ONPATTRO® (patisiran)

For the treatment of cardiomyopathy of wild-type or hereditary transthyretin-mediated (ATTR) amyloidosis in adults to slow the decline in functional capacity and reduce symptoms

September 13, 2023

Cardiovascular and Renal Drugs Advisory Committee Alnylam Pharmaceuticals

Introduction

Pushkal P. Garg, MD

Chief Medical Officer Alnylam Pharmaceuticals

ATTR Amyloidosis: Multisystem Disease Caused by Misfolding of Hepatic Transthyretin (TTR)

CO-3

vTTR = variant transthyretin wtTTR = wild-type transthyretin

Patisiran Silences Hepatic TTR Production

- Small interfering RNA
- Targets highly conserved region of TTR gene
- Formulated as lipid nanoparticle for liver-specific delivery
- Administered intravenously 0.3 mg/kg every 3 weeks

Patisiran: Reduces Hepatic TTR Production Via RNA Interference

APOLLO: Patisiran Improved Polyneuropathy of hATTR Amyloidosis

N = 225 (148 patisiran; 77 placebo)

- 56% of APOLLO patients had evidence of cardiac amyloidosis
- Patisiran resulted in favorable changes relative to placebo
 - LV wall thickness
 - Global longitudinal strain
 - NT-proBNP
 - Cardiac outcomes

All Cause Death and CV Hospitalization

APOLLO-B: Key Development & Regulatory Milestones

APOLLO-B: Patisiran Demonstrated Benefits on Patient Function and Symptoms in ATTR Cardiomyopathy Results Consistent with APOLLO Data in Polyneuropathy

CO-9

	APOLLO-B Cardiomyopathy	APOLLO Polyneuropathy
Rapid, Robust, Sustained TTR Reduction	> 85%	> 85%
Impact on Functional Ability	Slowed Decline; Comparable to Normal Aging	Improved Neuropathy Impairment & Ambulation
Effect on Patient Reported Health Status and QoL	Stable Health Status, Symptoms and QoL	Improved QoL; Reduced Disability & Autonomic Signs
Improvement in Clinically Relevant Biomarkers	NT-proBNP Troponin I	NT-proBNP

Favorable safety profile, consistent with 5-year postmarketing experience

Patisiran Offers Meaningful Benefits That Address Important Patient Needs

High Unmet Need

- Patients greatly value maintenance of functional ability and health status
- Disease progression common despite current approved therapy

Clinically Meaningful Benefits

- Reduces disease progression according to multiple measures
 - Objective evaluation of physical function
 - Patient-reported health status and symptoms
 - Clinician assessments
- Well tolerated with an acceptable safety profile

Residual Uncertainty

CO-10

 Effects in combination with tafamidis unknown

For the treatment of cardiomyopathy of wild-type or hereditary transthyretin-mediated (ATTR) amyloidosis in adults to slow the decline in functional capacity and reduce symptoms

Unmet Need

Efficacy

Impact of Patisiran on Patient Health Status

Safety

Clinical Perspective

John Berk, MD

Professor of Medicine Clinical Director of Amyloidosis Center Boston University

John Vest, MD

Senior Vice President, Clinical Research Alnylam Pharmaceuticals

John Spertus, MD, MPH

Professor, Daniel J. Lauer / Missouri Endowed Chair in Metabolic and Vascular Disease Research University of Missouri-Kansas City

Elena Yureneva, MD, MHA

Executive Director, Head of Medical Safety & Risk Management Alnylam Pharmaceuticals

Ronald Witteles, MD

Professor of Cardiovascular Medicine Co-Director, Stanford Amyloid Center Stanford University School of Medicine

Additional Experts

Brian Drachman, MD

Associate Professor of Clinical Medicine Associate Chief of Cardiovascular Medicine Perelman School of Medicine University of Pennsylvania Health System

Marianna Fontana, MD, PhD

Professor of Cardiology and Honorary Consultant Cardiologist, Division of Medicine National Amyloidosis Centre University College London

Craig Mallinckrodt, PhD

Statistician Pentara Corporation

James Signorovitch, PhD

Managing Principal Analysis Group

Gabriel Robbie, PhD

Senior Vice President Clinical Pharmacology and Pharmacometrics Alnylam

Nancy Silliman, PhD

Senior Vice President Data Sciences and Statistics Alnylam

Andrew Slugg, MS, MBA

Senior Vice President Global Regulatory Affairs Alnylam

Unmet Need John Berk, MD

Professor of Medicine Assistant Director, Amyloidosis Center Boston University School of Medicine

ATTR Cardiomyopathy Due to TTR Amyloid Infiltration of the Heart

CO-15

Signs of Disease

- Thick and stiff myocardium + reduced chamber volumes
- Decreased cardiac output due to systolic and diastolic dysfunction
- Congestive heart failure → Shortness of breath, fatigue, peripheral edema
- Atrial fibrillation, atrioventricular block, and sinus node dysfunction

ATTR Cardiomyopathy: An Unrelenting Disease

1. Antonopoulos, 2022; 2. Castano, 2015; 3. Damy, 2015; 4. Dungu, 2012; 5. Hawkins, 2015

Tafamidis: Only Drug Approved to Treat ATTR Cardiomyopathy

CO-17

Maurer, 2018

Technetium Scintigraphy Has Led to Earlier and Increased Diagnoses

 Rapid adoption of a simple, non-invasive diagnostic test, replacing cardiac biopsy

CO-18

- More patients than ever being diagnosed
- Slower disease progression observed in recent years because of earlier diagnosis

Gillmore, 2016; Chen, 2018.

High Unmet Need for New Therapies

• ATTR cardiomyopathy is a rare, debilitating, progressive disease

- Disease progression continues despite single approved therapy
- Patients value their functional capacity and quality of life
- Need for new therapeutic approaches and early intervention before irreversible disability
- Patisiran, a TTR gene silencer, works upstream of stabilizers and has potential to address this unmet need

Efficacy

John Vest, MD

Senior Vice President, Clinical Research Alnylam Pharmaceuticals

APOLLO-B Study Design Patisiran 0.3 mg/kgPatisiran vs Placebo at Month 12 IV Q3W **Population**, N = 360**Primary endpoint** Change in 6MWT ATTR amyloidosis **Secondary endpoints Open-** Confirmed cardiomyopathy and Change in cardiomyopathy symptoms medical history of symptomatic Label Stratification: and health status (KCCQ-OS) heart failure Extension Tafamidis (yes or no) R Death and recurrent hospitalizations NYHA ≤ III; minimum walk and (OLE) hATTR vs wtATTR 1:1 NT-proBNP limits at baseline Selected exploratory endpoints NYHA Class I/II and age < 75 years vs all NT-proBNP, Troponin I All patients • \leq 30% on background tafamidis others receive at baseline Disease progression criteria patisiran Imaging Pharmacodynamic endpoint Serum TTR Placebo IV Q3W

Baseline Demographics Similar Between Groups

	Patisiran N = 181	Placebo N = 178
Median Age at Screening, years (min, max)	76 (47, 85)	76 (41, 85)
≥ 75 years old	59%	57%
Male	89%	90%
Race		
White	76%	79%
Asian	13%	8%
Black or African American	9%	8%
Other or Not reported	2%	4%
Hispanic or Latino	12%	11%
Region		
North America	25%	29%
Western Europe	39%	38%
ROW	37%	33%

Baseline Characteristics Indicated Wide Range of Disease Severity

		Patisiran N = 181	Placebo N = 178
ATTR amyloidosis type	wtATTR	80%	81%
	hATTR	20%	19%
Median time since diagnosis, years (min, max)		0.8 (0, 6)	0.4 (0, 10)
Baseline tafamidis use		25%	25%
NYHA class	I	6%	8%
	II	86%	84%
	III	8%	7%
Median NT-proBNP, ng/L (Q1, Q3)		2008 (1135, 2921)	1813 (952, 3079)
Median baseline 6MWT, meters (Q1, Q3)		358 (295, 420)	368 (300, 444)
Mean baseline KCCQ-OS Score (SEM)		69.8 (1.6)	70.3 (1.6)

Primary Efficacy Results

- 6MWT
- KCCQ-OS

APOLLO-B Met Primary Endpoint (6MWT) Reduced Decline in Functional Capacity Comparable to Normal Aging

HL = Hodges-Lehmann; p-value based on Wilcoxon Rank Sum test stratified by background tafamidis use

1. Enright, 1998

Patisiran Preserved Functional Capacity Through 24 Months

APOLLO-B Met Key Secondary Endpoint (KCCQ-OS) Patisiran Demonstrated Stability in Health Status and Quality of Life

Consistent Favorable Effects Across All KCCQ Domains

	N			Favors Patisiran	LS Mean Difference (95% CI)
Overall summary score	334			••	3.7 (0.2, 7.2)
Physical limitation	328				2.8 (-1.2, 6.7)
Total symptom	334			• • • • • • • • • • • • • • • • • • •	4.5 (0.8, 8.3)
Quality of life	334		•	ı	4.3 (-0.1, 8.6)
Social limitation	307	•		_	2.8 (-2.2, 7.7)
Clinical summary score	334			·•	3.7 (0.4, 7.1)
		-4 -2	2 0	0 2 4 6 8 1)
			D	Difference in Score	

Patisiran Preserved Health Status Through 24 Months

Key Efficacy Topics

- Efficacy in Subgroups
- Mechanistic Data Supporting Efficacy
- Impact on Outcomes
- Clinical Meaningfulness

Patisiran Treatment Effect Generally Consistent Across Subgroups Baseline Demographics

Patisiran Treatment Effect Generally Consistent Across Subgroups Baseline Disease Characteristics

Patisiran Treatment Effect on Background Tafamidis Not Established in APOLLO-B

Background tafamidis

- Small subgroup (n ~ 45 per arm)
- Effect for 6MWT and KCCQ less than monotherapy
 - Confidence intervals wide and overlapping
 - TTR reduction similar

Key Efficacy Topics

- Efficacy in Subgroups
- Mechanistic Data Supporting Efficacy
- Impact on Outcomes
- Clinical Meaningfulness

Patisiran Reduced Pathogenic Protein (TTR) > 85%

Favorable Patisiran Treatment Effect Demonstrated on NT-proBNP

Favorable Patisiran Treatment Effect Demonstrated on Troponin I

Favorable Patisiran Treatment Effects Demonstrated in Cardiac Structure and Function

Evidence of Improvement in ^{99m}Tc Uptake

Perugini grade (0 – 3) widely used in diagnosis (≥ grade 2) of ATTR amyloidosis

CO-39

- Visually assesses ^{99m}Tc uptake in myocardium compared to bones
- Centrally read by assessor blinded to treatment and timepoint

0% improved

- 38% (14) improved \geq 1 grade
 - 5 patients < threshold for diagnosis</p>

Key Efficacy Topics

- Efficacy in Subgroups
- Mechanistic Data Supporting Efficacy
- Impact on Outcomes
- Clinical Meaningfulness

Fewer Events in Patisiran Arm Through Month 24 in APOLLO-B

Fewer Events on Patisiran Also Demonstrated in APOLLO Post Hoc Analysis of Safety Data

Pooled Mortality from APOLLO and APOLLO-B Through Double-Blind Periods

Key Efficacy Topics

- Efficacy in Subgroups
- Mechanistic Data Supporting Efficacy
- Impact on Outcomes
- Clinical Meaningfulness

6MWT MCID Varies Widely: Age is a Major Determinant

McDermott, 2021; Khan, 2022; Kwok, 2013; Oosterveer, 2022; Spina, 2019; Perera, 2006;

Stephens-Shields 2021; Jain, 2021; Holland, 2010; Gremeaux, 2011; Lee, 2014; Zampogna, 2021; Moutchia, 2023; Holland, 2009; Granger, 2015; Mathai, 2012; Naylor, 2016; Takenaka, 2022; Cantarero-Villanueva, 2023; Benaim, 2019; Fulk 2018; King 2022; Kang 2021; Takenaka 2023; Kaleth, 2016; Sheraz, 2022.

Minimal Clinically Important Difference for 6MWT in ATTR-CM

 Derived thresholds for meaningful change in 6MWT using all APOLLO-B data (patisiran and placebo)

CO-46

- KCCQ used as anchor
- Change in 6MWT calculated for established categorical changes in KCCQ
- KCCQ as anchor conforms with recent FDA Guidance¹
 - Includes assessment of physical functioning (what 6MWT measures)
 - Well-established thresholds for meaningful within-patient changes
 - Plainly understood by respondents
 - Changes correlate with change in 6MWT
 - Assessed at same time points

1. Patient-Focused Drug Development: Incorporating Clinical Outcome Assessments Into Endpoints For Regulatory Decision-Making, April 2023

Derivation of Clinically Meaningful Differences in 6MWT in APOLLO-B

Post-Hoc analysis

1. KCCQ-OS categories: Deterioration - Small to Moderate >-10 to -5, Stable >-5 to <5, Improvement - Small to Moderate 5 to <10. Spertus, 2005. 2. APOLLO-B overall population (patisiran and placebo)

6MWT Treatment Effect Meaningful to Majority of Patients

Best 6MWT Outcomes More Likely on Patisiran Worst Outcomes More Likely on Placebo

Clinical Assessments Highlight Lower Likelihood of Disease Progression on Patisiran

Lower Likelihood of Disease Progression on Patisiran

Post-Hoc analysis

1. Gillmore, 2018. Comprising NT-proBNP and eGFR

CO-52

Impact of Patisiran on Patient Health Status

John A. Spertus, MD, MPH

Professor, Lauer / Missouri Endowed Chair Director, University of Missouri – Kansas City Healthcare Institute for Innovations in Quality Clinical Director, Outcomes Research Saint Luke's Mid America Heart Institute

Treatment Goals for Heart Failure

The Kansas City Cardiomyopathy Questionnaire (KCCQ)

CO-54

23 items that measure 5 clinically relevant domains

- Represents the patient's perspective of their HF, regardless of etiology
- Established validity, reliability and responsiveness
 - Well-established thresholds for clinically meaningful change
- Qualified by FDA's CDRH and CDER as a Clinical Outcomes Assessment

Mean Patisiran Effect Compares Well to Other Heart Failure Therapies

CO-55

Study Date Range: 2009 – 2022

Study timepoint of KCCQ-OS measurement (Paradigm-HF: 8 months, EMPEROR-REDUCED: 12 months, EMPEROR-PRESERVED: 12 months, TOPCAT: 12 months, DAPA-HF: 8 months, SHIFT: 12 months, DEFINE-HF: 3 months, APOLLO-B: 12 months, ATTR-ACT: Month 12 data shown, FAIR-HF: 6 months, EXPLORER-HCM: 7.5 months).

Categorical Changes are Most Relevant to Understand the Clinical Impact of a Therapy

Patient-Level Changes Demonstrate Clinically Meaningful Benefits with Patisiran

KCCQ-OS by Response Threshold

KCCQ is Sensitive to Clinically Meaningful Changes

5. Over the <u>past 2 weeks</u>, on average, how many times has **fatigue** limited your ability to do what you want?

All of the time	Several times per day	At least once a day	3 or more times per week but not every day	1-2 times per week	Less than once a week	Never over the past 2 weeks
	X					<u> </u>

6. Over the past 2 weeks, how much has your fatigue bothered you?

7. Over the <u>past 2 weeks</u>, on average, how many times has **shortness of breath** limited your ability to do what you wanted?

- Fatigue Decreases from Several Times a day to Weekly
 - > +2 points
- Shortness of breath goes from Daily to Weekly
 - > +1 point
- Severities of both symptoms go from Moderately to Slightly Bothersome
 - +1 point each
- For an individual patient, a 5point change is clinically meaningful

Illustrative Example from APOLLO-B Improvements in Fatigue and Shortness of Breath

Broad Impact of Patisiran on Patient Health Status and Quality of Life in APOLLO-B

Each question was rescaled to have a range of 0 to 100.

- The KCCQ is an extensively validated patient-reported outcome tool with well-established thresholds that relate change in score to clinical change in heart failure status
- The average treatment effect of patisiran is comparable to other heart failure drugs that help patients feel better
- Most importantly, patisiran has a clinically meaningful impact on improving *individual patients*' health status and quality of life

Safety

Elena Yureneva MD, MHA

Executive Director Head of Medical Safety and Risk Management Alnylam Pharmaceuticals

Patisiran Exposure in APOLLO-B

- APOLLO-B: 347 patients with ATTR amyloidosis with cardiomyopathy treated with patisiran for up to 43 months
- Safety profile of patisiran in patients with ATTR amyloidosis with cardiomyopathy in APOLLO-B consistent with that previously established

	APOLLO-B Double-blind and OLE All Patisiran N = 347
Median treatment duration, months (range)	23.0 (0 – 43 months)
Cumulative Treatment Exposure, patient-years	629.7
Treatment Duration (cumulative months), n (%)	
≥ 12 months	311 (89.6%)
≥ 18 months	215 (62.0%)
≥ 24 months	171 (49.3%)
≥ 30 months	68 (19.6%)

Data Cut-off: 26 Jun 2023

Patisiran was Well-Tolerated in APOLLO-B

	Patisiran	Placebo
At least one event, n (%)	N = 181	N = 178
AEs	165 (91%)	168 (94%)
Severe AEs	47 (26%)	52 (29%)
SAEs	61 (34%)	63 (35%)
AEs leading to treatment discontinuation	5 (3%)	5 (3%)
Deaths (safety analysis) ¹	5 (3%)	9 (5%)

CO-64

- AEs observed more commonly on patisiran than placebo (> 3%) are known ADRs: infusion-related reaction, arthralgia, and muscle spasms
- Safety profile comparable between subgroups including demographic, disease characteristics and patients on patisiran monotherapy or background tafamidis

1. Safety analysis includes deaths on-study and after withdrawal from the study. One placebo patient stopped study participation during the DB period and died after the pre-specified window for the statistical analysis of deaths during the DB period

Similar Proportion of Patients Experienced SAEs Between Groups

	Patisiran	Placebo
Preferred Term (2 2% In Any Group), n (%)	N = 181	N = 178
Any SAE	61 (34%)	63 (35%)
Cardiac failure	15 (8%)	13 (7%)
Atrial fibrillation	5 (3%)	4 (2%)
AV block complete	2 (1%)	4 (2%)
Syncope	2 (1%)	4 (2%)
Amyloidosis	1 (0.6%)	4 (2%)

Deaths on Patisiran Numerically Lower than on Placebo

CO-66

	Patisiran	Placebo
Adjudicated Cause of Death, n (%)	N = 181	N = 178
Total	5 (3%)	9 (5%) ¹
Heart Failure	1	4
Infection	0	1
Sudden cardiac death	1	0
Pancreatitis	1	0
Cholangitis	0	1
Pancreatic cancer	0	1
COVID-19	1	0
Death (Cause not reported)	1	2

No deaths were considered related to study drug by investigators

1. Includes all deaths on-study and after withdrawal from the study. One placebo patient stopped study participation during the DB period and died after the pre-specified window for the statistical analysis of deaths during the DB period

Safety Topics of Interest

- Cardiac Events
- Infusion Related Reaction
- Ocular Events

Incidence of Cardiac Events in Patisiran Group Similar or Lower than Placebo Group

	Patisiran	Placebo
Type of AE, n (%)	N = 181	N = 178
AEs in the cardiac disorder SOC	82 (45%)	100 (56%)
SAEs in the cardiac disorder SOC	32 (18%)	28 (16%)
Cardiac failure SMQ (narrow) AEs	65 (36%)	78 (44%)
Cardiac failure SMQ (broad and narrow) AEs	69 (38%)	84 (47%)
Cardiac arrhythmia HLGT AEs	35 (19%)	48 (27%)
Cardiac conduction disorders HLT	8 (4%)	10 (6%)
Rate and rhythm disorders NEC HLT	5 (3%)	4 (2%)
Supraventricular arrhythmias HLT	24 (13%)	36 (20%)
Ventricular arrhythmias and cardiac arrest HLT	5 (3%)	8 (5%)

All Infusion-Related Reactions Mild to Moderate, None Reported as SAEs

Most Frequent Symptoms of IRR in Patisiran Group Preferred Term (≥ 2% in Patisiran Group), n (%)	Patisiran N = 181	Placebo N = 178
At least 1 IRR	22 (12%)	16 (9%)
Back pain	8 (4%)	1 (0.6%)
Flushing	4 (2%)	2 (1%)
Fatigue	3 (2%)	0

- Patients receive premedication with corticosteroid, acetaminophen, and antihistamines
- IRRs not treatment limiting. One patient discontinued from the study due to a mild IRR
- Proportion of IRRs and number of symptoms decreased over first 6 months

No Manifestations of Vitamin A Deficiency Identified

	Patisiran	Placebo
Preferred Term (≥ 2% in Any Group), ∩ (%)	N = 181	N = 178
At least 1 AE in Eye Disorders SOC	31 (17%)	21 (12%)
Cataract	4 (2%)	2 (1%)
Conjunctival hemorrhage	7 (4%)	0
Eye pain	1 (1%)	3 (2%)
Ocular hyperemia	3 (2%)	1 (1%)
Vision blurred	6 (3%)	4 (2%)
Vision impairment	3 (2%)	1 (1%)

- Patients referred for ophthalmology consult in case of vision AEs
- No evidence of vitamin A deficiency observed in clinical trials or post-marketing

No Change in Safety Profile with Longer Term Exposure

	Deficient DD				All Patisiran	
	N = 181, PY = 408		Placebo DB N = 166, PY = 222		DB+OLE N = 347, PY = 630	
Preferred Term (≥ 10% in All Patisiran DB+OLE Group)	%	ER	%	ER	%	ER
Any AE	97%	598.8	96%	759.7	97%	655.5
Cardiac failure	43%	39.5	33%	39.2	38%	39.4
Covid-19	28%	13.5	34%	27.0	31%	18.3
Atrial fibrillation	19%	13.0	14%	12.6	17%	12.9
Constipation	20%	9.6	12%	9.5	16%	9.5
IRR	15%	29.9	16%	74.3	15%	45.6
Fall	12%	8.1	16%	20.7	14%	12.5
Arthralgia	15%	10.8	8%	7.7	12%	9.7
Gout	12%	9.1	11%	12.2	11%	10.2
Diarrhea	12%	11.8	10%	12.6	11%	12.1
Back pain	14%	6.9	7%	7.7	11%	7.1

ER = exposure-adjusted event rate per 100 patient-years; PY = patient-years

All-Patisiran 24M Datacut 26 Jun 2023

Patisiran was Well Tolerated with Acceptable Safety Profile

Consistent safety profile in cardiomyopathy and polyneuropathy

- 5 years of postmarketing experience
- > 8,500 patient-years of exposure with patisiran worldwide
- No safety concerns among subgroups
- Primary safety considerations
 - Low incidence of mild-to-moderate IRRs
 - Managed by pre-medications
 - No evidence of ocular manifestations of Vitamin A deficiency
 - Supplementation recommended

Clinical Perspective

Ronald Witteles, MD

Professor of Cardiovascular Medicine Co-Director, Stanford Amyloid Center Stanford University School of Medicine

Compelling Patisiran MoA Drives Consistent Effects Across Multiple Important Disease Manifestations

Importantly, patisiran has a favorable safety profile

CO-74

Patients Care Most About Preserving Function, Feeling Well and Enjoying Life

- Quality of life is what patients care about most
- Preventing erosion of ability to engage and enjoy life is a key priority

CO-75

 Patients are typically in their 70s or 80s with corresponding goals and expectations; simple things matter tremendously

What I See in Patisiran Data Are Disease Stability and Less Progression

	Key Observation		
6MWT	Relative Stability Comparable to expected decline in healthy adults over 24 months		
KCCQ	Relative Stability No change from baseline to Month 24		
NYHA Class	Less Progression OR of progression (≥ 1 class) 0.6 OR of stable or improved 1.8		
ATTR Disease Stage	Less Progression OR of progression (≥ 1 stage) 0.6 OR of stable or improved 1.7		

CO-76

6MWT treatment effect at Month 12 comparable to saving 2-3 years of age-related decline; meaningful to patients in 70s and 80s

OR = odds ratio

Continued Stability in Functional Capacity Through 24 Months; Meaningful Given Expected Natural History of Steady Decline

CO-77

Stability in Health Status Through 24 Months Corroborates Meaningful Slowing of Progression

CO-78

ATTR Patients I Would Consider for Use of Patisiran

First-line monotherapy

Particular value for patients with mixed PN and CM phenotype

Switch for patients progressing on tafamidis
Currently nothing to offer as patients accumulate irrecoverable disability

Add on to tafamidis

Following informed discussion acknowledging lack of clear data to support but reasonable given safety and orthogonal MoA (biologically rational)

Positive Benefit-Risk of Patisiran

- ATTR-CM is a serious, progressive, and devastating disease with only a single approved treatment option
- Patients and physicians need alternative therapies that positively impact decline in functional ability and symptoms
- Patisiran demonstrated clear efficacy and clean safety profile with unique MoA
- My hope is patisiran becomes an option I can discuss with my patients

ONPATTRO® (patisiran)

For the treatment of cardiomyopathy of wild-type or hereditary transthyretin-mediated (ATTR) amyloidosis in adults to slow the decline in functional capacity and reduce symptoms

September 13, 2023

Cardiovascular and Renal Drugs Advisory Committee Alnylam Pharmaceuticals

CO-82

Back-Up Slides Shown

Using KCCQ-OS¹ (Overall Score) as Anchor Conforms to FDA Guidance² (Meets all 5 Criteria)

FDA Guidance Criteria for Anchor	How KCCQ-OS Meets Criteria	
"Ideally, the concept assessed by an anchor variable [KCCQ-OS] should match or be inclusive of the concept of interest [physical functioning] being assessed by the COA-based endpoint [6MWT]"	KCCQ-OS incorporates assessment of physical functioning	
"An anchor should have a well-justified definition for meaningful change or for meaningful increments"	Established thresholds: Stable [-5 to +5]; Small to Moderate Improvement / Decline [5 to 10, -5 to -10] ³	
"An anchor should be plainly understood by respondents in the context of use"	Confirmed as part of development of KCCQ-OS	
"Differences in COA scores should be related to differences documented by one or more anchors"	Validation of KCCQ-OS showed correlation r=0.37 with 6MWT, p < 0.001^4	
"Selected anchors should be assessed at comparable time points to the target COA"	6MWT and KCCQ-OS assessed at same study visits	

Guidance acknowledges identifying external dataset in rare diseases challenging and supports use of internal data.

¹MCID Primary Analysis ²Patient-Focused Drug Development: Incorporating Clinical Outcome Assessments (COA) Into Endpoints For Regulatory Decision-Making ³Spertus 2005 ⁴Kao 2007

KCCQ Responder Analysis (All Patients)

MCID Estimates Suggest that Average Treatment Effect on CM-24 6MWT Corresponds to a Difference in Experience that Majority of Patients Would Consider Meaningful

MCID calculated using observed data

Comparable TTR Reduction With Tafamidis Use

All-cause Mortality, Hospitalizations, UHF Visits (Month 24 Data Cut)

All-Cause Mortality, Hospitalizations, Urgent Heart Failure Visits Background Tafamidis Monotherapy HR = 1.002.5 2.5 (0.70, 1.43)Mean Placebo Cumulative 1.5 1.5 HR = 0.49Patisiran Function (0.28, 0.85)Placebo 0.5 0.5 Patisiran Month Month N of Patients Patisiran Placebo

BA-35

All Cause Mortality (Month 24 Data Cut)

All-Cause Mortality

Patisiran Treatment Effect (6MWT and KCCQ) Subgroups: Race/Ethnicity

Patisiran Treatment Effect (6MWT and KCCQ) Subgroups: ATTR Amyloidosis Type

Tafamidis Drop-in During APOLLO-B Study (DB or OLE) is Low

	Patisiran Monotherapy Group	
	Patisiran	Placebo
<u>n (%)</u>	(N = 135)	(N = 133)
Patients who initiated tafamidis during the DB period	5 (3.7%)	3 (2.3%)
Patients who initiated tafamidis during the DB or OLE periods	6 (4.4%)	10 (7.5%)

Patient Characteristics: APOLLO-B versus ATTR-ACT

	APOLLO-B	ATTR-ACT
Baseline Characteristics		
Age	76	74
NYHA III	7%	35%
Mean 6MWT (meters)	375	353
KCCQ points	70	66
NT pro-BNP	1,813	3,161
Placebo Decline at Month 12 (LS Me	an Change from Baseline)	
6MWT (meters)	-29.5	-57
KCCQ points	-3.4	-10

6MWT Placebo Decline in APOLLO-B vs ATTR-ACT

ATTR-ACT values derived from Maurer 2018 For visualization purposes, not intended as cross-study comparison

KCCQ Placebo Decline in APOLLO-B vs ATTR-ACT

ATTR-ACT values derived from Maurer 2018 For visualization purposes, not intended as cross-study comparison

6MWT Performance at Month 12 Patisiran: ≥10% Improvement More Likely Placebo: >10% Deterioration More Likely

Patient-Level Changes Demonstrate Clinically Meaningful Benefits with Patisiran

KCCQ-OS by Response Threshold

AA-2

KCCQ-OS: Patient-Level Changes Demonstrate Clinically Meaningful Benefits with Patisiran

Figure 44: Cumulative Distribution Function of Change From Baseline in KCCQ-OS at Month 12 (Full Analysis Set)

BF-45

Change from Baseline in KCCQ-OS at Month 12 (points)

Note: Figure presents observed KCCQ-OS data.

Note: Patients who had their Month 12 assessment on or after a serious COVID-19 adverse event are excluded from the analysis. KCCQ-OS=Kansas City Cardiomyopathy Questionnaire-Overall Summary.

Biomarker DB Results Background Tafamidis

Biomarker DB Results Patisiran Monotherapy

AA-5

Model Predicted TTR Reduction by Dose at Steady State: TTR Reduction Plateaus at Doses ≥ 0.3 mg/kg

CP-4

