Individuals using assistive technology may not be able to fully access the information contained in this file. For assistance, please call 800-835-4709 or 240-402-8010, extension 1. CBER Consumer Affairs Branch or send an e-mail to: occd@fda.hhs.gov and include 508 Accommodation and the title of the document in the subject line of your e-mail.

CDC

Information For The Vaccine And Related Biological Products Advisory Committee CBER, FDA

Global Influenza Virus Surveillance and Characterization October 5, 2023

David E. Wentworth, Ph.D.

Director, WHO Collaborating Center for Surveillance, Epidemiology and Control of Influenza

Director, Coronavirus and Other Respiratory Viruses Division (CORVD) Influenza Division, National Center for Immunization and Respiratory Diseases

Centers for Disease Control and Prevention

Atlanta, GA 30333

The findings and conclusions in this report are those of the authors and do not necessarily represent the official position of the Centers for Disease Control and Prevention.

Outline

- Introduction
 - Overview on influenza and vaccine antigen selection process
 - WHO-Vaccine Consultation Meeting, SH 2024 information
- Selected key information supporting committees' recommendations on:
 - A(H1N1)pdm09 same as N. Hemisphere
 - A(H3N2) Updated
 - B/Victoria Vaccine antigen remains unchanged
 - B/Yamagata Vaccine antigen remains unchanged

2

Four different groups of influenza virus infect humans

- Co-circulating human influenza viruses
 - Influenza A(H3N2)
 - Influenza A(H1N1)pdm09
 - Influenza B/Victoria
 - Influenza B/Yamagata

Betainfluenzavirus

Alphainfluenzavirus

- Not detected since March 2020
- Major antigens (surface proteins)
 - Hemagglutinin Virus attachment protein
 - Vaccines induce antibodies to block this protein
 - Neuraminidase Important for exit from infected cell
 - Antibodies and antiviral drugs inhibit this protein
- Genomes (~13.5Kb): 8 segments negative sense RNA
 - Enables reassortment during coinfections (2 in -> 256 out)

Thin Section EM. T. Noda, et al, Nature 439 (7075):490-492, 2006.

OD

Influenza viruses survive on the edge of catastrophe

- Replication of influenza virus genome is error-prone (~1 error/10,000 nucleotides copied)
 - Disadvantage for the virus
 - Close to the threshold of extinction (e.g., many defective viruses every replication cycle)
 - Advantages for the virus
 - Increased adaptability, variants are rapidly selected upon any type of evolutionary pressure (e.g., immune, antiviral drugs, new host)
 - Evolutionary benefit for evading host immunity
- Influenza viruses rapidly and continually evolve
 - Requires continuous comprehensive virus surveillance
 - Necessitates frequent updates to the vaccine

Influenza viruses exist as population of minor variants

Modified from Domingo E et al. Microbiol. Mol. Biol. Rev. 2012;76:159-216

Goal and key questions addressed for virus vaccine antigen recommendations

• Goal

- Identify antigen(s) that will elicit immunity against diverse/diverging viruses that will likely co-circulate in the future. Ideal antigens confer breadth of immunity to multiple lineages of viruses and reduce risk(s). It is not trying to "match" just one strain of influenza virus that will circulate.
- Key questions for 3-4 viruses targeted by the vaccine
 - Are/were there significant epidemics and where were they?
 - What are the genetic subclades (variants) that have emerged in our population?
 - Are the new emerging variants spreading geographically?
 - Are emerging variant viruses antigenically distinct from prior or contemporary viruses?
 - What is the proportion of the new group(s) and what group(s) is/are likely to predominate?
 - Do current vaccines induce antibodies in humans that protect against cocirculating viruses and/or emerging variants?
 - If new vaccine antigen is warranted, does it elicit antibodies with breadth which recognize multiple important lineages (i.e., does it confer breadth of protection)?

WHO-CC for Influenza | VSDB | Influenza Division | NCIRD

Data Used to Address Key Vaccine Update Questions

Epidemiologic and clinical data

• Where are recent epidemics occurring, are they unusual in magnitude or disease ?

Virus surveillance (GISRS: 70 years in the making)

- GISRS labs test 50-150 thousand samples per week year-round and identify influenza positive specimens
 - Four virus groups: A(H1N1)pdm09, A(H3N2), B/Victoria, B/Yamagata, enabled by training, diagnostic kits (e.g., Dx rtRT-PCR, EQAP) ٠
- Regularly share representative specimens to WHO-CCs
- Genomic characterization of viruses (Influenza changes rapidly and multiple subclades of interest continually emerge)
 - Primary focus are HA and NA genes, conduct genome constellation analysis and identify reassortants, patterns of parallel/convergent evolution

Antigenic characterization of representative emerging viruses

- Level of antigenic drift from progenitors and/or vaccine references
 - Naïve animal models used to determine level of antigenic variation ("drift)understand immune response triggered by the proteins on the surface of influenza virus to determine if they would be neutralized by the current vaccine, or have the potential to be a new vaccine
- Emerging antigenically distinct variants are selected early as new reference viruses for serological analysis and as candidate vaccines (two-way characterization)
- Post vaccination human serology studies
 - Comparative analysis of cocirculating antigenic variants to identify those that pose the greatest risk of immune escape
- Vaccine effectiveness studies (global consortium)
 - VE lower than expected, decreasing and/or show clade/subclade specific VE differences identified (data on the previous selections and their continued utility)
- Data integration and comparison among WHO-CCs (shared data methods, reagents, and viruses)
 - Influenza epidemiology, surveillance, phylogenetics, phylogeography, and antigenic data integration
 - Antigenic chartography, fitness forecasting
- Availability and characteristics of new candidate vaccine virus antigens
 - Data generated that illustrates the new antigens induce antibodies that neutralize viruses most likely to co-circulate in upcoming seasons or are cross-protective (progenitors and/or emerging variants)

WHO-CC for Influenza

VSDB | Influenza Division

NCIRD

WHO-Vaccine consultation meeting for the southern hemisphere 2024 influenza vaccine

- Continuous surveillance conducted by Global Influenza Surveillance and Response System (GISRS)
 - WHOCCs, NICs, WHO ERLs, WHO H5 Reference Laboratories
 - Supported by countries and partners worldwide
- WHO Consultation Meeting held 25 28 Sep 2023: data review, analysis and conclusion
 - A hybrid of in-person and virtual meeting
 - Chaired by Drs David Wentworth and Nicola Lewis
 - 10 Advisers: Directors of WHOCCs and ERLs
 - Disclosure of interests at the start of meeting
 - 33 observers from NICs, WHO CCs, WHO ERLs, other GISRS laboratories and academia; WOAH, FAO and OFFLU
 - Experts from WHO ROs and HQ
- WHO Information Meeting held 29 Sep 2023

WHO vaccine recommendations for the southern hemisphere 2024

It is recommended that vaccines for use in the 2024 southern hemisphere influenza season contain the following:

Trivalent: Egg-based Vaccines

- an A/Victoria/4897/2022 (H1N1)pdm09-like virus antigen*;
- an A/Thailand/8/2022 (H3N2)-like virus antigen**; and
- a B/Austria/1359417/2021 (B/Victoria lineage)-like virus.

Trivalent: Cell- or recombinant-based Vaccines

- an A/Wisconsin/67/2022 (H1N1)pdm09-like virus antigen*;
- an A/Massachusetts/18/2022 (H3N2)-like virus antigen**; and
- a B/Austria/1359417/2021 (B/Victoria lineage)-like virus antigen.

Quadrivalent: egg- or cell culture- or recombinant-based vaccines

- Above 3 components; and a **B/Phuket/3073/2013 (B/Yamagata lineage)-like antigen.**

* Different from that recommended for the 2023 southern hemisphere season but the same as the NH 2023-24 recommendation.

** Different from that recommended for the 2023 southern hemisphere season and from NH 2023-24 recommendation.

WHO recommendation and technical reports available on the WHO web site: https://www.who.int/teams/global-influenza-programme/vaccines/who-recommendations

CDC

Countries, areas and territories shared viruses with WHO CCs

Circulation of influenza viruses by hemisphere

Data source: FluNet, (https://www.who.int/tools/flunet), Global Influenza Surveillance and Response System (GISRS)

Н

A(H1N1)pdm09 Viruses

Data source: FluNet, (https://www.who.int/tools/flunet), Global Influenza Surveillance and Response System (GISRS)

CDC

Н

Influenza A(H1N1)pdm09 activity

Colour intensity shows the percent of influenza A(H1N1)pdm09 positive among all samples tested during this period per country

Source: <u>Global Influenza Programme (who.int</u>)

CDC

Overall A(H1N1)pdm09 HA phylogeography

Since 1st February 2023 (older viruses in grey); Antiserum circles (v fold of homologous titers)

Analysis of A(H1N1)pdm09 viruses by ferret antisera to antigens recommended for SH 2023 vaccines

HI

Assay	<u>Antisera to so</u>	<u>uthern he</u>	em	nisphere	e 2023 antigens (5a.2a	<u>a)</u>
WHO CC	A/Sydney/5/2021-like Cell (5a.2a)	Low (≥ 8 fold)		WHO CC	A/Sydney/5/2021-like Egg (5a.2a)	Low (≥ 8 fold)
CDC	222 (100%)	1 (0%)		CDC	76 (99%)	1 (1%)
CNIC	2017 (98%)	34 (2%)		CNIC	1980 (97%)	71 (3%)
FCI	238 (100%)	0 (0%)		FCI	238 (100%)	0 (0%)
NIID	42 (100%)	0 (0%)		NIID		
VIDRL	2224 (100%)	4 (0%)		VIDRL	2194 (98%)	34 (2%)
TOTAL	4743 (99%)	39 (1%)		TOTAL	4488 (98%)	106 (2%)

"Low" represented titers ≥ 8-fold lower than vaccine strain homologous titer

WHO Collaborating Center for Surveillance, Epidemiology and Control of Influenza, Influenza Division, National Center for Immunization and Respiratory Diseases

SH 2023 post vaccination human serology

Vac.: A/Sydney/5/21-like

WHO Collaborating Center (CC): Human Serological Panels

A(H1N1)pdm09 -- HI Protocol [CELL]

						5a.2a												5a.2a.1							
					+D94N	+T216A		+A	48P	+V152I	+T164N (CHO-)	+K1	69R	+1533V	+A141E +S1	+V152I 190I		-				+T216A			
					SY	D/5		ME	/10	FUKUI/ 12	TAS/29	SD/31	-LIKE	DAR/23	WA/22	2-LIKE		WI/67			w	/I/47-LIK	E		HI/70
						-			-	-	-	SD/31	DAR/7	-	WA/22	SYD/44		-			WI	47		VIC/4897	-
					CELL C CBER NIID VIDRL			CE	ELL	CELL	CELL	CELL	CELL	CELL	CELL	CELL		CELL			CE	LL		CELL	CELL
				CDC	CBER	NIID	VIDRL	CDC	CBER	NIID	VIDRL	CDC	VIDRL	VIDRL	CDC	VIDRL	CDC	CBER	NIID	CDC	CBER	NIID	VIDRL	VIDRL	CDC
2021	Pediatric	IIV4	Australia				69				\checkmark		\checkmark	\checkmark		\checkmark							\checkmark	\checkmark	
Y/5/2	Adult	ccIIV4 (Flucelvax)	Australia	205	229	485	243	V	\checkmark	\checkmark	\checkmark	\checkmark	V	\checkmark	V	115	\checkmark	\checkmark	236	\checkmark	164	\checkmark	V	151	\checkmark
CIE	Auun	IIV4	Australia	147	358	286	174	\checkmark	115	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	78	53	\checkmark	64	139	94	78	174	\checkmark	94	\checkmark
A/S/	Elderly	allV4	Australia	29	120	83	43	x	31	\checkmark	\checkmark	x	\checkmark	\checkmark	x	25	x	18	43	x	21	\checkmark	\checkmark	\checkmark	x
								0 (0.0)	2 (66.7)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	1 (25.0)	3 (75.0)	0 (0.0)	2 (66.7)	3 (100.0)	1 (25.0)	3 (100.0)	1 (33.3)	0 (0.0)	2 (50.0)	0 (0.0)

Geometric Mean Titer (GMT) ratios between reference and test antigens are calculated with 90% (CI) confidence intervals for each cohort and panel location. Unadjusted model results are shown. If the CI lower bound is greater than 50%, it is statistically non-inferior (95% confidence leve), otherwise it is possibly inferior. Heat map cells are colored using the GMT ratio lower bound. Blue indicates statistical non-inferiority and orange denotes possible inferiority. Numbers shown are post-vaccination GMTs for the unadjusted model. They are shown for common reference antigens and possibly inferior test antigens (consolidated by passage-type). Marks $\sqrt{}$ or X denote statistically significant non-inferiority when the reference virus GMT is ≥40 or <40, respectively. Number and percent (in parentheses) of possibly inferior responses are summarized below the heat map.

Included Strains: A/DARWIN/23/2023 (DAR/23); A/DARWIN/7/2023 (DAR/7); A/FUKUI/12/2023 (FUKUI/12); A/HAWAII/70/2019 (HI/70); A/MAINE/10/2022 (ME/10); A/SOUTH DAKOTA/31/2023 (SD/31); A/SYDNEY/44/2023 (SYD/44); A/SYDNEY/5/2021 (SYD/5); A/TASMANIA/29/2023 (TAS/29); A/VICTORIA/4897/2022 (VIC/4897); A/WASHINGTON/22/2023 (WA/22); A/WISCONSIN/47/2022 (WI/47); A/WISCONSIN/67/2022 (WI/67).

Multiple sources: complied by WHO CC CDC, USA

SH 2023 post vaccination human serology

Vac.: A/Sydney/5/21-like

WHO Collaborating Center (CC): Human Serological Panels

A(H1N1)pdm09 -- HI Protocol [CELL]

						5a.2a														5a.2	2a.1				5a.1
					+D94N	+T216A		+A	48P	+V152I	+T164N (CHO-)	+K1	69R	+1533V	+A141E +S1	+V152I 190I		-				+T216A			-
					SY	D/5		ME	E/10	FUKUI/ 12	TA S/29	SD/31	-LIKE	DAR/23	WA/22	2-LIKE		WI/67			w	1/47-LIK	E		HI/70
					CELL CDC CBER NIID VIDRL				-	-	-	SD/31	DAR/7	-	WA/22	SYD/44		-			WI/	47		VIC/4897	-
					CELL CELL		CE	ELL	CELL	CELL	CELL	CELL	CELL	CELL	CELL		CELL			CE	LL		CELL	CELL	
				CDC	CBER	NIID	VIDRL	CDC	CBER	NIID	VIDRL	CDC	VIDRL	VIDRL	CDC	VIDRL	CDC	CBER	NIID	CDC	CBER	NIID	VIDRL	VIDRL	CDC
170	Pediatric	IIV4	Australia				69				\checkmark		\checkmark	\checkmark		V							\checkmark	1	
	Adult	ccIIV4 (Flucelvax)	Australia	205	229	485	243	V	\checkmark	\checkmark	\checkmark	V	V	\checkmark	V	115	V	\checkmark	236	V	164	V	V	151	\checkmark
	Auun	IIV4	Australia	147	358	286	174		115	1	\checkmark		\checkmark	\checkmark	78	53	\checkmark	64	139	94	78	174	\checkmark	94	\checkmark
c/H	Elderly	allV4	Australia	29	120	83	43	x	31	\checkmark	\checkmark	x	\checkmark	\checkmark	x	25	x	18	43	x	21	\checkmark	\checkmark	\checkmark	x
								0 (0.0)	2 (66.7)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	1 (25.0)	3 (75.0)	0 (0.0)	2 (66.7)	3 (100.0)	1 (25.0)	3 (100.0)	1 (33.3)	0 (0.0)	2 (50.0)	0 (0.0)

Geometric Mean Titer (GMT) ratios between reference and test antigens are calculated with 90% (CI) confidence intervals for each cohort and panel location. Unadjusted model results are shown. If the CI lower bound is greater than 50% it is statistically non-inferior (95% confidence level) otherwise it is possibly inferior. Heat man cells are colored using the GMT ratio lower bound. Blue indicates statistical non-inferiority and orange der the

po: der Demonstrates that changes in site Ca (i.e., P137S and K142R in 5a.2a.1 proteins) subtly change Inc A/S antigenic properties and reduce human antibody recognition.

> Statistically non-inferior = \mathbf{V} Statistically non-inferior but reference virus GMT < 40 = X

0.000

GMT Ratio Lower-Bound (90% CI) 1.000

Multiple sources: complied by WHO CC CDC, USA

AA

A(H1N1)pdm09: antiviral susceptibility

• NA inhibitors

- Of 5,012 viruses tested 18 showed resistance in genetic and/or phenotype analyses
- Endonuclease inhibitors
 - Of 1,843 viruses tested 2 showed resistance in genetic and/or phenotype analyses

A(H1N1)pdm09 Summary

- Taken together the data supported updating from the southern hemisphere 2023 vaccine antigen (A/Sydney/5/2021-like (HA clade 5a.2a)) to the same antigen recommended for the northern hemisphere 2023-24 (A/Wisconsin/67/2022-like (HA clade 5a.2a.1).
 - A(H1N1)pdm09 viruses circulated globally and predominated in most geographic regions.
 - Phylogenetics analysis of the HA genes from viruses collected since 1 February showed nearly all were subclade 5a.2a (predominated in Oceania, Asia, Africa and Europe) or 5a.2a.1 (predominated in North America, Central America and South America).
 - While **ferret antisera didn't distinguish** between HA clade 5a.2, 5a.2a, or 5a.2a.1 viruses, post vaccination **human sera showed reductions** in geometric mean titers associated with amino acid substitutions in antigenic sites such as Ca.
 - Interim vaccine effectiveness estimates from the southern hemisphere indicate that the vaccines were effective, which is consistent circulation of A/Sydney/5/2021-like (HA clade 5a.2a) viruses.
- Nearly all viruses analyzed showed susceptibility to antivirals

A(H3N2) Viruses

Number of A(H3N2) viruses detected by GISRS

Influenza A(H3N2) activity

Colour intensity shows the percent of influenza A(H3N2) positive among all samples tested during this period per country Source: <u>Global Influenza Programme (who.int)</u>

Overview of A(H3N2) HA phylogeography

• Nearly all are subclades derived from clade 2 (complete classification 3C.2a1b.2a.2).

A(H3N2) HA phylogeography

- Major recent clade 2 subclades:
 - 2a.3a.1
 - e.g., A/Massachusetts/18/2022 and A/Thailand/8/2022
 - Africa, Asia, North America, Oceania
 - 2b
 - e.g., A/Florida/57/2022
 - Global distribution
 - 2a.1b
 - e.g., A/Michigan/60/2022
 - North America, Europe
 - Parallel evolution at I140K>M
 - Most reacted well with antisera to A/Darwin/6/2021
 - NH 2023-24 vaccine antigen

Global circulation of A(H3N2) HA clades (Feb.-Aug. 2023)

Estimated global infections of A(H3N2) HA clades

CDC

H3 and N2 Phylogenies showing local branching index (LBI)

- LBI is one technique used to identify viruses that may have fitness advantage over other clades
 - Suggest 2a.3a.1 HA and typically corresponding NA genes have higher fitness

Nextstrain / flu / seasonal / h3n2 / ha / 2y : flu / seasonal / h3n2 / na / 2y

Location of changes in key serology antigens

A/Darwin/6/2022 (Cell)

A/Massachusetts/18/2022 (Cell) 2a.3a.1

	Ana	lysis of A(H3 reco	N2) viruses mmended fo	by antiser or SH 202	a to antigen 3	S
HI Assay	ý	<u>Antisera to so</u> A/Darwin/6/2021-like (uthern hemis cell)*	<u>phere 2023</u> A	<u>8 antigens (2a)</u> /Darwin/09/2021-like	(egg)
	WHO CC	Like (2-4 fold)	Low (≥ 8 fold)	WHO CC	Like (2-4 fold)	Low (≥ 8 fold)
	CDC	90 (100%)	0 (0%)	CDC	82 (91%)	8 (9%)
	CNIC	783 (57%)	585 (43%)	CNIC	706 (52%)	662 (48%)
	FCI	108 (98%)	2 (2%)	FCI	98 (89%)	12 (11%)
	VIDRL	300 (93%)	23 (7%)	VIDRL	249 (77%)	74 (23%)
	Total	1281 (68%)	610 (32%)	Total	1135 (60%)	756 (40%)

"Low" represented titers ≥ 8-fold lower than vaccine strain homologous titer

Antigenic analysis of A(H3N2) viruses (HI)

H3N2, HI Test Date: 15/08/2023		NH- 2(023-24	SH-	2024			Fold difference <4-fold 4-fold 8-fold >8-fold	
	E5	SIAT2	E4	SIAT2	E3/D1	SIAT1			
	Cambe082636	0 Dar6	Dar9	Thai8	Thai8	SthAust389			
	A9049	A9231	A9358	A9671	F0221	A9674		Passage	Sample
	1a	2a	2 a	2a.3a.1	2a.3a.1	2b	Clade	details	Date
REFERENCE ANTIGENS									
A/Cambodia/E0826360/2020e	e 640	320	160	80	160	80	1a	E5	
A/Darwin/6/2021c	80	1280	80	40	160	160	2a	SIAT2	
A/Darwin/9/2021e	160	640	320	80	320	320	2a	E5	
A/Thailand/8/2022c	80	640	160	320	640	80	2a.3a.1	SIAT2	
A/Thailand/8/2022e	160	1280	320	320	1280	640	2a.3a.1	E3	
A/South Australia/389/2022c	80	160	80	40	80	320	2a.2b	SIAT2	
TEST ANTIGENS									
A/Sydney/510/2023	80	640	80	320	1280	80	2a.3a.1	SIAT1	2023-06-23
A/Sydney/513/2023	80	320	80	320	1280	80	2a.3a.1	SIAT1	2023-06-24
A/Sydney/555/2023	80	320	160	160	640	80	2a.3a.1	MDCK1	2023-07-07
A/Auckland/50/2023	40	320	80	160	1280	40	2a.3a.1	SIATX,SIAT1	2023-04-06
A/Singapore/GP1582/2023	80	640	80	160	640	80	2a.3a.1	SIAT1	2023-02-15
A/Singapore/GP7270/2023	80	640	80	160	1280	80	2a.3a.1	MDCK1,SIAT1	2023-05-24
A/South Australia/48/2023	40	320	80	160	640	40	2a.3a.1	SIAT2	2023-02-22
A/Sydney/639/2023	40	320	40	160	1280	40	2a.3a.1	SIAT1	2023-07-08
A/Sydney/710/2023	<40	320	40	160	640	40	2a.3a.1	SIAT1	2023-07-29
A/Victoria/2107/2023	40	320	40	160	640	40	2a.3a.1	MDCK2	2023-07-29
A/Philippines/52/2023	80	640	80	160	640	40	2a.3b	SIAT2	2023-06-19
A/Brisbane/273/2023	40	640	80	<40	80	40	2a.1b	SIAT2	2023-05-15

A(H3N2) antigenic cartography

Since 1st February 2023 (older viruses in grey)

Source: Cambridge Univ., S. James and D. Smith

CDC

A(H3N2) antigenic cartography showing antisera reactivity

Antiserum circles (within 8-fold of homologous titers)

Source: Cambridge Univ., S. James and D. Smith

Individual human sera analysis - A(H3N2)

S. hemisphere A/Darwin/6/2021 -like vaccine

- Strong boost in neutralizing antibodies to most emerging HA clades
 - including 2a.3a.1
- Lowest in 2a.3 representative (GA/19), which represents small proportion of viruses.

Percent (%) vaccinees with pre- (blue icons) and post-vaccination (orange icons) titer ≥ 40

Strains abbreviated: A/DARWIN/6/2021 (DAR/6); A/FLORIDA/57/2022 (FL/57); A/GEORGIA/19/2023 (GA/19); A/MASSACHUSETTS/18/2022 (MA/18); A/MICHIGAN/60/2022 (MI/60); A/MONTANA/08/2023 (MT/08); A/NEW YORK/66/2022 (NY/66); A/VICTORIA/260/2023 (VIC/260)

CDC

Source: WHO-CC at CDC

Human post-vaccination sera analysis - A(H3N2) summary

WHO Collaborating Center (CC): Human Serological Panels

A(H3N2) -- HI & MN Protocol [CELL]

					2a					2a.1	1 2a.1b						20	1.3	2a.3a	.3a 2a.3a.1														2	!b				
							-			+K503R		-		+I214T		+T135K +I140K	(CHO-) +\$145N	+T135A (CHO-) +I223V				-				+N122D (CHO-)	+N63K +N122D +V3	(CHO-) (CHO-) 47M	-	+T1354	а (сно-)	+T135A (CHO-) +\$262N			+1242M			+L157F +S262N	
						D	AR/6-LII	KE		AICHI/ 65	N	II/60-LIK	E		BRI/273		GA	/19	NAG/ 2100			м	A/18-LI	(E			NY/66	SA	/48	FL/57	м	T/08	YAM/60			VIC/260			GRC/ ILI 249
						DA	R/6		DAR/11	-	м	/60	LEON/ 4311		-			-	-	MA	V18	CAN/79	NEW/ 113	THA/8	YAM/ 23018	ZAF/ R06126	-			-		-	-			-			-
						CE	ELL		CELL	CELL	CE	LL	CELL		CELL		CE	LL	CELL	CE	LL	CELL	CELL	CELL	CELL	CELL	CELL	CE	LL	CELL	CE	ELL	CELL			CELL			CELL
					CDC	CBER	MHRA	NIID	VIDRL	NIID	CDC	CBER	MHRA	CBER	MHRA	VIDRL	CDC	CBER	NIID	CDC	CBER	VIDRL	VIDRL	VIDRL	NIID	MHRA	CDC	MHRA	VIDRL	CDC	CDC	CBER	NIID	CDC	CBER	MHRA	NIID	VIDRL	MHRA
					MN	MN	HI	MN	HI	MN	MN	MN	HI	MN	HI	HI	MN	MN	MN	MN	MN	HI	н	HI	MN	HI	MN	HI	HI	MN	MN	MN	MN	MN	MN	HI	MN	HI	HI
	Pediatric (CDC: 6-35M)	IIV4	2022-23NH	USA	149						1						75										1			77	86								
	Pediatric (CDC: 3-8Y)	IIV4	2022-23NH	USA	538						1						57			1							1			1	251								
	(,		2023SH	Australia					102							1						1	1	1					1									1	
	Pediatric (9-17Y)	cclIV4 (Flucelvax)	2022-23NH	USA	401						1						72										1			243	226								
	Adult	cclIV4 (Flucelvax)	2023SH	Australia	205	147	51	89	184	4	1	74	21	24	6	1	32	21	1	4	70	1	1	100	4	24	1	9	1	1	121	34	4	1	82	14	4	1	21
	-	IIV4	2022-23NH	USA	309	95		_			204	30		24			35	27			46						1			1	1	28			25				
				UK			12						x		x											8		x								x			7
			2023SH	Australia	160	87	57	51	118	4	94	32	35	22	16	62	16	29		1	49	1	1	1		7	1	1		76	64	28	1	1	28	4		70	16
•		IIV3	2023SH	Peru	53		75				1		10		6		26									1	1	4		4	1					4			1
	Elderly	allV4	2023SH	Australia	226	128	55	187	160	1	1	25	28	23	27	1	19	25	1	1	71	1	1	94	1	17	1	1	V	132	83	39	1	1	45	1	88	1	1
										0 (0.0)	2 (25.0)	4 (100.0)	4 (80.0)	4 (100.0)	4 (80.0)	1 (25.0)	8 (100.0)	4 (100.0)	0 (0.0)	0 (0.0)	4 (100.0)	0 (0.0)	0 (0.0)	2 (50.0)	0 (0.0)	4 (80.0)	0 (0.0)	1 (20.0)	0 (0.0)	4 (50.0)	6 (75.0)	4 (100.0)	0 (0.0)	0 (0.0)	4 (100.0)	1 (20.0)	1 (50.0)	1 (25.0)	3 (60.0)

Geometric Mean Titer (GMT) ratios between reference and test antigens are calculated with 90% (CI) confidence intervals for each cohort and panel location. Unadjusted model results are shown. If the CI lower bound is greater than 50%, it is statistically non-inferior (95% confidence level), otherwise it is <u>possibly</u> inferior. Heat map cells are <u>colored</u> using the GMT ratio lower bound. Blue indicates statistical non-inferiority and orange denotes *possible* inferiority. <u>Numbers</u> shown are post-vaccination GMTs for the unadjusted model. They are shown for common <u>reference antigens</u> and possibly inferior test antigens (consolidated by passage-type). <u>Marks</u> $\sqrt{$ or X denote statistically significant non-inferiority when the reference virus GMT is ≥40 or <40, respectively. <u>Number</u> and <u>percent</u> (in parentheses) of <u>possibly</u> inferior responses are summarized below the heat map.

Hemagglutination inhibition (HI) assay results reported by MHRA and VIDRL are indicated in addition to all microneutralization (MN) protocol trends; Australian/Peruvian and UK/US population cohorts vaccinated with 2023 Southern Hemisphere (SH) and 2022-23 Northern Hemisphere (NH) vaccine formulations (respectively).

Included Strains: A/AICH/85/2023 (AICH/85); A/BRISBANE/273/2023 (BRI/273); A/CANBERRA/79/2023 (CAN/79); A/DARWIN/11/2021 (DAR/11); A/DARWIN/8/2021 (DAR/8); A/FLORIDA/57/2022 (FL/57); A/GEORGIA/19/2023 (GAC/19); A/GREECE/ILI_249/2023 (BRI/273); A/LEON/4311/2023 (LEON/4311); A/MASSACHUSETTS/18/2022 (MA/18); A/MICHIGAN/80/2022 (MI/80); A/MONTANA/08/2023 (MT/08); A/NAGANO/2100/2023 (NAG/2100); A/NEW YORK/86/2022 (NY/86); A/NEWCASTLE/113/2023 (NEW/113); A/SOUTH AFRICA/R06126/2023 (ZAF/R06126); A/SOUTH AUSTRALIA/48/2023 (SA/48); A/THAILAND/8/2022 (THA/8); A/VICTORIA/260/2023 (VIC/260); A/YAMAGATA/60/2023 (YAM/80); A/YAMANASHI/23018/2023 (YAM/23018).

- Most significant reductions in geometric mean titer (GMT) were observed among 2a.1b, 2a.3 and 2b
 representatives
- Fewer and more subtle reductions in GMT in 2a.3a.1

A(H3N2) virus antiviral susceptibility

Neuraminidase inhibitors

- None of 2,240 A(H3N2) viruses collected and analyzed since 1 February 2023 showed genetic or phenotypic evidence of reduced inhibition to neuraminidase inhibitors.
- Endonuclease (PA) inhibitors
 - **Of 1,092** A(H3N2) viruses collected and analyzed since 1 February 2023, **10** showed genetic or phenotypic evidence of reduced susceptibility to baloxavir marboxil.

A(H3N2) summary

- Collectively the data indicated that updating the vaccines to contain A/Thailand/8/2022 (H3N2)-like (egg-based) or A/Massachusetts/18/2022 (cell/recombinant-based) for the southern hemisphere 2024 was warranted.
 - A(H3N2) subtype predominated in In some countries, areas and territories
 - Most A(H3N2) activity was observed in southern Africa and in Asia
 - Phylogenetics analysis of the HA genes from viruses in this period showed continued diversification of the HA clade 2a (complete classification 3C.2a1b.2a.**2a**), whereas clade 2b has been stable.
 - Major clades were 2a.3a.1 > 2b > 2a.1b
 - Clade 2a.3a.1 increased in proportion during this period, and predominated where A(H3N2) activity/epidemics occurred.
 - Ferret antisera to:
 - A/Darwin/6/2021-cell (2a) recognized viruses expressing most HA clade 2 derivatives well. Limited reductions were seen among viruses expressing 2b and 2a.3a.1 HA clades and this was more pronounced with A/Darwin/9/2021-egg antisera.
 - A/Massachusetts/18/22-cell or A/Thailand/8/2022 (H3N2)-like (egg-based) reacted well with most viruses circulating
 particularly those expressing clade 2a.3a.1 HA genes.
 - Overall, most human postvaccination sera (A/Darwin/6/2021-like) reacted well with most emerging lineages including 2a.3a.1. However, some recent HA clade 2a.1b, 2a.3a.1 and 2b virus representative were significantly reduced in some serum panels in some laboratories.
 - Interim vaccine effectiveness estimates from the southern hemisphere were very limited due to low circulation overall.
- Nearly all viruses analyzed showed susceptibility to antivirals

NCIRD

WHO-CC for Influenza

VSDB | Influenza Division |

Influenza B Viruses

Number of influenza B viruses detected by GISRS

Influenza B virus activity

Data source: FluNet, (https://www.who.int/tools/flunet), Global Influenza Surveillance and Response System (27 Sep 2023)

Circulating influenza B virus lineages (Feb 2023 – Aug 2023)

WHO-CC for Influenza

VSDB | Influenza Division | NCIRD

Data source: FluNet, (https://www.who.int/tools/flunet), Global Influenza Surveillance and Response System (15 Sep 2023)

Influenza B/Victoria Viruses

Recent B/Victoria lineage HA phylogenetics

Antigenic analysis of B/Victoria viruses

Antisera to southern hemisphere 2022 antigens

B/Austria/1359417/2021-like (cell)

B/Austria/1359417/2021-like (egg)

WHO CC	Like (2-4 fold)	Low (≥ 8- fold)	WHO CC	Like (< 8-fold)	Low (≥ 8- fold)
CDC	161 (99%)	2 (1%)	CDC	161 (99%)	2 (1%)
CNIC	40 (98%)	1 (2%)	CNIC	40 (98%)	1 (2%)
FCI	285 (100%)	1 (0%)	FCI	285 (100%)	1 (0%)
NIID	29 (100%)	0 (0%)	NIID	29 (100%)	0 (0%)
VIDRL	1436 (100%)	1 (0%)	VIDRL	1420 (99%)	17 (1%)
TOTAL	1951 (>99%)	5 (<1%)	TOTAL	1935 (99%)	21 (1%)

"Low" represented titers ≥ 8-fold lower than vaccine strain homologous titer

B/Victoria antigenic cartography

Antiserum circles (within 8-fold of homologous titers)

Human post-vaccination serum analysis of B/Victoria viruses

WHO Collaborating Center (CC): Human Serological Panels

B/Victoria -- HI Protocol [CELL]

					V1A.3a.2													V1A.3				
									+A154T +D197E	+E1	183K +D19	97E	+E128G +E183K +D197E	+D197E +T222A +G230D	+E128K +S2	+A154E 08P		-		+N233K	(CHO-)	
						AUT/1	359417		SVN/ 11466	CAT/22	279261N	S-LIKE	TOKYO/ 22103	OSAKA /01	CA/09	-LIKE	WA	/02		NC	/01	
						-			-	CAT/227 9261NS	BUR/ 4810	CO/05	-	-	CA/09	POL/157		-		-		
					CDC	CE CBER	LL MHRA		CELL	CELL		CELL			CELL	CELL MHRA	CE CDC		CDC	CE CBER	LL	NIID
	Pediatric (CDC: 6-35M)	IIV4	2022-23NH	USA	67				\checkmark	V					V		9		9			
ELL	Pediatric (CDC: 3-8Y)	ccIIV4 (Flucelvax)	2022-23NH	USA	178				\checkmark	V					V		98		106			
210	Adult	ccIIV4 (Elucelvax)	2022-23NH	USA	135				\checkmark	1					\checkmark		72		89			
17/20		(Fuccivax)	2023SH	Australia	194	236	109	311	\checkmark	\checkmark	\checkmark	1	\checkmark	1	\checkmark	1	50	15	61	103	61	211
3594		IIV4	2022-23NH	USA		27						x						6		6		
IIA/1				UK			52				\checkmark					\checkmark					31	
JSTF			2023SH	Australia	76	43	139	211	V	\checkmark	\checkmark	1	\checkmark	\checkmark	\checkmark	\checkmark	37	9	42	15	94	1
B/AI		IIV3	2023SH	Peru	77		130		\checkmark	\checkmark	\checkmark				1	۸	31		30		63	
	Elderly	allV4	2023SH	Australia	62	36	130	193	\checkmark	\checkmark	\checkmark	x	\checkmark	1	V	\checkmark	19	7	19	9	34	\checkmark
									0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	7 (100.0)	4 (100.0)	7 (100.0)	4 (100.0)	5 (100.0)	1 (33.3)

Geometric Mean Titer (GMT) ratios between reference and test antigens are calculated with 90% (CI) confidence intervals for each cohort and panel location. Unadjusted model results are shown. If the CI lower bound is greater than 50%, it is statistically non-inferior (95% confidence level), otherwise it is <u>possibly</u> inferior. Heat map cells are <u>colored</u> using the GMT ratio lower bound. Blue indicates statistical non-inferiority and orange denotes <u>possible</u> inferiority. <u>Numbers</u> shown are post-vaccination GMTs for the unadjusted model. They are shown for common <u>reference antigens</u> and possibly inferior test antigens (consolidated by passage-type). <u>Marks</u> $\sqrt{}$ or X denote statistically significant non-inferiority when the reference virus GMT is \geq 40 or <40, respectively. <u>Number</u> and <u>percent</u> (in parentheses) of <u>possibly</u> inferior responses are summarized below the heat map.

Australian/Peruvian and UK/US population cohorts vaccinated with 2023 Southern Hemisphere (SH) and 2022-23 Northern Hemisphere (NH) vaccine formulations (respectively).

B/Victoria lineage antiviral susceptibility

- NA inhibitors
 - 2334 influenza B/Victoria lineage viruses collected since 1 February 2023 were analyzed by genetic and/or phenotypic analysis
 - **Six** showed evidence of highly reduced inhibition by NAIs.
 - **Five** of these viruses had a K360E substitution and one virus had an H134Y substitution in the NA gene.

Endonuclease inhibitors

• Of 1,356 B/Victoria lineage viruses collected in this period and analyzed in this period, none showed evidence of reduced susceptibility to baloxavir.

Influenza B/Yamagata Viruses

B/Yamagata lineage virus

There have been no confirmed detections of circulating
 B/Yamagata/16/88 lineage viruses after March 2020.

- Of 15,878 influenza B viruses collected between 1 February and 31 August 2023 and lineage-tested, no B/Yamagata/16/88 lineage viruses were confirmed.
 - Of the 15 viruses initially identified as B/Yamagata lineage:
 - 13 were confirmed to be B/Victoria lineage viruses or were negative for influenza B
 - 2 were not available for confirmation and did not yield gene sequence data or virus isolates.

B/Yamagata lineage virus (2)

- The absence of confirmed detection of naturally occurring B/Yamagata lineage viruses is indicative of very low risk of infection by B/Yamagata lineage viruses.
- It was the opinion of the WHO influenza vaccine composition advisory committee that while both trivalent and quadrivalent vaccines remain safe and effective, the inclusion of a B/Yamagata lineage antigen in quadrivalent influenza vaccines is no longer warranted, and every effort should be made to exclude this component as soon as practically possible.
- The committee recognizes that national or regional authorities are responsible for approving the composition and formulation of vaccines used in each country and should consider the use & relative benefit(s) of trivalent or quadrivalent influenza vaccines.

Influenza B virus summary

- Only influenza B/Victoria lineage viruses were available for analysis
- Collectively there was not evidence that updating the B/Victoria vaccine antigen (B/Austria/1359417/2021-like (HA clade 3a.2) was needed.
- Phylogenetics analysis of the HA genes showed that 3a.2 (share A127T, P144L and K203R) vastly predominated, had global circulation and continue to diversify while antigenically distinct viruses expressing progenitor clade 3 (1A.3) and 3a.1 HA genes continue to decline.
- Antigenically nearly all the viruses tested are well recognized by ferret antisera to B/Austria/1359417/2021-like viruses (3a.2 HA).
- Post vaccination human antisera well inhibited the diversity of HA clade 3a.2 viruses and the only reductions in GMTs were only detected with most serum panels for viruses that express the progenitor clade 3 (1A.3) HA genes similar to previous vaccine antigens.
- Interim vaccine effectiveness estimates from the Southern hemisphere indicate that the vaccines were highly effective.
- Nearly all viruses analyzed showed susceptibility to antivirals.

Support and Disclaimer

The findings and conclusions in this report are those of the authors and do not necessarily represent the official position of the Centers for Disease Control and Prevention.

These projects have been funded in part with federal funds from US Health and Human Services (National Institutes of Health, Centers for Disease Control, and the Biomedical Advanced Research and Development Authority).

National Institute of Allergy and Infectious Diseases Leading research to understand, treat, and prevent infectious, immunologic, and allergic diseases.

