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Background: Diagnostic test accuracy is based on agreement of the test with 
the reference standard for verifying disease status. However, if the reference 
standard is not administered to all subjects, verification bias is introduced 
into test evaluation. Extreme verification bias (EVB) is when no one in a 
subset is verified for disease status. For example, women who are test 
negative for human papillomavirus (HPV) are ordinarily not referred to 
colposcopy to establish whether they have cervical cancer, rendering HPV 
test sensitivity and negative predictive value inestimable by standard means.

Purpose: Build a user-friendly interface to perform Bayesian analysis of 
diagnostic test accuracy in EVB studies. 

Methodology: For studies comparing two diagnostic tests for a low 
prevalence disease in an EVB study in which everyone who is negative on 
both tests is unverified for disease status, we developed a Bayesian model 
that utilized weak prior information on disease prevalence and positive 
correlation between the tests. We developed a Gibbs sampling computing 
algorithm to obtain the posterior distribution of test accuracy parameters. 
We applied our model to HPV data, pretending that double test negatives 
were unverified for cervical cancer. We compared our Bayesian estimates 
based on the incomplete data with those based on the complete data.

Results: Remarkably, for the HPV dataset Bayesian estimates based on 
incomplete EVB data were unbiased and for some parameters (specificity, 
PPV) nearly as precise as the complete data estimates.

Conclusion: Heretofore, no statistical method has been available for 
comparing the accuracy of diagnostic tests in EVB studies. Our Bayesian 
model and computational algorithm is one such method and has the 
potential to impact regulatory science applications.

Abstract • Cell Probabilities

HPV tests screen for HPV genotypes, which are precursors to cervical cancer 
or cervical squamous intraepithelial neoplasia stage 3 (CIN3+), verified by 
histology of biopsy taken during colposcopy. 
Verify-the-Positive (VTP) Design. Reference procedure verifying disease 
status (e.g., colposcopy for HPV tests) performed only when study subject 
tests positive for disease by 1 of 2 tests being compared (Schatzkin et al,
1987). 

Numerical Studies

• An index test is compared with a comparator test.
• If either the index or comparator test result is positive, then subject is 

verified for disease status with a reference method, otherwise not.
• Data consist of a 2 × 2 × 2 table with some cells counts missing:

• 𝑛𝑛𝑡𝑡𝑡𝑡𝑡𝑡 = cell count for new test result 𝑇𝑇 = 𝑡𝑡, comparator test result 𝑆𝑆 =
𝑠𝑠,disease status 𝐷𝐷 = 𝑑𝑑, for 𝑡𝑡, 𝑠𝑠,𝑑𝑑 = 0,1 or 𝑡𝑡, 𝑠𝑠,𝑑𝑑 = −, +: 

• [𝒏𝒏𝒕𝒕𝒕𝒕𝒕𝒕] denotes count is missing (disease status unverified)

• The corresponding table of cell probabilities is listed:

EVB Data Structure

• Input 1: Counts for verified for disease status and sum of double 
negatives

• Input 2: Initial values  for Gibbs algorithm (optional)
• Output: specificity, sensitivity, positive predictive value, negative 

predictive value, positive likelihood ratio, negative likelihood ratio.

Figure 1. Plot of posterior distribution for specificity for complete data and 
pretend incomplete VTP data.
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𝐷𝐷 = 1, 𝒒𝒒𝒕𝒕𝒕𝒕 = 𝟎𝟎 − 𝒑𝒑𝒕𝒕𝒕𝒕.

• Red denotes cells with disease status missing (unverified)

Gibbs Sampler
Prior Distribution

• 𝐛𝐛~𝐷𝐷𝐷𝐷𝐷𝐷 𝛾𝛾 , 𝛾𝛾 = 𝛾𝛾00, 𝛾𝛾01, 𝛾𝛾10, 𝛾𝛾11 = 0.25,0.25,0.25,0.25

• 𝒑𝒑𝟎𝟎0,𝒑𝒑𝟎𝟎𝟎𝟎,𝒑𝒑𝟎𝟎𝟎𝟎, 𝒑𝒑𝟎𝟎𝟎𝟎~𝐵𝐵𝐵𝐵𝑡𝑡𝐵𝐵 𝛼𝛼 , 𝛼𝛼 = 0.5,0.5
Prior Information
• 𝑝𝑝00 < 𝑚𝑚𝐷𝐷𝑛𝑛 𝑝𝑝10,𝑝𝑝01 < 𝑝𝑝11 (Tests are Informative)

• 𝑝𝑝01𝑝𝑝10
𝑝𝑝11𝑜𝑜

< 𝑝𝑝00 < 1 − 𝑞𝑞01𝑞𝑞10
𝑞𝑞11𝑜𝑜

, 𝑜𝑜 = 𝑏𝑏00𝑏𝑏11
𝑏𝑏10𝑏𝑏01

(Tests Positively Correlated)

Gibbs Sampling Algorithm

1. 𝒏𝒏𝟎𝟎𝟎𝟎𝟎𝟎
(𝒊𝒊) |𝑝𝑝 𝑖𝑖−1 ~𝐵𝐵𝐷𝐷𝑛𝑛 𝑛𝑛00⦁,𝑝𝑝00

𝑖𝑖−1 (Data Augmentation Step)

2. 𝒑𝒑𝒕𝒕𝒕𝒕
(𝒊𝒊)|𝑛𝑛 𝑖𝑖 ~𝐵𝐵𝐵𝐵𝑡𝑡𝐵𝐵 𝛼𝛼1 + 𝑛𝑛𝑡𝑡𝑡𝑡1,𝛼𝛼0 + 𝑛𝑛𝑡𝑡𝑡𝑡0 for 𝑡𝑡, 𝑠𝑠 = 0,1 , 1,0 , or 1,1

3. 𝒑𝒑𝟎𝟎𝟎𝟎
(𝒊𝒊)|𝑝𝑝 𝑖𝑖 ~𝐵𝐵𝐵𝐵𝑡𝑡𝐵𝐵(𝐵𝐵 + 𝑛𝑛001

𝑖𝑖 , 𝑏𝑏 + 𝑛𝑛000
𝑖𝑖 )

4. 𝒃𝒃(𝒊𝒊)|𝑛𝑛 𝑖𝑖 ~𝐷𝐷𝐷𝐷𝐷𝐷(𝛾𝛾 + 𝑛𝑛•
𝑖𝑖 )

• In the Gibbs sampler, we only accept samples that satisfy constraints.Regulatory Science Tool Interface

Study Data. Women with NILM Pap Smear Cytology
< CIN3+ CIN3+  
𝑺𝑺- 𝑺𝑺+    𝑺𝑺- 𝑺𝑺+

𝑻𝑻 – [23975] 396    [68] 5
𝑻𝑻 +    764 1692 8   65

[•] denotes missing CIN3+ status (pretend VTP data).

Figure 2. Plot of posterior distribution for sensitivity from Gibbs sampler for for
complete data and pretend incomplete VTP data.

Quantities to be Estimated

Figure 3. Plot of posterior distribution for positive predictive value for complete 
data and pretend incomplete VTP data.

Figure 4. Plot of posterior distribution for negative predictive value for complete 
data and pretend incomplete VTP data.

• PPV and 1 - Specificity are two types of false positive fractions, which may 
explain why they were estimated precisely with EVB data. NPV and 1 –
sensitivity are two types of false negative fractions, which may explain why 
they were estimated imprecisely with EVB data.

• We are not aware of any statistical method for comparing the accuracy of 
diagnostic tests in EVB studies. Our Bayesian model and computational 
algorithm is the first and has the potential to impact regulatory science 
applications. Our easy-to-use regulatory science tool app implements the 
Bayesian analysis. For the HPV data, the Bayesian posterior medians of 
accuracy were unbiased, but more experience with other datasets is 
needed to evaluate robustness of the method. 
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PPV was estimated precisely with EVB data (Figure 3) because it is function 
of verified test positives. Specificity was also estimated precisely with EVB 
data (Figure 1) despite being a function of unverified true negatives as well 
as verified false positives. Evidently, the prior information of informative and 
positively correlated tests improved precision. NPV and sensitivity were 
imprecisely estimated with EVB data (Figures 2 and 4), yet remarkably had 
posterior medians nearly equal to those for complete data.

Bayesian Analysis Results

𝑃𝑃𝐷𝐷 𝑇𝑇 = 1|𝐷𝐷 = 1 = True positive fraction = Sensitivity (Se)
𝑃𝑃𝐷𝐷 𝑇𝑇 = 1|𝐷𝐷 = 0 = False positive fraction = 1− Specificity (1 − Sp)
𝑃𝑃𝐷𝐷 𝐷𝐷 = 1|𝑇𝑇 = 1 = Positive Predictive Value (PPV)
𝑃𝑃𝐷𝐷 𝐷𝐷 = 0|𝑇𝑇 = 0 = Negative Predictive Value (NPV)

Human Papilloma Virus (HPV) Tests and EVB Data
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