510(k) Summary

I. SUBMITTER

Date Prepared	2023-05-24
Submitter	YTS Global Inc.
	7406 Alban Station Ct. Suite 108a
	Springfield, VA 22150, USA
Contact	Won Lee
	(b) (6)
Manufacture	Rmedica Co., Ltd.
	2-Dong 709-Ho (Gasan-Dong, IT Castle)
	98 Gasan digital 2-ro,
	Geumcheon-gu, Seoul, KR 08506

II. DEVICE

Name of Device	Dr.PRP
Common Name	Platelet and Plasma Separator for Bone Graft Handling
Product Code	ORG
Regulation Number	21 CFR 864.9245
Classification Name	Automated Blood Cell Separator
Device Class	Class II
Review Panel	Hematology

III. PREDICATE DEVICE

GenesisCS Component Concentrating System, BK050055

IV. DEVICE DESCRIPTION

The Dr.PRP is provided as individually packaged sterile, single-use, disposable concentrating unit which is composed of medical grade polymer and elastomer. The concentrating unit has 20 ml of volume capacity and is designed to work with a swing rotor type general purpose centrifuge

V. INDICATIONS FOR USE

The Dr.PRP is designed to be used for the safe and rapid preparation of autologous platelet rich plasma (PRP) from a small sample of peripheral blood at the patient's point of care. The PRP is mixed with autograft and/or allograft bone prior to application to a bony defect to improve handling characteristics.

VI. COMPARISON OF TECHNOLOGICAL CHARACTERISTICS WITH THE PREDICATE DEVICE

The fundamental scientific technology, materials of construction, processing methods and mechanism of operation are similar between the subject Dr.PRP and predicate. Both devices are provided as sterile concentrating unit (tube), designed to concentrate and aid in separation of blood by density through the

use of a centrifuge. Both devices include a single-use, disposable concentrating unit that is designed to accept a volume of blood, and then undergo centrifugal processing, in order to obtain platelet concentrate (PRP). Both devices have substantially same intended use. Dr.PRP is biocompatible and is composed of medical grade polymer and elastomer like its predicate. The table below summarizes the comparison of characteristics between the subject and predicate devices.

Charicteristic	Primary Predicate device (GenesisCS Component Concentrating System, BK050055).	Subject device (Dr.PRP)	Comparison
Intended Use	The GenesisCS Component Concentrating System is designed to be used for the safe and rapid preparation of autologous platelet rich plasma (PRP) from a small sample of blood at the patient's point of care. The PRP can be mixed with autograft and allograft bone prior to application to an orthopedic surgical site as deemed necessary by the clinical use requirements	The Dr.PRP is designed to be used for the safe and rapid preparation of autologous platelet rich plasma from a small sample of blood at the patient's point of care. The PRP is mixed with autograft and/or allograft bone prior to application to a bony defect to improve handling characteristics	Similar –Both devices are designed to be used for the safe and rapid preparation of autologous platelet rich plasma from a small sample of blood at the patient's point of care.
Component	Disposable concentrating unit (tube) packaged with syringes, blood draw needle and blood draw accessories	Disposable concentrating unit (tube)	Similar – subject does not include higher risk accessories like needle. This difference does not raise any new issue of substantial equivalence
Material	Medical grade polymers, elastomers and stainless steel suitable for use in medical devices	Medical grade polymer and elastomer suitable for use in medical devices	Similar – subject does not include higher risk accessories like needle. This difference does not raise any new issue of substantial equivalence
Principle of Operation	Separation of blood based on density	Separation of blood based on density	Identical
Method of Processing	Centrifugation	Centrifugation	Identical
Centrifuge Device	General purpose centrifuge	General purpose centrifuge	Identical
Usage	For single use only	For single use only	Identical
Sterile	Yes	Yes	Identical

VII. PERFORMANCE DATA

The following performance data were provided in support of the substantial equivalence determination.

Time Point 0 hour	р	рН		p-selectin (resting)		p-selectin (ADP)		HSR		Aggregation (collagen)	
	Subject	Predicate	Subject	Predicate	Subject	Predicate	Subject	Predicate	Subject	Predicate	
Data (n=6)	7.3 7.2 7.3 7.2 7.3 7.2	6.9 6.8 6.8 6.8 6.8 6.8	11.0 10.8 8.8 10.7 9.1 8.9	10.9 7.9 11.9 9.0 8.8 9.9	50.8 52.5 53.1 54.2 49.2 51.5	51.9 54.3 53.3 51.2 48.4 49.4	91.6% 95.5% 94.4% 94.1% 93.3% 95.5%	95.6% 94.6% 93.4% 93.1% 96.3% 94.1%	67 78 47 49 86 33	57 80 59 68 48 41	
Mean	7.25	6.82	9.88	9.73	51.9	51.4	94.1%	94.5%	60.0	58.8	
Ratio	1.0)64	1.0	040	1.010		0.995		1.044		
S.D.	0.008		0.219		0.036		0.025		0.401		
90% C.I.	0.005		0.147		0.024		0.017		0.269		
two-sided	1.06	~ 1.07	0.89 ~ 1.19		0.99 ~ 1.03		0.98 ~ 1.01		0.77 ~ 1.31		
90% C.I. (0.8 ~1.25)	Subs Equiv	tantial valence	Substantial Equivalence		Substantial Equivalence		Substantial Equivalence			-	

Bench Testing – In vitro Performance Testing

two-sided 90% confidence interval for the ratio of test device mean to predicate device mean. a. Two-sided 90% confidence intervals for platelet function data at Time Point 0 hour.

Time Point 4 hours	рН		p-selectin (resting)		p-selectin (ADP)		HSR		Aggregation (collagen)	
	Subject	Predicate	Subject	Predicate	Subject	Predicate	Subject	Predicate	Subject	Predicate
Data (n=6)	7.3 7.2 7.3 7.2 7.3 7.2	6.9 6.8 6.8 6.8 6.8 6.8	28.5 26.3 26.1 31.1 26.9 28.6	26.6 29.3 25.7 24.2 25.5 26.6	78.1 78.8 80.5 77.4 78.5 77.8	77.5 79.5 78.3 77.6 76.8 78.5	96.2% 96.6% 96.3% 96.1% 95.4% 97.7%	94.9% 95.7% 94.5% 96.1% 95.5% 97.3%	64 64 48 58 65 52	59 58 74 64 64 54
Mean	7.25	6.82	27.9	26.3	78.5	78.0	96.4%	95.7%	58.5	62.2
Ratio	1.0	064	1.0	1.067 1.006 1.008		1.008		954		
S.D.	0.008		0.126		0.016		0.008		0.167	
90% C.I.	0.005		0.084		0.011		0.005		0.112	
two-sided 90% C.I.	1.06	~ 1.07	0.98	~ 1.15	1.00 ~ 1.02		1.00 ~ 1.01		0.84 ~ 1.07	

(0.8 ~1.25)	Substantial	Substantial	Substantial	Substantial	Substantial
	Equivalence	Equivalence	Equivalence	Equivalence	Equivalence

Time	WBC		RBC		PLT		PLT Recovery		Concentration Factor	
0 hour	Subject	Predicate	Subject	Predicate	Subject	Predicate	Subject	Predicate	Subject	Predicate
Data (<i>n</i> =20)	$\begin{array}{c} 8.0\\ 7.4\\ 10.2\\ 9.6\\ 16.2\\ 13.2\\ 8.0\\ 14.6\\ 12.0\\ 13.0\\ 13.2\\ 8.0\\ 14.6\\ 10.0\\ 10.0\\ 15.4\\ 12.8\\ 11.6\\ 7.2\\ 7.8\end{array}$	$\begin{array}{c} 8.0\\ 7.4\\ 9.6\\ 9.2\\ 15.4\\ 13.0\\ 7.8\\ 13.6\\ 11.2\\ 12.6\\ 13.2\\ 7.8\\ 14.0\\ 9.8\\ 9.2\\ 14.8\\ 12.0\\ 11.0\\ 7.2\\ 7.4\end{array}$	$\begin{array}{c} 0.22\\ 0.22\\ 0.34\\ 0.14\\ 0.82\\ 0.46\\ 0.22\\ 0.44\\ 0.58\\ 0.28\\ 0.44\\ 0.22\\ 0.44\\ 0.32\\ 0.16\\ 0.78\\ 0.32\\ 0.54\\ 0.20\\ 0.20\\ \end{array}$	$\begin{array}{c} 0.20\\ 0.20\\ 0.32\\ 0.14\\ 0.72\\ 0.44\\ 0.20\\ 0.42\\ 0.54\\ 0.28\\ 0.46\\ 0.20\\ 0.42\\ 0.32\\ 0.16\\ 0.72\\ 0.26\\ 0.50\\ 0.20\\ 0.20\\ 0.20\\ \end{array}$	728 666 894 1348 1002 916 782 720 1056 1204 976 794 726 970 1398 1010 1212 1012 702 652	638 654 942 1254 992 920 786 684 1010 1176 944 758 704 904 1278 1002 1136 986 722 608	60.8% 68.0% 67.1% 82.3% 70.5% 69.4% 67.3% 66.6% 70.9% 72.6% 73.2% 69.1% 66.7% 78.4% 77.9% 79.4% 74.0% 74.0% 71.2% 57.8%	53.7% 67.3% 71.2% 77.1% 70.3% 68.1% 63.7% 68.3% 71.4% 61.4% 65.2% 73.6% 71.7% 79.4% 69.8% 72.7% 73.8% 54.3%	$\begin{array}{c} 4.14\\ 4.63\\ 4.56\\ 5.59\\ 4.79\\ 4.72\\ 4.57\\ 4.53\\ 4.82\\ 4.93\\ 4.93\\ 4.98\\ 4.70\\ 4.54\\ 5.33\\ 5.30\\ 5.40\\ 5.03\\ 5.03\\ 4.84\\ 3.93\end{array}$	3.63 4.54 4.81 5.20 4.75 4.74 4.60 4.30 4.61 4.82 4.82 4.82 4.49 4.40 4.97 4.84 5.36 4.71 4.91 4.98 3.66
Mean	11.14	10.71	0.37	0.35	938.4	904.9	70.9%	69.0%	4.82	4.66
Ratio	1.0)38	1.0	058	1.037		1.029		1.037	
S.D.	0.0)27	0.0)63	0.044		0.044		0.044	
90% C.I.	0.0	010	0.0	023	0.0	016	0.0)16	0.0	016
two-sided	1.028	~ 1.048	1.035	~ 1.082	1.020	~ 1.053	1.013 ~ 1.045		1.020	~ 1.053
90% C.I. (0.8 ~1.25)	Subs Equiv	tantial alence	Substantial Equivalence		Subs Equiv	tantial valence	Substantial Equivalence		Substantial Equivalence	

c. Two-sided 90% confidence intervals for cellular composition data at Time 0

Time Point 4 hours	WBC		RBC		PLT		PLT Recovery		Concentration Factor	
	Subject	Predicate	Subject	Predicate	Subject	Predicate	Subject	Predicate	Subject	Predicate
Data (<i>n</i> =20)	$\begin{array}{c} 7.8\\ 7.6\\ 9.8\\ 9.8\\ 15.6\\ 13.2\\ 8.0\\ 14.2\\ 11.4\\ 13.0\\ 13.6\\ 7.8\\ 14.2\\ 10.2\\ 9.8\\ 15.6\\ 12.6\\ 11.2\\ 7.4\\ 7.8\end{array}$	$\begin{array}{c} 8.2 \\ 7.4 \\ 9.6 \\ 9.6 \\ 15.0 \\ 12.8 \\ 7.8 \\ 14.0 \\ 11.4 \\ 12.4 \\ 13.2 \\ 7.8 \\ 13.6 \\ 9.8 \\ 9.2 \\ 14.6 \\ 12.8 \\ 11.2 \\ 7.0 \\ 7.6 \end{array}$	$\begin{array}{c} 0.20\\ 0.22\\ 0.32\\ 0.14\\ 0.80\\ 0.44\\ 0.22\\ 0.42\\ 0.56\\ 0.32\\ 0.48\\ 0.22\\ 0.44\\ 0.34\\ 0.16\\ 0.82\\ 0.28\\ 0.56\\ 0.20\\ 0.22\\ \end{array}$	$\begin{array}{c} 0.22\\ 0.20\\ 0.32\\ 0.14\\ 0.74\\ 0.44\\ 0.20\\ 0.42\\ 0.56\\ 0.28\\ 0.44\\ 0.22\\ 0.44\\ 0.22\\ 0.44\\ 0.28\\ 0.16\\ 0.74\\ 0.34\\ 0.54\\ 0.20\\ 0.20\\ \end{array}$	706 672 908 1318 1054 960 798 716 984 1168 956 794 670 966 1322 1028 1198 1018 722 654	$\begin{array}{c} 728 \\ 708 \\ 874 \\ 1248 \\ 1018 \\ 932 \\ 784 \\ 690 \\ 976 \\ 1106 \\ 944 \\ 744 \\ 720 \\ 942 \\ 1264 \\ 956 \\ 1162 \\ 958 \\ 692 \\ 608 \end{array}$	59.0% 68.6% 68.1% 80.4% 74.2% 72.8% 68.6% 66.2% 66.1% 70.4% 71.7% 69.1% 61.6% 78.1% 73.6% 80.8% 73.1% 74.5% 73.2% 57.9%	$\begin{array}{c} 61.3\%\\ 72.8\%\\ 66.1\%\\ 76.7\%\\ 72.2\%\\ 71.2\%\\ 67.9\%\\ 64.3\%\\ 66.0\%\\ 67.2\%\\ 71.4\%\\ 65.2\%\\ 66.7\%\\ 76.7\%\\ 70.9\%\\ 75.7\%\\ 71.4\%\\ 70.6\%\\ 70.7\%\\ 54.3\%\\ \end{array}$	$\begin{array}{c} 4.01\\ 4.67\\ 4.63\\ 5.47\\ 5.04\\ 4.95\\ 4.67\\ 4.50\\ 4.49\\ 4.79\\ 4.88\\ 4.70\\ 4.19\\ 5.31\\ 5.01\\ 5.50\\ 4.97\\ 5.06\\ 4.98\\ 3.94\end{array}$	$\begin{array}{c} 4.14\\ 4.92\\ 4.46\\ 5.18\\ 4.87\\ 4.80\\ 4.58\\ 4.34\\ 4.46\\ 4.53\\ 4.82\\ 4.40\\ 4.50\\ 5.18\\ 4.79\\ 5.11\\ 4.82\\ 4.77\\ 4.77\\ 3.66\end{array}$
Mean	11.03	10.75	0.37	0.35	930.6	902.7	70.4%	69.0%	4.79	4.65
Ratio	1.0)25	1.0	035	1.0	028	1.021		1.028	
S.D.	0.0	028	0.0	085	0.0	039	0.039		0.039	
90% C.I.	0.0	010	0.0	031	0.0	014	0.014		0.0	014
two-sided	1.014	~ 1.035	1.004	~ 1.067	1.014	~ 1.043	1.006 ~ 1.035		1.014	~ 1.043
90% C.I. (0.8 ~1.25)	Subs Equiv	tantial valence	Subs Equiv	tantial valence	Subs Equiv	Substantial Equivalence		tantial valence	Substantial Equivalence	

d. Two-sided 90% confidence intervals for cellular composition data at Time Point 4 hours.

We evaluated the substantial equivalence of two devices using the method of two-sided 90% confidence intervals. If two-sided 90% confidence intervals for the ratio of subject device parameter to predicate device parameter is located between 0.80 and 1.25, subject device can be determined as substantial equivalence.

In conclusion, the output from the subject device demonstrated that its cellular composition and functional characteristics is substantially equivalent to the output from the predicate device.

Biocompatibility testing

The biocompatibility testing has been performed on the sterilized finished form of Dr.PRP according to ISO 10993-1. The platelet-rich plasma (PRP) prepared by the Dr.PRP is intended to be mixed with autograft and/or allograft bone prior to application to a bony defect and therefore the Dr.PRP is categorized as external communicating device which indirectly contacts blood with limited exposure

(contact of < 24 hrs). All biocompatibility tests have been carried out at Korea Testing Laboratory (KTL, Wonju, Korea) in good laboratory practice (GLP) conditions.

In addition, the bacterial endotoxin testing was performed using the methods described in ANSI/AAMI ST72.

The following tests were included.

- Cytotoxicity
- Sensitization
- Irritation
- Systemic Toxicity (acute)
- Pyrogenicity
- Material-mediated
- Hemolysis
- Pyrogenicity
- Endotoxin-mediated

The Dr.PRP has undergone biocompatibility tests in accordance with ISO 10993-1, "Biological evaluation of medical devices - Part 1: Evaluation and testing within a risk management process" and bacterial endotoxin tests in accordance with ANSI/AAMI ST72 "Bacterial endotoxins—Test methods, routine monitoring, and alternatives to batch testing." The above-mentioned results show the device to be biocompatible and the product to be non-pyrogenic.

Sterilization validation

The sterilization validation of Dr.PRP was carried out according to the protocol relating to the requirements described in (b) (4)

Shelf-life validation

It is evaluated that there will be no influence to the quality performance of the packaging even by setting up shelf-life up to 3 year as the result of confirmation of physical and chemical stability and effectiveness through accelerated aging test and real time stability study data of samples irradiated kGy for evaluation of packaging materials according to related standards of ASTM and ISO.

- Storage conditions: temperature 35.6°F(2°C) 86°F(30°C)
- Shelf-life: 3 years

Summary

Based on the performance data as documented in the pivotal performance testing, the Dr.PRP was found to have a safety and effectiveness profile that is similar to the predicate device.

VIII. CONCLUSIONS

The characteristics and intended use of the Dr.PRP is similar to predicate device, and the predicate device and Dr.PRP are identical in that they are disposable (supplied after being sterilization) device. In addition, performance data was checked to confirm substantial equivalence, and the safety of the equipment was demonstrated.