are 

n · (σ∇V ) = 0 on ∂Ω, (3) 

where n is the outward-pointing unit normal vector. The system of equations (1)–(3) is then 
completed by specifying suitable initial conditions for V and u. 

The bidomain equations govern the propagation of the transmembrane voltage V and the 

where σi and σe are intra- and extra-cellular conductivity tensors, I is an intra-cellular 

extracellular potential ϕe. They are [2]: � � 
∂V 

χ Cm 
∂t 

+ Iion(u, V ) − ∇ · (σi∇ (V + ϕe)) = (stim)
Ii , (4) 

∇ · ((σi + σe) ∇ϕe + σi∇V ) = (stim)−I ,total (5) 

∂u 
∂t 

= f (u, V ) , (6) 

(stim) 
i 

(stim) (stim) (stim) (stim)
volume stimulus current per unit volume, and I = I + I , where I istotal i e e 

(stim)
an extra-cellular volume stimulus, usually implicitly chosen so that I = 0. Typical total 
boundary conditions for (4) and (5) are the specifcation of zero current across the boundary: 

n · (σi∇ (V + ϕe)) = 0 on ∂Ω (7) 

n · (σe∇ϕe) = 0 on ∂Ω (8) 

As with the monodomain equations, initial conditions for V and u need to be specifed. ϕe 

does not require initial conditions and is only determined up to a constant function of time. 

Finally, the bidomain-with-bath equations are used to model the case of cardiac tissue 
contained in a conductive bath (for example, the human torso). Let Ωb represent the bath 
domain, assumed to surround Ω. V is defned only in Ω (i.e. only in the tissue) and (4)–(6) 
still hold within Ω. However ϕe is now defned everywhere on Ω ∪ Ωb (i.e. throughout the 
tissue and the bath), and outside the tissue satisfes 

∇ · (σb∇ϕe) = 0 in Ωb, (9) 

where σb is the conductivity of the bath (usually a scalar). The boundary/interface conditions 
are: (7) (zero fux of ϕi across ∂Ω); continuity of ϕe across ∂Ω; and continuity of the extracel-
lular current across ∂Ω—the extracellular current fowing out of the tissue, σe∇ϕe · n, should 
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be equal to that entering the bath, σb∇ϕe · n, everywhere on ∂Ω. The remaining boundary 
condition on the edge of the bath domain is: 

(surf) 
n · (σb∇ϕe) = I on ∂Ωb\∂Ω. (10)E 

(surf) 
where I is a stimulus current (per unit area) applied to the edge of the bath domain,E 

(surf) 
and may be used to represent defbrillating electrodes. The prescribed function I shouldR E 

(surf) 
satisfy I dS = 0 for a solution to exist (conservation of current), or alternatively aE 
Dirichlet boundary condition on ϕe should be applied somewhere on ∂Ωb\∂Ω, corresponding 
to a ground electrode [5]. 

The following non-physiological, three-variable cell model has been constructed for use in all 
the model problems: u = (u1, u2, u3), specifed by   

2 1 2(u1 + u3 − V )2u2 + (u1 + u3 − V )u2(V − u3)2 
f(u, V ) =  −(u1 + u3 − V )u3  (11)2 

0 

Cm β(V − u3)2Iion(u, V ) = − (u1 + u3 − V )u2(V − u3) + (12)
2 χ 

where β is a free parameter. 
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3 Test problems with exact solutions 

3.1 Test problems for monodomain solvers 

3.1.1 Monodomain in 1D 

Let F (x) = cos(πx) and G(x) = 1 + x. Solve the monodomain equations (1)–(2) using the 
following inputs: 

• Domain: Ω = [0, 1]. 

• Surface-area-to-volume ratio: χ = 3 

• Capacitance: Cm = 2 

• Bulk conductivity: σ = 1.1 × π−2 

• Cell model: (11)–(12) using β = −1.1 

• Stimulus current: I(stim) = 0 

• Initial conditions: V (0, x) = F (x) and u(0, x) = (G(x) + F (x), G(x)−1/2 , 0) 

• Boundary conditions: zero fux (3) 

The exact solution is: 

V (t, x) = (1 + t)1/2F (x) 

u1(t, x) = (1 + t)G(x) + (1 + t)1/2F (x) 

u2(t, x) = (1 + t)−1 (G(x))
−1/2 

u3(t, x) = 0 
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3.1.2 Monodomain in 2D 

2Let F (x) = cos(πx) cos(2πy) and G(x) = 1 + xy . Solve the monodomain equations (1)–(2) 
using the following inputs: 

• Domain: Ω = [0, 1] × [0, 1] 

• Surface-area-to-volume ratio: χ = 3 

• Capacitance: Cm = 2 � � 

• Bulk conductivity: σ = π−2 1.1 
0 

0 
1.2 

• Cell model: (11)–(12) using β = −5.9 

• Stimulus current: I(stim) = 0 

• Initial conditions: V (0, x) = F (x) and u(0, x) = (G(x) + F (x), G(x)−1/2 , 0) 

• Boundary conditions: zero fux (3) 

The exact solution is: 

V (t, x) = (1 + t)1/2F (x) 

u1(t, x) = (1 + t)G(x) + (1 + t)1/2F (x) 

u2(t, x) = (1 + t)−1 (G(x))
−1/2 

u3(t, x) = 0 

6 



3.1.3 Monodomain in 3D 

2 3Let F (x) = cos(πx) cos(2πy) cos(3πz) and G(x) = 1 + xy z . Solve the monodomain equa-
tions (1)–(2) using the following inputs: 

• Domain: Ω = [0, 1] × [0, 1] × [0, 1] 

• Surface-area-to-volume ratio: χ = 3 

• Capacitance: Cm = 2   
1.1 0 0 

• Bulk conductivity: σ = π−2  0 1.2 0  

0 0 0.3 

• Cell model: (11)–(12) using β = −8.6 

• Stimulus current: I(stim) = 0 

• Initial conditions: V (0, x) = F (x) and u(0, x) = (G(x) + F (x), G(x)−1/2 , 0) 

• Boundary conditions: zero fux (3) 

The exact solution is: 

V (t, x) = (1 + t)1/2F (x) 

u1(t, x) = (1 + t)G(x) + (1 + t)1/2F (x) 

u2(t, x) = (1 + t)−1 (G(x))
−1/2 

u3(t, x) = 0 
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3.2 Test problems for bidomain solvers 

3.2.1 Bidomain in 1D 

√ 
Let F (x) = cos(πx), G(x) = 1 + x and k = 1/ 2. Solve the bidomain equations (4)–(6) 
using the following inputs: 

• Domain: Ω = [0, 1]. 

• Surface-area-to-volume ratio: χ = 3 

• Capacitance: Cm = 2 

• Intracellular conductivity, σi = 1.1 × π−2 

• Extracellular conductivity: σe = (1 − k)σi/k 

• Cell model: (11)–(12) using β = −1.1(1 − k) 

(stim) (stim)• Stimulus currents: I = I = 0i total 

• Initial conditions: V (0, x) = F (x) and u(0, x) = (G(x) + F (x), G(x)−1/2 , 0) 

• Boundary conditions: zero fux (7)–(8) 

The exact solution is: 

V (t, x) = (1 + t)1/2F (x) 

ϕe(t, x) = −k(1 + t)1/2F (x) + C(t) 

u1(t, x) = (1 + t)G(x) + (1 + t)1/2F (x) 

u2(t, x) = (1 + t)−1 (G(x))
−1/2 

u3(t, x) = 0 

where C(t) is an arbitrary function of time. The specifc implementation of the bidomain 
equations in the software tested will determine C(t) in the simulated ϕe. For example, aR 

d3numerical scheme that imposes zero mean, x = 0, implies that C(t) = 0.
Ω ϕe 
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3.2.2 Bidomain in 2D 

√ 
2Let F (x) = cos(πx) cos(2πy), G(x) = 1 + xy and k = 1/ 2. Solve the bidomain equations 

(4)–(6) using the following inputs: 

• Domain: Ω = [0, 1] × [0, 1] 

• Surface-area-to-volume ratio: χ = 3 

• Capacitance: Cm = 2 � � 

• Intracellular conductivity: σi = π−2 1.1 
0 

0 
1.2 

• Extracellular conductivity: σe = (1 − k)σi/k 

• Cell model: (11)–(12) using β = −5.9(1 − k) 

(stim) (stim)• Stimulus currents: I = I = 0i total 

• Initial conditions: V (0, x) = F (x) and u(0, x) = (G(x) + F (x), G(x)−1/2 , 0) 

• Boundary conditions: zero fux (7)–(8) 

The exact solution is: 

V (t, x) = (1 + t)1/2F (x) 

ϕe(t, x) = −k(1 + t)1/2F (x) + C(t) 

u1(t, x) = (1 + t)G(x) + (1 + t)1/2F (x) 

u2(t, x) = (1 + t)−1 (G(x))
−1/2 

u3(t, x) = 0 

where C(t) is an arbitrary function of time. The specifc implementation of the bidomain 
equations in the software tested will determine C(t) in the simulated ϕe. For example, aR 

d3numerical scheme that imposes zero mean, ϕe x = 0, implies that C(t) = 0.
Ω 
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3.2.3 Bidomain in 3D 

√ 
2Let F (x) = cos(πx) cos(2πy) cos(3πz), G(x) = 1+ xy z3 and k = 1/ 2. Solve the bidomain 

equations (4)–(6) using the following inputs: 

• Domain: Ω = [0, 1] × [0, 1] × [0, 1] 

• Surface-area-to-volume ratio: χ = 3 

• Capacitance: Cm = 2 

• Cell model: (11)–(12) using 

• Intracellular conductivity: σi 

β 

= 

= −8

π−2 

.6  

(1 − k) 

1.1 
0 
0 

0 
1.2 
0 

0 
0 
0.3 

  

• Extracellular conductivity: σe = (1 − k)σi/k 

(stim) (stim)• Stimulus currents: I = I = 0i total 

• Initial conditions: V (0, x) = F (x) and u(0, x) = (G(x) + F (x), G(x)−1/2 , 0) 

• Boundary conditions: zero fux (7)–(8) 

The exact solution is: 

V (t, x) = (1 + t)1/2F (x) 

ϕe(t, x) = −k(1 + t)1/2F (x) + C(t) 

u1(t, x) = (1 + t)G(x) + (1 + t)1/2F (x) 

u2(t, x) = (1 + t)−1 (G(x))
−1/2 

u3(t, x) = 0 

where C(t) is an arbitrary function of time. The specifc implementation of the bidomain 
equations in the software tested will determine C(t) in the simulated ϕe. For example, aR 

d3numerical scheme that imposes zero mean, x = 0, implies that C(t) = 0.
Ω ϕe 
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3.3 Test problems for bidomain-with-bath solvers 

3.3.1 Bidomain-with-bath in 1D 

√ 
Let F (x) = cos(πx), G(x) = 1 + x, k = 1/ 2 and α = 0.01. Solve the bidomain-with-bath 
model using the following inputs (in the below se denotes σe): 

• Using Ωall = [−1, 2], Ωb = {x ∈ Ωall : −1 ≤ x ≤ 0 or 1 ≤ x ≤ 2} and Ω = {x ∈ Ωall : 
0 ≤ x ≤ 1} 

• Surface-area-to-volume ratio: χ = 3 

• Capacitance: Cm = 2 

• Intracellular conductivity, σi = 1.1 × π−2 

• Extracellular conductivity: σe = (1 − k)σi/k 

• Bath conductivity: σb = se/2 

• Cell model: (11)–(12) using β = −1.1(1 − k) 

(stim) (stim)• Stimulus currents: Ii = I = 0total 

, − αx• Initial conditions: V (0, x) = F (x) − αx and u(0, x) = (G(x) + F (x), G(x)−1/2 ).se se 

• External stimuli:  −α if x = −1 
(surf) 

I = α if x = 2E 
0 otherwise 

The exact solution of this problem is: 

V (t, x) = (1 + t)1/2F (x) − 
α
x 

se 
α−k(1 + t)1/2 + x + C(t) if − 1 ≤ x ≤ 0 σb 

αϕe(t, x) = −k(1 + t)1/2 cos(πx) + x + C(t) if 0 ≤ x ≤ 1 se α−k(1 + t)1/2 cos(π) + α + (x − 1) + C(t) if 1 ≤ x ≤ 2 se σb 

u1(t, x) = (1 + t)G(x) + (1 + t)1/2F (x) 

u2(t, x) = (1 + t)−1 (G(x))
−1/2 

α 
u3(t, x) = − x 

se 

where C(t) is an arbitrary function of time. 

Ground electrode variant: as above except with the Dirichlet boundary ϕe = 0 on x = −1, 
(surf) (surf) 

with I = α on x = 2 and I = 0 on the other boundaries. Then the exact solutionE E 
αis as above with C(t) = k(1 + t)1/2 + σb 
. 
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3.3.2 Bidomain-with-bath in 2D 

Let F (x) = cos(πx) (note: unlike the other 2D test problems, this should just be a function√ 
2of x, not x and y), G(x) = 1 + xy , k = 1/ 2 and α = 0.01. Solve the bidomain-with-bath 

model using the following inputs (in the below se denotes (σe)11): 

• Using Ωall = [−1, 2] × [0, 1], Ωb = {x ∈ Ωall : −1 ≤ x ≤ 0 or 1 ≤ x ≤ 2} and 
Ω = {x ∈ Ωall : 0 ≤ x ≤ 1} 

• Surface-area-to-volume ratio: χ = 3 

• Capacitance: Cm = 2 � � 
1.1 0• Intracellular conductivity: σi = π−2 
0 1.2 

• Extracellular conductivity: σe = (1 − k)σi/k 

• Bath conductivity: σb = se/2 

• Cell model: (11)–(12) using β = −1.1(1 − k) 

(stim) (stim)• Stimulus currents: I = I = 0i total 

, − αx• Initial conditions: V (0, x) = F (x) − αx and u(0, x) = (G(x) + F (x), G(x)−1/2 ).se se 

• External stimuli:  −α if x = −1 
(surf) 

IE = α if x = 2
0 otherwise 

The exact solution of this problem is: 

V (t, x) = (1 + t)1/2F (x) − 
α
x 

se 
α−k(1 + t)1/2 + x + C(t) if − 1 ≤ x ≤ 0 σb 

ϕe
α(t, x) = −k(1 + t)1/2 cos(πx) + x + C(t) if 0 ≤ x ≤ 1 se α−k(1 + t)1/2 cos(π) + α + (x − 1) + C(t) if 1 ≤ x ≤ 2 se σb 

u1(t, x) = (1 + t)G(x) + (1 + t)1/2F (x) 

u2(t, x) = (1 + t)−1 (G(x))
−1/2 

α 
u3(t, x) = − x 

se 

where C(t) is an arbitrary function of time. 

Ground electrode variant: as above except with the Dirichlet boundary ϕe = 0 on x = −1, 
(surf) (surf) 

with I = α on x = 2 and I = 0 on the other boundaries. Then the exact solutionE E 
αis as above with C(t) = k(1 + t)1/2 + .σb 
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3.3.3 Bidomain-with-bath in 3D 

Let F (x) = cos(πx) (note: unlike the other 3D test problems, this should just be a function√ 
2 3of x, not x, y and z), let G(x) = 1 + xy z , k = 1/ 2 and α = 0.01. Solve the bidomain-

with-bath model using the following inputs (in the below se denotes (σe)11): 

• Using Ωall = [−1, 2] × [0, 1] × [0, 1], Ωb = {x ∈ Ωall : −1 ≤ x ≤ 0 or 1 ≤ x ≤ 2} and 
Ω = {x ∈ Ωall : 0 ≤ x ≤ 1} 

• Surface-area-to-volume ratio: χ = 3 

• Capacitance: Cm = 2   
1.1 0 0 

• Intracellular conductivity: σi = π−2  0 1.2 0  

0 0 0.3 

• Extracellular conductivity: σe = (1 − k)σi/k 

• Bath conductivity: σb = se/2 

• Cell model: (11)–(12) using β = −1.1(1 − k) 

(stim) (stim)• Stimulus currents: Ii = I = 0total 

, − αx• Initial conditions: V (0, x) = F (x) − αx and u(0, x) = (G(x) + F (x), G(x)−1/2 ).se se 

• External stimuli:  −α if x = −1 
(surf) 

IE = α if x = 2
0 otherwise 

The exact solution of this problem is: 

V (t, x) = (1 + t)1/2F (x) − 
α
x 

se 
α−k(1 + t)1/2 + x + C(t) if − 1 ≤ x ≤ 0 σb 

αϕe(t, x) = −k(1 + t)1/2 cos(πx) + x + C(t) if 0 ≤ x ≤ 1 se α−k(1 + t)1/2 cos(π) + α + (x − 1) + C(t) if 1 ≤ x ≤ 2 se σb 

u1(t, x) = (1 + t)G(x) + (1 + t)1/2F (x) 

u2(t, x) = (1 + t)−1 (G(x))
−1/2 

α 
u3(t, x) = − x 

se 

where C(t) is an arbitrary function of time. 

Ground electrode variant: as above except with the Dirichlet boundary ϕe = 0 on x = −1, 
(surf) (surf) 

with I = α on x = 2 and I = 0 on the other boundaries. Then the exact solutionE E 
αis as above with C(t) = k(1 + t)1/2 + σb 
. 
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