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Project Overview

Problem Statement

The Food and Drug Administration (FDA) faces challenges in the rapid and dramatic increase in FDA-
regulated products sold online. For example, revenue from e-commerce grew by over 300% from $340
billion in 2019 to $1.03 trillion in 2022. The Online Marketplace Research & Surveillance Tool (OMRST)
automates the monitoring of online marketplaces. Designed with extensibility in mind, OMRST’s first use
case is assisting ORA’s Health Fraud Branch (HFB) protect public health by facilitiating the identification
of fraudulent products sold through e-commerce. In 2020 alone, HFB received approximately 5,000
consumer complaints and investigated over 1,270 products — resulting in a ~250% increase in federal
actions from the previous year. OMRST identifies and reports an ordered list of the most impactful
potentially violative products.

Goals:
1. Active surveillance of the potentially violative products in the online health supplement market
2. Ordered results to increase efficiency of FDA review and action
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Figure 1. Cloud Architecture of OMRST

As shown in Figure 1, OMRST consists of a data layer with live connections to FDA and external
marketplace data. Product information from Amazon, eBay, and Walmart APIls is collected daily and
processed using modern NLP techniques to extract signals that indicate potential fraud and its severity in
the data processing layer. These signals currently include illegal ingredients, and problematic claims. We
aim to incorporate adverse events, product popularity, and firm history in future iterations. The resulting
model output of potentially violative listings is ordered and visualized as leads in the presentation layer’s
Tableau dashboards for review by HFB.

Marketplace Surveillance Coverage
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Figure 2. Unique products returned from our marketplace APls (orange)  commerce listed health supplements.
and then filtered to only health supplements (blue). The gray line

depicts the estimated total number of health supplements available per

marketplace based on the search “health supplements”.
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Disclaimer: The information in this poster represents the opinions of the authors and does not necessarily
represent the FDA's official position or policy
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Online Marketplace Surveillance Tool Models

Claims Model: Automatic identification of problematic claims made by products
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Figure 3. Top 20 most impactful tokens as defined by mean shap
value across 5000 problematic claims run through the binary
classifier. Blue (+) / Red (-) values increase/decrease output score
(where 1 = problematic).
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Future Directions

Modeling:

1. Unsupervised pretraining

 Obtain domain-specific embeddings to use as base model for NER and
claim classification

Refinement of claims training dataset through human labeling

Detection of user-reported adverse events in product reviews

Optical character recognition (OCR) to transcribe label information from

images

() e

Result ordering:
1. Prioritization for claims mentioning serious diseases/conditions
2. Inclusion of firm compliance history in prioritization

System:
1. Customizable search terms for product queries
2. Automatic verification of product removal from marketplaces by firms
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Figure 5. Tableau results dashboard
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Conclusion

This Online Marketplace Research & Surveillance Tool enables HFB to proactively
identify potentially fraudulent products. Through our marketplace APls we have
access to 52% of all e-commerce in the country, and in the first two months of
functionality we analyzed ~39% of listed health supplements on these marketplaces.
In a matter of hours, the tool analyzed ~150,000 products and identified 87 with
illegal ingredients and 7,846 with at least 1 problematic claim. These results were
ordered for ease of review with each signal’s weight displayed for transparency, and
model explainability features incorporated throughout.

Additionally, we designed with extensibility in mind, and the tool may be applied to
use cases beyond health fraud. The pipeline is scalable in a cost-sensitive manner
and integrated with FDA’s Compliance Management System (CMS), allowing HFB to
monitor confirmed fraudulent products to verify removal or compliance with FDA

warnings and citations. Ultimately this tool will may assist HFB in identifying
problematic products more efficiently to consider building a case for a potential

investigation.





