GRAS Notice (GRN) No. 1133 https://www.fda.gov/food/generally-recognized-safe-gras/gras-notice-inventory

> AceOneRS, Inc. 5903 Hampton Forest Way, Fairfax, VA 22030 (301) 875-6454

October 28, 2022

Division of Biotechnology and GRAS Notice Review Office of Food Additive Safety (HFS-200) Center for Food Safety and Applied Nutrition Food and Drug Administration 5001 Campus Drive College Park, MD 20740

Subject: GRAS Notification of Resistant Dextrin from Corn as a Food Ingredient

To whom it may concern,

On behalf of Anderson Global Group (hereinafter referred to as 'AGG'), we are submitting a GRAS notification for Resistant Dextrin from Corn as a food ingredient. The enclosed document provides the notice of a claim that a food ingredient, Resistant Dextrin from Corn, described in the enclosed notification is exempt from the premarket approval requirement of the Federal Food, Drug, and Cosmetic Act because it has been determined to be generally recognized as safe (GRAS), based on scientific procedures, as a food ingredient. We believe that this determination and notification are in compliance with 21 C.F.R. Part 170, subpart E.

We submit a pdf file for your review. Please feel free to contact me if additional information or clarification is needed as you proceed with the review. We would appreciate your kind attention to this matter.

Sincerely,

Susan Cho, Ph.D. scho@aceoners.com or sscho397@yahoo.comr Agent for AGG

Determination of the Generally Recognized As Safe (GRAS) Status of Resistant Dextrin from Corn

Prepared for: Anderson Global Group (AGG)

Prepared by: AceOne RS, Inc. (formerly NutraSource, Inc.) scho@aceoners.com or sscho397@yahoo.com (301) 875-6454

GENERALLY RECOGNIZED AS SAFE (GRAS) STATUS OF RESISTANT DEXTRIN FROM CORN

Table of Contents

PART 1. SIGNED STATEMENTS AND CERTIFICATION	6
1.A. GRAS Notice Submission	6
1.B. Name and Address of Notifier	6
1.C. Names of Notified Substance	6
1.D. Intended Conditions of Use	6
1.D.1. Foods in Which the Substance is to be Used	6
1.D.2. Levels of Use in Such Foods	7
1.D.3. Purpose for Which the Substance is Used	7
1.D.4. Description of the Population Expected to Consume the Substance	7
1.E. Basis for the GRAS Determination	8
1.F. Premarket Exempt Status	8
1.G. Availability of Information	8
1.H. Availability of Freedom of Information Act Exemption	8
1.I. Certification	8
1.J. Food Safety and Inspection Service/USDA Statement	8
PART 2. IDENTITY, METHOD OF MANUFACTURE, SPECIFICATIONS, AND	9
PHYSICAL OR TECHNICAL EFFECTS	
2.A. Scientific Information About the Identify of the Biological Source	9
2.A.1. Identity of the Notified Substance	9
2.A.1.1. Names of the Notified Substance	9
2.A.1.2. Chemical Names	9
2.A.1.3. Chemical Abstract Service (CAS) Registry Number	9
2.A.1.4. Empirical Formula	9
2.A.1.5. Molecular Weight	9
2.A.1.6. Structural Formula	9
2.A.1.7. Background	10
2.A.2. Potential Toxicants in the Source of the Notified Substance	12
2.A.3. Particle Size	13
2.B. Method of Manufacture	13
2.C. Composition and Specifications of AGG's Resistant Dextrin and Their Raw	15
Materials	
2.D. Intended Technical Effects	17
2.E. Stability	17
PART 3. DIETARY EXPOSURE	18
3.A. Estimated Dietary Intakes (EDIs) of Resistant Dextrin Under the Intended Use	18
3.B. Food Sources of Resistant Dextrin	20
3.C. EDIs of Naturally Occurring Resistant Dextrin from Diet	20
PART 4. SELF LIMITING LEVELS OF USE	21
PART 5. HISTORY OF CONSUMPTION	22
PART 6. NARRATIVE	23

6.A. Current Regulatory Status	23
6.B. Review of Safety Data	24
6.B.1. Metabolism	24
6.B.2. Mutagenicity and Genotoxicity Study	24
6.B.3. Animal Toxicity Studies	27
6.B.3.1. Animal Toxicity Studies of AGG's Resistant Dextrins	28
6.B.3.2. Animal Toxicity Studies of Other Sources of Resistant Dextrins	28
6.B.4. Human Clinical Studies	29
6.B.4.1. Digestive Tolerance	29
6.B.4.2. Human Clinical Studies Testing Other Parameters	33
6.B.5. Potential Adverse Effects	37
6.D. Safety Determination	37
6.E. Conclusions and General Recognition of the Safety of Resistant Dextrin	39
6.F. Discussion of Information Inconsistent with GRAS Determination	40
PART 7. LIST OF DATA AND SUPPORTING INFORMATION	41
7.A. References That Are Generally Available	41
7.B. References That Are Not Generally Available	43
Annex A. Molecular Weight Distribution of FiberSMART [®] - Corn	44
Annex B. Glycosidic Linkage Characterization of FiberSMART [®] - Corn	56
Annex C. Certificate of Analysis (COAs) for Pesticides	59
Annex D. Certificates of Analysis	62
Annex E. Protein Residue Levels of FiberSMART [®] - Corn	77

Tables

Table 1.	Intended Use and Maximum Use Levels of Resistant Dextrin, % (w/w)	7
Table 2.	Compositional Comparison Between AGG's Resistant Dextrin with Other	12
	Products	
Table 3.	Summary of Manufacturing Processes Employed for Various Resistant	15
	Dextrins	
Table 4.	Specifications for AGG's Resistant Dextrin from Corn	16
Table 5-1.	Analytical Values for AGG's Resistant Dextrin	16
Table 5-2.	Analytical Values for AGG's Resistant Dextrin Syrup	17
Table 6.	EDIs of Resistant Dextrin	19
Table 7.	Bacterial Mutation Assay Results for AGG's Resistant Dextrin from Corn	26
Table 8.	Summary of Animal Toxicity Studies	27
Table 9.	Human Digestive Tolerance Studies with Large Amounts of Resistant	32
	Dextrins	
Table 10.	Human Clinical Studies Reporting No adverse Effects of Resistant	35
	Dextrins	

Figures

Figure 1.	Molecular Structure of Resistant Dextrin (a) and Starch (b)	9
Figure 2.	Flow Diagram of Manufacturing Process for AGG's Resistant Dextrin from	14
	Corn	

List of Abbreviations

AGG = Anderson Global Group AOAC = Association of Official Analytical Communities **BAM**= Bacteriological Analytical Manual bw = body weight CAS = Chemical Abstract Service CFR= Code of Federal Regulations Ch=chapter cGMP = current good manufacturing practice COA = certificate of analysis DAM = daunomycin DP = degree of polymerization DRV = Daily Reference Value DTC = dithiocarbamate EDI = estimated daily intake FD&C = Federal Food, Drug, and Cosmetic FDA = Food and Drug Administration GRAS = Generally Recognized As Safe ICP MS= Inductively coupled plasma mass spectrometry. IOM = Institute of Medicine $LD_{50} = lethal dose$ MMS = methyl methanesulfonate Mn = number average molecular weight (meaning the lowest molecular weight portion of the sample) Mw = weight average molecular weight NHANES = National Health and Nutrition Examination Survey NOAEL = No Observed Adverse Effect Level NPD = 4-nitro-o-phenylenediamine OECD = Organization for Economic Co-operation and Development SCFA = short-chain fatty acid SD = Sprague-DawleyU.S. = United StatesU.S.C. = United States CodeUL = Tolerable Upper Intake Level 1,8-DT = 1,8-dihydroxyanthraquinone (also known as dantron)

2-AA = 2-aminoanthracene

2-AF = 2-aminofluorene

PART 1. SIGNED STATEMENTS AND CERTIFICATION

1.A. GRAS Notice Submission

Pursuant to 21 Code of Federal Regulations (CFR) Part 170, subpart E, Anderson Global Group (AGG) submits a Generally Recognized as Safe (GRAS) notice for its resistant dextrin from corn (FiberSMART®-corn) through its agent, AceOne RS, Inc. (formerly NutraSource, Inc.).

1.B. Name and Address of Notifier

Name and Address of Notifier (U.S. Distributor of Resistant Dextrin from Corn) Contact person: Steve Prancevic Company name: Anderson Global Group (AGG) Address: 2030 Main Street, Irvine, CA 92614 Telephone number: (949) 502-4770 E-mail Address: stevep@andersonglobalgroup.com

Name and Address of Manufacturer

Company name: Shandong Bailong Chuangyuan Bio-tech Co., Ltd. Address: National High & New Technology Development Zone, Yucheng City, Shandong Province, China.

1.C. Names of Notified Substance

Common name is resistant dextrin, resistant dextrin-corn, or resistant dextrin from corn. Synonyms include resistant maltodextrin or indigestible dextrin, resistant dextrin (corn), corn fiber, or soluble corn fiber.

Trade name is FiberSMART[®] or FiberSMART[®]-Corn.

1.D. Intended Conditions of Use

1.D.1. Foods in Which the Substance is to be Used

The intended use is same as those described in GRN 001045, resistant dextrin-tapioca: (1) baked goods; (2) beverages liquid non-dairy; (3) cereals and granola bars; (4) condiments and dressings; (5) confections; (6) dairy beverages; (7) dairy non-beverages; (8) frozen desserts; (9) gravies and sauces; (10) meal replacements; (11) pasta and grain products; (12) prepared meals and soups; (13) processed fruits; (14) shelf-stable desserts; (15) snacks and crackers; (16) dry beverage powder; and (17) nutrition bars. AGG does not intend to use resistant dextrin as a component of infant formula or in foods under the United States Department of Agriculture (USDA)'s jurisdiction, such as meat, poultry, or egg products.

1.D.2. Levels of Use in Such Foods

Table 1 summarizes the intended use levels. The use levels are the same as those described in GRN 001045: ranging from 1.2 to 10 g per serving. In the case of syrups, the intended use levels are approximately 30% higher than those described for powder because the dietary fiber content of powder and syrup are approximately >80% and 61%, respectively. The intended use levels of syrup will be 30% higher than those described for the powder.

	Maximum use le		RACC ^a , g
Food category	Powder	Syrup	
Baked goods	3	3.9	15-140
Beverages, liquid non-dairy	3	3.9	36-360
Cereals and granola bars	6	7.8	15-60 (dry);
			234-256 (cooked)
Nutrition bars	10	13	50
Condiments and dressings	3	13	5-60
Confections	1.2 ^b -3	1.56-3.9	15-30 except dietetic
			mint (2 g/RACC)
Dairy beverages	3	3.9	15-250
Dairy non-beverages	3	3.9	5-170
Dry beverage powder	1.2 ^b -9	1.56-11.7	1.4 -360 ^b
Frozen desserts	3	3.9	85-213
Gravies and sauces	3	3.9	30-125
Meal replacements	3	3.9	20-248
Pasta and grain products	3	3.9	91-248
Prepared meals and soups	3	3.9	7-254
Processed fruits	3	3.9	40-140
Shelf-stable desserts	3	3.9	113.5-133.5
Snacks and crackers	3	3.9	30-232

Table 1. Intended	Use and Maximum Use Levels of Resistant Dextrin % (w/	/w)
1 4010 11 1110011000		

^aBased on the Reference Amounts Customarily Consumed (RACC) Per Eating Occasion (21 CFR §101.12; https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/cfrsearch.cfm?fr=101.12). ^bSome of these food codes designate that the beverage is reconstituted with RACC values around 360 g for some types of drinks and around 240 g for some other types of drinks. Some of the food codes are just the powder and are not reconstituted.

1.D.3. Purpose for Which the Substance is Used

The substance will be used as a food ingredient.

1.D.4. Description of the Population Expected to Consume the Substance

The population expected to consume the substance consists of members of the general population who consume at least one of the products described above.

1.E. Basis for the GRAS Determination: Through scientific procedures.

1.F. Premarket Exempt Status

Since AGG has determined that the intended use of its resistant dextrin, FiberSMART®corn, is GRAS, such use is not subject to premarket approval requirements under the Federal Food, Drug, and Cosmetic Act.

1.G. Availability of Information

The data and information that serve as the basis for this GRAS determination will be sent to the Food and Drug Administration (FDA) upon request, or are available for the FDA's review and copying at reasonable times at the office of AceOne RS, Inc.

1.H. Availability of Freedom of Information Act Exemption

None of the data and information in Parts 2 through 7 of this GRAS notice are exempt from disclosure under the Freedom of Information Act, 5 United States Code (U.S.C.) §552.

1.I. Certification

To the best of our knowledge, this GRAS notice is a complete, representative, and balanced submission that includes unfavorable information, as well as favorable information, known to us and pertinent to the evaluation of the safety and GRAS status of the intended use of the substance.

Name: Steve Prancevic Title: Vice President October 14, 2022 Date

Please address correspondence to Susan S. Cho, Ph.D. AceOne RS, Inc. (formerly NutraSource, Inc.) 5903 Hampton Forest Way, Fairfax, VA 22030 <u>scho@aceoners.com</u> or sscho397@yahoo.com 301-875-6454 (MP)

1.J. Food Safety and Inspection Service/USDA Statement

The resistant dextrin is not intended to be used in meat and/or poultry products that come under USDA's jurisdiction. Therefore, 21 CFR §170.270 does not apply.

PART 2. IDENTITY, METHOD OF MANUFACTURE, SPECIFICATIONS, AND PHYSICAL OR TECHNICAL EFFECTS

2.A. Scientific Information About the Identity of the Notified Substance

2.A.1. Identity of the Notified Substance

2.A.1.1. Names of the Notified Substance

Common name: Resistant dextrin.

Synonyms, Other Common Names: resistant dextrin from corn, resistant dextrin-corn, resistant dextrin (corn),

dextrin (fiber), resistant maltodextrin, indigestible dextrin, dietary fiber, corn fiber, soluble corn fiber.

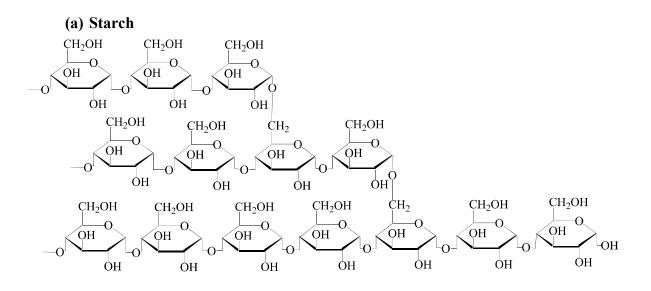
Trade names: FiberSMART[®], FiberSMART[®] from corn, FiberSMART[®] (corn), or FiberSMART[®]-corn.

2.A.1.2. Chemical Names

Chemical Abstract Service Name: Dextrin.

2.A.1.3. Chemical Abstract Service (CAS) Registry Number

9004-53-9


2.A.1.4. Empirical Formula

Molecular formula, $C_{6n}H_{10n+2}O_{5n+1}$

2.A.1.5. Molecular Weight

The weight average molecular weight (Mw) is 1,508 Daltons.

2.A.1.6. Structural Formula

(b) Resistant Dextrin

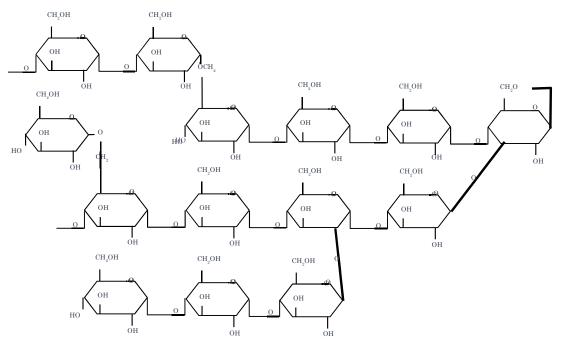


Figure 1. Molecular Structure of Starch (a) and Resistant Dextrin (b) Resistant dextrin structure, adopted from Hashizume and Okuma (2009)

2.A.1.7. Background

Resistant dextrin, the subject of this GRAS notification, is a specialty dextrin that is produced using a starch hydrolysis and transglucosidation/repolymerization, followed by a series of purification, and spray drying. This process produces an indigestible, mostly soluble dextrin

with an elevated fiber content. Thus, it belongs to the non-digestible carbohydrates or dietary fiber category. It is odorless, white or almost white, and non-hygroscopic. Resistant dextrins can be derived from corn, wheat, or tapioca starch. The subject of this GRAS determination is resistant dextrin (or FiberSMART[®]) derived from corn starch.

Similarity between Corn- and Wheat-Derived Resistant Dextrins

In June 2018, the FDA acknowledged that the resistant dextrin/resistant maltodextrin category (including soluble corn fiber, resistant dextrin, resistant wheat dextrin, soluble wheat fiber, and wheat dextrin; https://www.fda.gov/media/113659/download, pages 49-52) are non-digestible carbohydrates that meet the definition of dietary fiber (FDA, 2018), whose dietary fiber content can be labeled as dietary fiber on food packages.

In the 2016 final rules on Food Labeling: Revision of the Nutrition and Supplement Facts Labels (FDA, 2016a), FDA stated the following: "We consider AOAC 2009.01 and AOAC 2011.25 to be reliable and appropriate methods to measure the amount of dietary fiber in a serving of a product" (page 33,960 of Federal Register. 2016; 81 (103), May 27, 2016). Dietary fiber values measured by these methods can be used to determine compliance consistent with \$101.9(g). Thus, similar dietary fiber contents in resistant dextrin ingredients measured by AOAC 2009.01 or 2011.25 would justify the equivalence of corn-, tapioca-, or wheat-derived dextrin although there are variations in degree of polymerization (DP) units. In other words, equivalence of corn-, tapioca-, or wheat-derived dextrin is mostly justified from the aspect of its dietary fiber content. Regardless of its sources, powder forms of resistant dextrins have a dietary fiber content of 65-88%, as measured by AOAC 2009.01 or 2011.25.

Resistant dextrins (pyrodextrins) are made from corn-, wheat-, or tapioca-starch by pyrodextrinization with or without enzyme treatments for purification purposes after pyrodextrinization. Different companies use different terms to describe these ingredients manufactured under the same principle, pyrodextrinization of hydrolyzed starch under acidic heat treatments of overdried starches. The term 'resistant dextrin' is used by AGG and Roquette under the brand names of 'FiberSMART[®]' and 'NUTRIOSE' (NUTRIOSE FM, derived from corn; NUTRIOSE FB, wheat-based), respectively. The term 'resistant maltodextrin' is used by Matsutani Chemical Industry under the brand names of 'FiberSol-2' and 'Pinefibre-C.' The term 'soluble corn fiber' is used by Tate & Lyle under the brand name of 'PROMITOR.' Manufacturing processes of polydextrose and isomaltodextrin are based on different manufacturing principles (by enzymatic or dehydration synthesis), but the finished end products have similar properties.

Table 2 compares the total fiber content, DP, and molecular weights of these dietary fibers whose content can be controlled by the degree of purification. As shown in Table 2, the dietary fiber contents are comparable between AGG's resistant dextrin-corn (FiberSMART^{®-}

corn) and other sources of resistant dextrins (Nutriose; derived from corn- or wheat-starch) and polydextrose. In addition, DP, average molecular weight, and polydispersity are comparable among these ingredients (Table 2). Details are shown in Annex A.

Pyrodextrinization results in a drastically reduced molecular weight and the introduction of new glucoside linkages. Unlike starches which contain only "digestible" α - linkages (95% α -1,4 and 5% α -1,6), resistant dextrins contain "nondigestible" α -1,2, β -1,6, β -1,4, and β -1,2 glycosidic linkages. In resistant dextrin-corn, α -1-linkages contribute 65% and β -linkages contribute 35% of total glycosidic linkages. Details are presented in Annex B.

	Starch	NUTRIOSE[®]	NUTRIOSE	FiberSMART	FiberSMART [®] -	PDX^1
Parameters		6	[®] 10	[®] -tapioca	corn	
Degree of	62×10^3	12-25	4-10	10.6	9.2	12
Polymerization						
M _n	~107	2,000-4,000	800-1,500	767	497	800
M _w	~107	4,000-6,000	3,500-4,500	1,732	1,508	2,000
Polydispersity	-	1.5-2.5	3-4.5	2.05	3.0	2.5
(M_n/M_w)						
Total Dietary	0	Average 85	Average, 70	Average, 86	Average, 86.6	90
Fibers, %						

Table 2. Compositional Comparison Between AGG's Resistant Dextrin with Other Products

Expanded from Table 1, GRN 000436 (stamped page 10).

¹Craig SAS, Holden JF, Troup JP, Auerbach MH, Frier HI. (1998) Polydextrose as soluble fiber: Physiological and analytical aspects. Cultor Food Science, Ardsley, NY. American Association of Cereal Chemists, Inc.

 M_n = the number average molecular weight; Mw= the weight average molecular weight; PDX=polydextrose

Standards of Identity

In this notice, AGG states its intention to use resistant dextrin in several food categories, including foods for which standards of identity exist, located in Title 21 of the CFR. We note that an ingredient that is lawfully added to food products may be used in a standardized food only if it is permitted by the applicable standard of identity.

2.A.2. Potential Toxicants in the Source of the Notified Substance

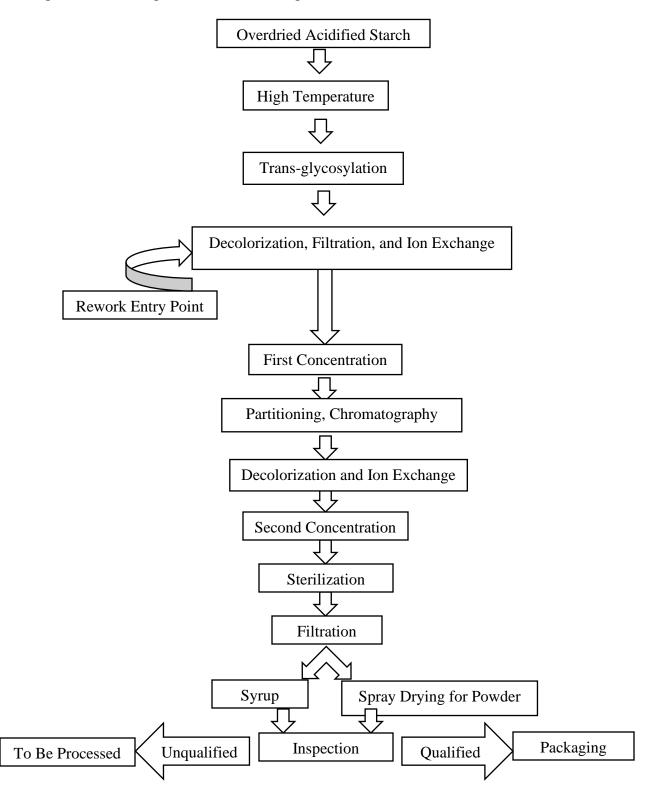
No toxicant production is expected in the manufacture of resistant dextrin-corn. It is free of pesticides (Annex C) and mycotoxins (Annex D).

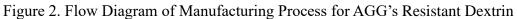
2.A.3. Particle Size

Approximately 92-96% (average of 93.9%) of the AGG's resistant dextrin-corn powders passed through U.S. mesh screen size 100 (Annex D). The data indicate that approximately 94% of particles are less than 149 micron.

2.B. Method of Manufacture

Although various starch sources have been and can be used in the manufacture of resistant dextrins, the subject of this GRAS determination is resistant dextrin derived from corn.


AGG's resistant dextrin-corn is manufactured by Shandong Bailong Chuangyuan Biotech Co., Ltd., Dexin Street, National High & New Technology Development Zone, Yucheng City, Shandong Province, China. AGG is an US distributor of resistant dextrin-corn.


Resistant dextrin is made by a combination of hydrolysis and transglucosidation/ repolymerization processes. Roasting dry starch at acidic conditions results in hydrolysis of the α -1,4 and α -1,6 glycosidic bonds, resulting in shorter starch molecule chain. In the absence of sufficient water, the freed glucose linkages combine within themselves and transglucosidation/ repolymerization occurs creating random glycosidic linkages, such as β -1,4, β -1,6, and β -1,2. Due to the fact that the resulting pyrodextrin contains nondigestible linkages that are not hydrolyzed by human digestive enzymes, the reaction product is called resistant dextrin (or resistant maltodextrin).

The resulting resistant dextrin is subjected to sequential purification: activated carbon treatment for decolorization, filtration, ion exchange chromatography, concentration, partitioning chromatography, second decolorization and ion exchange chromatography, second concentration, sterilization, filtration, spray drying, and packaging to make a powder form of AGG's resistant dextrin. The resistant dextrin syrup can be made by skipping the spray drying process. The number of mono- and disaccharides (DP1 and DP2) can be controlled via the separation process. The flow diagram of the manufacturing process is presented in Figure 2.

Quality Assurance Procedure:

Shandong Bailong Chuangyuan Bio-tech Co. and AGG rigorously test their final production batches to verify adherence to quality control specifications. Because AGG is ultimately responsible for the quality of resistant dextrin-corn to be distributed in USA, this ingredient is called as AGG's resistant dextrin in this GRAS determination. AGG's resistant dextrin is manufactured consistent with the principles of current Good Manufacturing Practice (cGMP) for food (21 CFR Part 110 and Part 117 Subpart B). The raw materials and processing aids used in the manufacturing process are food grade. Shandong Bailong Chuangyuan Bio-tech Co. and AGG routinely evaluate the quality of the resistant dextrin during the production process to ensure that the finished ingredients are free of contaminants.

The manufacturing process of AGG's resistant dextrin (both corn and tapioca) is similar to that described in GRN 000436 with the exception of skipping enzymatic treatment (alpha-amylase or glucoamylase to remove digestible carbohydrates) after pyrodextrinization. There is a report demonstrating that the chemical characteristics and molecular weight of resistant dextrin did not change significantly by purification processes (Zhen et al., 2021). Table 3 summarizes the manufacturing processes employed for various resistant dextrin preparations.

	GRN 000436	GRN 001045	Current notice
Starting material	Corn or wheat	Tapioca	Corn starch
	starch	starch	
Acid hydrolysis	Yes	Yes	Yes
Enzyme treatments after converting	Yes	No	No
into pyrodextrin, but before			
purification			
Partition chromatography	Yes/No	Yes	Yes
Dietary fiber content with both	82-88 g/100 g	85-87 g/100 g	84-88 g/100 g
partition chromatography and ion			
chromatography			
Dietary fiber content with ion	65-75 g/100 g	Not	Not applicable
chromatography only (no partition		applicable	
chromatography)			

Table 3. Summary of Manufacturing Processes Employed for Various Resistant Dextrins

Shandong Bailong Chuangyuan Bio-tech Co. and AGG analyze all incoming raw materials periodically for compliance with their published specifications.

2.C. Composition and Specifications of AGG's Resistant Dextrin and Their Raw Materials

Table 4 shows the specifications of AGG's resistant dextrin. The dietary fiber content of AGG's resistant dextrin ranges from 84 to 88% for the powder form (Table 5-1) and from 67 to 72% for the syrup form (Table 5-2). These values are comparable to other corn- or wheat-derived resistant dextrin reported in GRN 000436 and GRN 001045: ranged from 82 to 88% for powders. Analyses of three non-consecutive lots of AGG's resistant dextrin confirm that both powder and syrup forms of AGG's resistant dextrin are consistent and comply with the product specifications. Powder and syrup forms of AGG's resistant dextrin have over 80% and 61% of total dietary fiber, respectively. The certificates of analysis (COAs) are shown in Annex D. In addition, resistant dextrin-corn powder has the residual protein content of less than 0.1% (Annex E).

	Powder	Syrup	Method of Analysis
Appearance	White		Visual
	powder		
Total Dietary Fiber,	>80	>61	AOAC 2011.25
g/100 g			
As, mg/kg	< 0.2	< 0.2	ICP MS: AOAC 993.14, AOAC 2015.06
Cd, mg/kg	< 0.2	< 0.2	
Pb, mg/kg	< 0.2	< 0.2	
Hg, mg/kg	< 0.2	< 0.2	EPA 7473
Aerobic Plate Count,	<1,000	<1,000	FDA BAM Ch. 3
CFU/g			
Coliform, CFU/g	<10	<10	AOAC 991.14
Molds, CFU/g	<10	<10	FDA BAM Ch. 18, Compendium
Yeasts, CFU/g	<10	<10	FDA BAM Ch. 18, Compendium
Salmonella, /25 g	Absent	Absent	AOAC 2013.01

Table 4	Specifications	for AGG's	Resistant	Dextrin	from Corn
Table T.	opermentions	101 1100 5	i i constant.	DUALIT	nom com

AOAC=Association of Official Analytical Communities; BAM= Bacteriological Analytical Manual; Ch=chapter; ICP MS= Inductively coupled plasma mass spectrometry.

Table 5-1. Analytical Values for AGG's Resistant Dextrin Powder

Parameters	20211101037	20201002034	20201002024
Total Dietary Fiber, g/100 g	88.0	87.5	84.2
Arsenic, µg/kg	<10	<10	<10
Cadmium, µg/kg	<10	<10	<10
Lead, µg/kg	<10	<10	<10
Mercury, µg/kg	<4	<4	<4
Aerobic Plate Count, CFU/g	<10	<10	<10
Molds, CFU/g	<10	<10	<10
Yeasts, CFU/g	<10	<10	<10
Coliform, CFU/g	<10	<10	<10
Salmonella, /25 g	Absent	Absent	Absent

Parameters	20210801029 20200810013 20200701023				
Total Dietary Fiber, g/100 g	71.4	69.3	67.3		
Arsenic, µg/kg	<10	<10	<10		
Cadmium, µg/kg	<10	<10	<10		
Lead, µg/kg	<10	<10	<10		
Mercury, µg/kg	<2	<2	<2		
Aerobic Plate Count, CFU/g	<10	<10	<10		
Molds, CFU/g	<10	<10	<10		
Yeasts, CFU/g	<10	<10	<10		
Coliform using Petrifilm, CFU/g	<10	<10	<10		
Salmonella, /25 g	Absent	Absent	Absent		

 Table 5-2. Analytical Values for AGG's Resistant Dextrin Syrup

2.D. Intended Technical Effects

AGG's resistant dextrin is intended to be used as a food ingredient in selected conventional foods and beverages.

2.E. Stability

Resistant dextrin-tapioca powders and syrups are stable for a minimum of 24 and 12 months, respectively. In case of resistant dextrin-tapioca, the dietary fiber content of the powders ranged from 81.6 to 84.2% after 24 months, meeting the specification of >80% total dietary fiber (GRN 001045 amendment pages 4-6; dated May 27, 2022). In addition, the resistant dextrin-tapioca syrup complies with the described product specifications (>60% total dietary fiber) up to two years in storage. It is expected that resistant dextrin powders and syrups have similar stability, regardless of their sources, as the resistant dextrin in this GRAS determination is similar in specifications compared to another source of resistant dextrin (FiberSMART-tapioca providing >85% dietary fiber) described in the GRN 001045.

AGG's data are consistent with stability data of other dietary fiber ingredients. For example, GRN 000610 (FDA, 2016b) describes shelf stability of isomaltodextrin (IMD) powder, which is composed of approximately 83% dietary fiber. IMD powder is enzymatically produced from starch derived from corn, cassava, etc. IMD is comprised of only α -D-glucose; 7% of α -1 glucosidic linkages (nonreducing end group), 3% of α -1,3, 19% of α -1,4, 49% of α -1,6, 7% of α -1,3,6, and 5% of α -1,4,6 glucosidic linkages. Although the linkage compositions are somewhat different, the dietary fiber content of IMD and resistant dextrin are comparable. Thus, shelf stability of IMD can be used as corroborative data when evaluating the storage stability of resistant dextrin. At an ambient condition (25°C and 60% relative humidity), IMD (powder) was stable for 24 months (GRN 000610: pages 33-36).

Taken together, similar to other currently marketed dietary fiber ingredients, AGG considers that the finished resistant dextrin ingredients are stable for a minimum of 1 year for syrup and 2 years for powder when kept under ambient conditions.

PART 3. DIETARY EXPOSURE

3.A. Estimated Daily Intakes (EDIs) of Resistant Dextrin Under the Intended Use

Resistant dextrin is proposed for use as a food ingredient. AGG's resistant dextrin is intended to be used in the following food categories at approximately 1.2 to 10 g (powder)/serving (corresponding to 1.56-13.0 g/serving for syrup): (1) baked goods; (2) beverages liquid non-dairy; (3) cereals and granola bars; (4) condiments and dressings; (5) confections; (6) dairy beverages; (7) dairy non-beverages; (8) frozen desserts; (9) gravies and sauces; (10) meal replacements; (11) pasta and grain products; (12) prepared meals and soups; (13) processed fruits including processed dried fruits; (14) shelf-stable desserts; (15) snacks and crackers; (16) dry beverage powder; and (17) nutrition bars.

The EDI of resistant dextrin was calculated using food consumption data for the 17 food categories from the most recent National Health and Nutrition Examination Surveys (NHANES) conducted in 2017-2018. Nearly all people in the total United States (U.S.) population and each of the selected subpopulations reported eating at least one food proposed for resistant dextrin (% all-users, >98%). As a result, the mean and 90th percentile per user intakes are close to their per capita values; the mean per user is 14.4 g/day and the 90th percentile per user is 26.5 g/day. The per user 90th percentile for the various age and gender subgroups ranged from 20.2 g/day (children 1 to 6 years) to 39.3 g/day (males 19+ years) (Table 6).

These EDIs are overly inflated due to the following reasons: it is not expected that the actual consumption of foods containing resistant dextrin will result or even approach a daily consumption of the Daily Reference Value (DRV) for fiber of 28 g/day. Despite the introduction of newly developed dietary fiber ingredients, an average American has consumed approximately one half of the recommended intakes. Americans' mean per capita dietary fiber intake is only 15.5-16.2 g per day or approximately 58% of the recommended intakes, indicating that the actual intake levels are far below the theoretical, optimistic EDI values. In addition, AGG's resistant dextrin is expected to replace currently available total fiber sources. Thus, it is not expected that the cumulative EDIs are expected to be changed. Equally important, the Institute of Medicine (IOM, 2005) has not established a tolerable upper intake level (UL) for dietary fiber.

	All-Pers	on Intake	All-Users Intake					
Population Group	Mean	90 th Pctl	% Users	n	Mean	90 th Pctl		
g/person/day	g/person/day							
2-5 y	10.2 ± 0.26	17.2 ± 0.40	99.9	996	10.2 ± 0.26	17.2 ± 0.40		
6-12 y	11.9 ± 0.40	21.0 ± 0.61	99.7	1,738	11.9 ± 0.36	21.0 ± 0.61		
13-18 y	12.9 ± 0.36	23.7 ± 0.72	98.7	1,416	13.1 ± 0.37	23.9 ± 0.86		
13-18 y M	14.0 ± 0.56	25.8 ± 1.44	99.4	713	14.1 ± 0.54	25.9 ± 1.44		
13-18 y F	11.8 ± 0.52	21.5 ± 0.84	98.1	703	12.0 ± 0.52	21.8 ± 0.82		
19-99 y	14.9 ± 0.20	28.2 ± 0.70	99.0	8,277	15.1 ± 0.20	28.2 ± 0.73		
19-99 y M	$\begin{array}{c} 16.47 \pm \\ 0.22 \end{array}$	31.5 ± 0.58	98.7	4,021	16.7 ± 0.20	31.5 ± 0.60		
19-99 y F	13.4 ± 0.27	24.4 ± 0.62	99.2	4,256	13.6 ± 0.28	24.5 ± 0.62		
2-99 y	14.2 ± 0.18	26.4 ± 0.56	99.1	12,427	14.4 ± 0.17	26.5 ± 0.56		
mg/kg bw/da	ıy							
2-5 y	600 ± 14	$1,047 \pm 29$	98.5	981	601 ± 14	$1,048 \pm 28$		
6-12 y	359 ± 12	642 ± 23	99.4	1,729	360 ± 12	642 ± 23		
13-18 y	199 ± 6.1	375 ± 17	98.0	1,407	202 ± 6.2	376 ± 17		
13-18 y M	209 ± 8.5	416 ± 28	99.0	711	210 ± 8.2	416 ± 28		
13-18 y F	190 ± 9.0	348 ± 22	97.1	696	194 ± 8.8	349 ± 21		
19-99 y	187 ± 2.9	352 ± 6.7	98.3	8,198	189 ± 2.8	353 ± 7.0		
19-99 y M	191 ± 3.4	357 ± 8.0	97.9	3,979	193 ± 3.2	361 ± 7.5		
19-99 y F	183 ± 3.9	345 ± 11	98.7	4,219	185 ± 4.0	347 ± 11		
2-99 y	226 ± 3.6	446 ± 8.4	98.4	12,315	228 ± 3.5	447 ± 8.0		

Table 6. EDIs of Resistant Dextrin

Based on the 2day survey dataset from the 2017-2018 NHANES; F = females; M = males; pctl = percentile; y = years.

Americans' Dietary Fiber Intake Status

Based on the analysis of the NHANES datasets, King et al. (2012) reported that the mean daily dietary fiber intakes for 1999-2000 and for 2007-2008 were 15.7 and 15.9 g/day, respectively. The analysis of the 2017-2018 NHANES dataset showed that an average American's dietary fiber intake (age 2 years and above) was 16.2 g/day, ranging from 15.7 for non-Hispanic whites to 19.5 g for Asians (https://www.ars.usda.gov/ARSUserFiles/80400530/pdf/1718/Table_ 1_ NIN_GEN_17.pdf).

Considering the changes in dietary fiber analytical methods, dietary survey data collection methods, and other variables, it appears that the total dietary fiber intake status has not been significantly changed in the past 2-3 decades despite the fact various new dietary fiber ingredients have been introduced in the marketplace. Resistant dextrin is a typical example which has been newly introduced in the American marketplace since the early 2000s. The data indicate that the introduction of resistant dextrins, new ingredients providing >60 to >80% dietary fiber, has had a minor impact on the Americans' total dietary fiber intake status. It is

probably due to the fact that most of the resistant dextrins have been used to replace existing dietary fiber ingredients in food formulations.

3.B. Food Sources of Resistant Dextrin

Pyrodextrinization does not usually occur in conventional food processing condition; thus, it is reasonable to assume that negligible amounts of resistant dextrins are present in conventional foods.

3.C. EDIs of Naturally Occurring Resistant Dextrin from Diet

Not applicable

Summary of Consumption Data

AGG's resistant dextrin is intended to be used in the following food categories at approximately 1.2 to 10 g/serving (powder; corresponding to 1.56-13.0 g/serving for syrup): (1) baked goods; (2) beverages liquid non-dairy; (3) cereals and granola bars; (4) condiments and dressings; (5) confections; (6) dairy beverages; (7) dairy non-beverages; (8) frozen desserts; (9) gravies and sauces; (10) meal replacements; (11) pasta and grain products; (12) prepared meals and soups; (13) processed fruits including processed dried fruits; (14) shelf-stable desserts; (15) snacks and crackers; (16) dry beverage powder; and (17) selected nutrition bars. These 17 food categories were selected as the most common potential use example applications for this ingredient in order to generate the most accurate consumption data.

The mean intake from all the selected food categories was 14.4 g/day and the 90th percentile intake was 26.5 g/day in all-users. AGG's resistant dextrin-corn will currently market resistant dextrin ingredients; thus, the cumulative exposure is not expected to change. FDA has established a DRV for dietary fiber as 28 g/day.

PART 4. SELF-LIMITING LEVELS OF USE

No known self-limiting levels of use are associated with resistant dextrin.

PART 5. HISTORY OF CONSUMPTION

EXPERIENCE BASED ON COMMON USE IN FOODS BEFORE 1958

The statutory basis for the conclusion of the GRAS status of resistant dextrin in this document is not based on common use in food before 1958.

PART 6. NARRATIVE

6.A. Current Regulatory Status

The resistant dextrin/maltodextrin are being commercialized under 21 CFR §184.1277 (dextrin) and 21 CFR §184.1444 (maltodextrin).

The FDA has issued a 'no question' letter on a GRAS notification related to food use of resistant dextrins (GRN 000436, FDA, 2013; GRN 001045, FDA, 2022) as well as other "resistant" polyglucose ingredients, such as polydextrose (21 CFR §172.841) and isomaltodextrin (GRN 000610; FDA, 2016b). All these products are manufactured from starch or other glucose-based sources using various methods but result in similar substances.

On May 27, 2016, FDA issued two final rules (FDA, 2016a) to revise the nutrition labeling requirements for conventional foods. The final rule incorporates two major changes to the dietary fiber declaration—a definition of "dietary fiber" and an increase in the DRV from 25 grams to 28 grams.

The final definition of total fiber is: "non-digestible soluble and insoluble carbohydrates (with 3 or more monomeric units), and lignin that are intrinsic and intact in plants; isolated or synthetic non-digestible carbohydrates (with 3 or more monomeric units) determined by FDA to have physiological effects that are beneficial to human health." The final definition distinguishes between "isolated *or* synthetic" non-digestible carbohydrates from intrinsic dietary fibers naturally present in foods or food ingredients. FDA uses "isolated" to describe "non-digestible carbohydrates that are isolated from plant sources such that they are no longer intrinsic or intact" and "synthetic" to describe "synthetic non-digestible carbohydrates that are not isolated from plant sources but rather chemically synthesized."

In April 2018, based on the review of physicochemical and physiological properties of resistant dextrins, FDA approved resistant dextrin/resistant maltodextrin as non-digestible carbohydrates that meet the dietary fiber definition (FDA, 2018, pages 49 to 52).

The IOM (2005) recommends that Americans increase their dietary fiber intakes and has not established a Tolerable Upper Intake Level (UL) for dietary fiber. The ULs reflect the maximum daily intake levels at which no risk of adverse health effects is expected for almost all individuals in the general population including sensitive individuals when the substance is consumed over long periods of time. Thus, the UL is the highest usual intake level of a substance that poses no risk of adverse effects.

6.B. Review of Safety Data

Resistant dextrin contains random glycosidic linkages, such as β -1,4, β -1,6, β -1,2, and α -1,2, that are resistant to hydrolysis by human alimentary enzymes. Because of this resistance and solubility in water, resistant dextrin is classified as a dietary fiber.

As noted above in Part 6.A, the FDA has issued 'no question' letters on GRAR notices related to food uses of resistant dextrins including GRN 000436 (enzyme-modified dextrins or resistant dextrins, NUTRIOSE FM, derived from corn; NUTRIOSE FB, wheat-based; Roquette) and GRN 001045 (resistant dextrin-tapioca; FiberSMART-tapioca). As the resistant dextrin in this GRAS determination is similar in specifications compared to other sources of resistant dextrins described in the previous FDA GRAS notices such as GRNs 000436 and 001045 (NUTRIOSE 6 providing an average of 85% dietary fiber; NUTRIOSE 10 providing an average of 70% of dietary fiber; FiberSMART-tapioca providing >85% dietary fiber), it is recognized that the information and data in GRN 000436 and GRN 001045 are pertinent to the safety of the resistant dextrin in this GRAS determination. Therefore, this notice incorporates, by reference, the safety and metabolism studies discussed in GRN 000436 and GRN 001045. This notice incorporates by reference the safety and metabolism studies discussed in GRN 000436 (pages 18-26) and GRN 001045 (pages 25-43) and will not discuss previously reviewed references in detail. In addition, mutagenicity and acute toxicity of AGG's resistant dextrin-corn are reviewed in this notice. The subject of the present GRAS assessment is resistant dextrin derived from corn or FiberSMART[®]-corn. Our review covers the literature published up to August 31, 2022.

6.B.1. Metabolism

It is reasonable to conclude that resistant dextrin follows the general metabolic fate of dietary fiber. Thus, resistant dextrin is expected to escape hydrolysis by human alimentary enzymes and to reach the colon where it is fermented by microflora to produce short-chain fatty acids (SCFAs). Fermentation of soluble dietary fiber provides fecal bulking effects and some calorie values (Slavin, 2008). The FDA guidance for the caloric value of soluble dietary fibers is 2 kcal/g, as opposed to 4 kcal/g for digestible carbohydrates, for labelling purposes (FDA, 2016a).

6.B.2. Mutagenicity and Genotoxicity Studies

A Mutagenicity Study of AGG's Resistant Dextrin (derived from corn and tapioca starches)

In the study by Case et al. (2021), AGG's FiberSMART[®] preparation (derived from corn starch) was tested for mutagenicity using *Salmonella typhimurium* TA97, TA98, TA100, TA102, or TA1535 with or without S9 activation (Table 7). The test concentrations were 0, 1,250, 2,500, and 5,000 μ g/plate. 4-Nitro-o-phenylenediamine (NPD), daunomycin (DAM), sodium azide (NaN₃), and methyl methanesulfonate (MMS) were used as the positive controls in the absence

of the S9 mix, and 2-aminofluorene (2-AF), 1,8-dihydroxyanthraquinone (1,8-DT; also known as dantron), and 2-aminoanthracene (2-AA) were used as the positive controls in the presence of the S9 mix. The test substance was considered mutagenic if the number of revertant colonies in the test dose levels was more than twofold that of the control, or if the number of revertant colonies increased in a dose-dependent manner compared to the control in at least one strain with or without metabolic activation. The validity of the study was confirmed by more than two-fold increases in the number of revertant colonies in the positive control plates compared to the control. Resistant dextrins derived from corn or tapioca did not increase the number of revertant colonies in any tester strains in the absence or presence of metabolic activation by the S9 mix. The data indicated that both types of resistant dextrins (corn and tapioca based) were not mutagenic under the conditions used in the test.

Studies Reviewed in Previous GRAS Notices

AGG's resistant dextrin-tapioca or FiberSMART[®]-tapioca was not mutagenic at concentrations up to 5,000 μ g/plate in *Salmonella typhimurium* TA97, TA98, TA100, TA102, or TA1535 with or without S9 activation (Case et al., 2021).

There was no mutagenicity of resistant dextrin (wheat; Nutriose[®] FB) at concentrations up to 5,000 μ g/plate in TA98, TA100, TA102, TA1535, and TA1537 with or without S9 activation (Wils et al., 2008). In addition, a mutation assay at the TK locus in L5178Y mouse lymphoma cells did not show a mutagenic potential of resistant dextrin-wheat.

Overall, resistant dextrins, regardless of their sources, did not show mutagenic potential.

			Mean Revertant Colony Counts Per Plate						
	Dose (µg/plate)		TA97 TA98		TA100	TA102	TA1535		
	Vehicle contr	Vehicle control		34.3±5.9	203.7±15.6	261.3±21.4	63.0±24.6		
	RD-corn 5,000		123.7±9.6	26.3 ± 8.5	177.3±22.0	248.7±19.7	70.0±31.2		
		2,500	$103.7{\pm}18.1$	30.0±5.0	186.7±3.8	275.0 ± 28.2	78.0 ± 24.3		
-S9		1,250	97.3±11.2	23.3±5.5	201.0±34.4	288.0±27.2	88.7±39.9		
-39	NPD	20	1,084.0±113.5**						
	DAM	10		861.7±199.9**					
	NaN ₃	1.5			1,168.3±198.3**		866.3±45.7**		
	MMS	2				926.3±169.5**			
	Vehicle contr	ol	152.7 ± 7.1	42.0±5.2	243.0±20.4	309.0±23.6	$96.0{\pm}25.9$		
	RD-corn	5,000	128.3±6.7	45.7±5.9	218.0±6.9	289.7±10.5	$115.0{\pm}12.0$		
		2,500	147.0±13.1	40.0 ± 6.1	257.3±46.1	311.0±22.6	113.3±23.4		
+ S 9		1,250	137.0±4.0	42.0±3.5	227.7±9.3	318.0±2.0	$124.0{\pm}10.1$		
	2-AF	20	836.3±24.0**	958.0±48.5**	1,032.3±37.6**				
	1,8-DT	50				505.0±39.3**			
	2-AA	5					438.7±22.1**		

Table 7. Bacterial Mutation Assay Results for AGG's Resistant Dextrin-Corn

Adopted from Case et al. (2021).

Abbreviations: 1,8-DT = 1,8-dihydroxyanthraquinone (also known as dantron); 2-AA = 2-aminoanthracene; 2-AF = 2-aminofluorene; DAM = daunomycin; MMS = methyl methanesulfonate; NaN₃ = sodium azide; NPD = 4-Nitro-o-phenylenediamine. **P<0.01, compared with vehicle control.

6.B.3. Animal Toxicity Studies

Table 8 summarized the animal toxicity studies conducted on AGG's resistant dextrincorn (FiberSMART[®]-corn) and other sources of resistant dextrins.

Test Material	Animal	Dose	Duration	LD ₅₀ or	Reference
	Allillai	D09C	Duration	NOAEL	Kelelence
Acute Toxicity St	Idies		1	NOALL	
RD derived from	30	$0 \approx 20 \approx 4 \approx 1 \approx 1$	Cincle	ID > 20.0	Casa at al
		0 or 20 g/kg bw, FiberSMART [®]	Single	$LD_{50} > 20.0$	Case et al,
tapioca (AGG's	SD rats	(source, corn)	dose, 14 d	g/kg bw	2021
FiberSMART®-			observation	LD ₅₀ > 20.0	
corn or corn)		20 g/kg bw, FiberSMART [®]		g/kg bw	
		(source, tapioca)		g/Kg Uw	
RD derived from	5 fasted	2 g/kg bw	Single dose	LD ₅₀ > 2 g/kg	Wils et al.,
wheat (brand	female	resistant dextrin	Single dose	LD 30> 2 6/ Kg	2008
name, Nutriose [®]	SD rats	(source, wheat)			2000
FB	SD Idis	(*******, *******)			
RD derived from	Rats	NA	NA	LD ₅₀ > 40.0	Hashizume
corn or tapioca	Rats		1171	g/kg bw	and
com or taploca				5/N5 0 W	Okuma,
					2009
Subchronic Toxic	ity Studies	I	1	L	
RD derived from	88 SD	0, 1,250, 2,500, or	90 d	NOAEL,	Case et al.,
tapioca (brand	rats	5,000 mg/kg bw/d		5,000 mg/kg	2021
name, AGG's				bw/d for both	
FiberSMART [®] -				male and	
tapioca)				female rats	
RD derived from	160	0, 1,120, 2,290, or	90 d	NOAEL,	Wils et al.,
wheat (brand	OFA-SD	4,360 mg/kg bw/d		4,360mg/kg	2008
name, Nutriose [®]	rats	(males)		bw/d (males)	
FB)		0, 1,610, 3,080, or		NOAEL,	
		6,500 mg/kg bw/d		6,500 mg/kg	
		(females)		bw/d (females)	

Table 8. Summary of Animal Toxicity Studies

NOAEL=No Observed Adverse Effect Levels; RD=resistant dextrin; SD= Sprague–Dawley.

6.B.3.1. Animal Toxicity Studies of AGG's Resistant Dextrins

Acute Toxicity Study of AGG's Resistant Dextrin from Corn (Table 10)

The acute oral toxicity of AGG' resistant dextrins, FiberSMART[®] (tapioca starch and corn starch-based), were studied in six-week-old Sprague-Dawley (SD) rats (Case et al., 2021). The animals were orally administered by gavage at a single dose of 0 or 20 g/kg body weight (bw) of corn- or tapioca-based resistant dextrin and were observed for 14 days to monitor changes in body weight, clinical signs, and food and water consumption. No animals died during the 14-day observation period. No abnormal clinical signs or no significant differences in mean body weight, food and water intake, and organ weights were found in both the control and test groups. No treatment-related abnormalities were observed in macroscopic or microscopic examinations. The mean lethal dose (LD₅₀) of both types of FiberSMART[®] (RD-corn and RD-tapioca) were well above 20 g/kg bw, the highest dose tested. The data indicate that both types of resistant dextrins are 'relatively harmless' (Altug, 2003).

6.B.3.2. Animal Toxicity Studies of Other Sources of Resistant Dextrins

As shown in Table 8, a subchronic study reported that No-Observed-Adverse-Effect Levels (NOAEL) for resistant dextrin were 4,360 mg/kg bw/day and 6,500 mg/kg bw/day in male and female rats, respectively,

Acute Toxicity Studies

Wils et al. (2008) reported that the LD_{50} of wheat starch-based resistant dextrin (Nutriose-FB) was greater than 2 g/kg bw in fasted female rats.

In a book chapter written in English summarizing studies published in Japanese (Hashizume and Okuma, 2009), it was briefly stated that the LD₅₀ of resistant maltodextrin (probably corn source) was over 40 g/kg bw in rats.

Subchronic Toxicity Study of AGG's Resistant Dextrin Derived from Tapioca

In the subchronic toxicity study, SD rats were administered 0, 1,250, 2,500, or 5,000 mg/kg bw/day resistant dextrin-tapioca by gavage for 90 days. At any dose level, no clinical signs of toxicity or mortality were observed. No differences in body weight and feed consumption were observed between the groups. Urinalysis did not show any treatment-related adverse effects. Although some parameters showed significant differences, they were not considered of toxicological significance because they did not occur in both sexes, were not dose-dependent, and/or were within the laboratory's historical normal range of controls. Thus, the authors stated that no clinically significant treatment-related abnormalities were found in hematology, clinical chemistry, and absolute and relative organ weights in any of the resistant dextrin-tapioca (FiberSMART[®]) treated groups. The authors concluded that the NOAEL was

5,000 mg/kg bw/day, the highest dose tested, for male and female rats. Detailed data are presented in Case et al. (2021).

Subchronic Toxicity Study of Resistant Dextrin Derived from Wheat Starch

In a 90-day, oral subchronic study conducted by Wils et al. (2008), SD rats were administered resistant dextrin (Nutriose FB derived from wheat starch) in their diet at doses of 0, 1.25%, 2.5%, or 5% for 13 weeks. These dietary levels correspond to 1,120, 2,290, and 4,360 mg/kg bw/day, respectively, for males, and 1,610, 3,080, and 6,500 mg/kg bw/day, respectively, for females. No deaths or no significant behavioral changes occurred during the study. The consumption of resistant dextrin did not have any significant effects on body weight or feed or water consumption. No treatment-related abnormalities were observed in blood coagulation and hematology, blood and urine biochemistry, and histopathological examinations. Adverse clinical observations, including ophthalmological observations, were marginal and not considered treatment-related. No treatment-related abnormalities were found on relative or absolute organ weights of rats of either sex, except for the increase in cecum content and cecum mucosa. There was an approximately 15% increase in the absolute empty cecum weight of male and female animals treated with 5% resistant dextrin-wheat. The increase in cecum weight is considered a physiological adaptation seen after the ingestion of indigestible carbohydrates and is not considered a toxicological effect (Leegwater et al., 1974). The NOAELs were established by the highest tested doses: 4,360 mg/kg bw/day in males and 6,500 mg/kg bw/day in females, the highest levels tested in males and females, respectively (Table 8).

Conclusions from Animal Toxicity Studies

AGG's resistant dextrin, derived from corn, showed an LD_{50} value higher than 20 g/kg bw. Regardless of sources, resistant dextrins showed similar toxicity profiles; >4,360 mg/kg bw/day in males and a minimum of 5,000 mg/kg bw/day for females. Due to structural similarity and specifications, it is reasonable to expect that a toxicity profile of AGG's resistant dextrincorn is similar to those of other sources of resistant dextrin.

6.B.4. Human Clinical Studies

6.B.4.1. Digestive Tolerance

The possible side effect associated with excess dietary fiber intake is transitional gastrointestinal discomforts which may not be considered to be of toxicological concern (IOM, 2005). The IOM states that "Although occasional adverse gastrointestinal symptoms were observed with the consumption of dietary and functional fibers, serious chronic adverse effects have not been observed." Since the only possible side effect associated with excessive dietary fiber intake is digestive tolerance, the digestive tolerance was reviewed as a major safety measure of resistant dextrins in this GRAS determination (Table 9).

Studies Discussed in Previous GRAS Notices

As discussed in Part 2, different companies use different terms to describe these ingredients manufactured under the same principle, pyrodextrinization of hydrolyzed starch under acidic heat treatments of overdried starches. The term 'resistant dextrin' is used by AGG and Roquette under the brand names of 'FiberSMART[®]' and 'NUTRIOSE' (NUTRIOSE FM, derived from corn; NUTRIOSE FB, wheat based), respectively. The term 'resistant maltodextrin' is used by Matsutani Chemical Industry under the brand names of 'Fibersol-2' and 'Pinefibre-C.' The term 'soluble corn fiber' is used by Tate & Lyle under the brand name of 'PROMITOR.'

Resistant Dextrin-Corn

Baer et al (2014) also reported that consumption of resistant maltodextrin (resistant dextrin marketed by Matsutani Chemical Industry; brand name, Fibersol-2, probably derived from corn or tapioca starch) at a daily dose of up to 50 g for 24 days did not result in any adverse effects on stool weight, bowel movement, and gut microbiota in 14 men (aged 35-55 years).

Klosterbuer et al. (2013) reported that a daily dose of 20-25 g dietary fiber from soluble corn fiber (resistant dextrin-corn marketed by Tate & Lyle) was well tolerated in 20 healthy men and women (aged 18-60 years).

Other Sources of Resistant Dextrins

In a randomized, crossover clinical study by Teo and Fairchild (2021), 40 participants (aged 18-75 years; Australia) were randomized to receive either AGG's resistant dextrin (tapioca) or control (no resistant dextrin). In the AGG's resistant dextrin group, participants consumed resistant dextrin at daily single dose of 10, 30, or 50 g for 7 consecutive days in a dose escalating manner with a 21-day washout period between each dose. Participants in the resistant dextrin group had statistically significantly higher average gastrointestinal composite scores compared to the control group. However, the differences were small in magnitude, ranging from 0.04 to 0.1 across the six individual questions (4-point scale). In addition, no significant differences in the frequency or duration of gastrointestinal symptoms were identified between conditions. No adverse events or adverse effects on the measured outcomes were reported by the study participants. The author concluded that resistant dextrin was well tolerated across the doses (10 g/day, 30 g/day, and 50 g/day).

In a study by Pasman et al. (2006), 48 volunteers received resistant dextrin-wheat (NUTRIOSE FB 06) at daily dose of 0 (maltodextrin-placebo), 30, or 45 g for 4 weeks. No serious adverse event occurred. No diarrhea was reported, although there was a tendency for increased flatulence in a dose-dependent manner, but the increase was not substantial compared to those receiving the control (13, 14, and 17 persons reported flatulence during the last 6 days in the control, 30 g, and 45 g groups, respectively).

Vermorel et al. (2004) demonstrated that ingestion of 100 g of resistant dextrin (NUTRIOSE FB 06 derived from wheat starch) did not cause severe digestive disorders due to a progressive adaptation and distribution in 6 equal doses per day. However, excessive flatulence and slight abdominal pain were recorded in some subjects after intakes above 50 g/day of resistant dextrin.

Reference	Subjects	Daily Dose of	Source	Control	Duration;	Measurements	Safety-related
		RD			Design		Outcomes
Baer et al, 2014	15 males (35-55 y)	0, 25, or 50 g RMD from (Matsutani Chemicals)	Probably corn	Malto- dextrin	24 d with >2 wk washout; X	Bowel movement; stool weight; excretion of energy and nitrogen; gut microbiota	No adverse effects on measured outcomes
Teo and Fairchild, 2021	40 healthy subjects (18-75 y)	0, 10, 30, or 50 g FiberSMART [®] a single dose in apple juice, a dose escalating manner	Tapioca	Apple juice control	Escalating doses-1 wk for each dose with 3 wk washout; X	Gastrointestinal tolerance; changes in body anthropometrics; and vital signs	No adverse effects on measured outcomes
Pasman et al., 2006	48 men (20-45 y; BMI <31 kg/m ²)	0, 30, or 45 g Nutriose FB	Wheat	Malto- dextrin	5 wk (1 st week, half dose; 4 wk, full dose); P	Gastrointestinal tolerance; gut microflora; fermentation by breath hydrogen excretion measurement; hunger and satiety scores and food preferences	No adverse effects on measured outcomes
Vermorel et al., 2004	10 healthy males (mean age, ~23 y)	0, increasing doses from 20 to 100 g Nutriose FB	Wheat	Dextrose	31 d with 4 wk washout period; X	Gastrointestinal tolerance; metabolisable energy; mineral absorption	RD was well tolerated at <50 g/day; higher doses (>50 g/day) may result in flatulence and slight abdominal pain with no diarrhea

Table 9. Human Digestive Tolerance Studies with Large Amounts of Resistant Dextrins

RD=resistant dextrin; RMD=resistant maltodextrin, synonymous with the term, 'resistant dextrin'; P=parallel design; X=crossover design.

6.B.4.2. Human Clinical Studies Testing Other Parameters

Previous GRAS notices (GRNs 000436 and 001045) extensively discussed the safety of resistant dextrins found from various human clinical studies. Thus, this review briefly summarizes the discussion presented in GRNs 000436 and 0001045.

Other human clinical studies investigated the efficacy and safety of resistant dextrins and reported that daily intake of up to 50-60 g for up to 12 weeks did not result in any adverse effects on the measured outcomes (Baer et al, 2014; Nomura et al., 1992). In a book chapter by Hashizume and Okuma (2009), it was stated that resistant dextrin (also called as resistant maltodextrin by Matsutani Chemical Industry under the brand name of Fibersol-2) was made from corn or tapioca starch. This book chapter summarized the study by Nomura et al. (1992) published in Japanese as follows: daily consumption of 60 g resistant dextrin (Fibersol-2) for 12 weeks resulted in no adverse events and no adverse effects on liver function indicator enzymes, serum lipids, plasma glucose concentrations, and erythrocyte counts (Nomura et al., 1992). Although Nomura and colleagues did not specify the source of the resistant dextrin preparation used in this study, it is reasonable to expect that Fibersol-2 may be derived from either corn or tapioca starch.

Other human studies evaluated the effects of resistant dextrins on the parameters listed below. Due to an abundance of literature, we have limited our review to studies with an intervention duration of 3 weeks or longer and daily doses of 20 g or higher unless digestive tolerance was tested. In addition, crossover studies employing no washout period are not included in this review.

- (a) Adverse events and /or compliance (Guerin-Deremaux et al., 2011a; Jakeman et al., 2016),
- (b) Gut microbiota and/or fecal characteristics (Burns et al., 2018; Mai et al., 2022; Nishimoto et al., 2022; Ukhanova et al., 2012),
- (c) Gastrointestinal functions (Whisner et al., 2016),
- (d) Glucose metabolism and/or metabolic indicators (Gholizadeh Shamasbi et al., 2019; Hashizume et al., 2012; Nishimoto et al., 2022; Nomura et al., 1992),
- (e) Satiety/energy intake (Guerin-Deremaux et al., 2011a, 2011b; Hashizume et al., 2012),
- (f) Bone health indicators (Jakeman et al., 2016; Whisner et al., 2016),
- (g) Mineral absorption (Whisner et al., 2016), and
- (h) Liver function indicators (Nomura et al., 1992)

All of these studies listed above reported no adverse effects of resistant dextrins up to 60 g/day on the measured outcomes.

Summary of Human Clinical Studies

Although resistant dextrin intake at a daily dose of 60 g for 12 weeks did not result in clinical chemistry parameters, gastrointestinal tolerance was considered when evaluating the safety of resistant dextrin. It is summarized that resistant dextrins at daily doses of up to 45 -50 g were well tolerated with no major side effects in humans, regardless of their sources.

Reference	Subjects	Daily Dose of RD	Source	Control	Duration	Measurements
Studies Using Res	sistant Dextrin Deriv	red from Corn Starch	l			
Mai et al., 2022	49 subjects (18- 50 y)	0, 15, or 25 g RD	Corn	Not specified	3 wk with 2 wk washout	Gut microflora
Gholizadeh Shamasbi et al., 2019	62 women with polycystic ovary syndrome (18-45 y)	0 or 20 g/d (NUTRIOSE FM 06)	Corn	Maltodextrin in water	3 mo	Metabolic parameters (serum lipid profile, fasting blood glucose, hsCRP); androgen levels; hirsutism and menstrual cycle characteristics; side effects
Jakeman et al., 2016	14 healthy postmenopausal women (39.9- 79.9 y)	0, 10 or 20 g dietary fiber from PROMITOR Soluble Corn Fiber 85	Corn	Maltodextrin in muffins and drinks	50 d	Bone strength and calcium retention; blood and urine biomarkers of bone turnover; compliance; gastrointestinal symptoms
Whisner et al., 2016	28 adolescents (11-15 y)		Corn		4 wk with a 3 wk washout period	Serum and urine biochemical markers of bone turnover; calcium absorption; fecal SCFA and gut microbiota
Studies Using Res	sistant Dextrin Deriv	red from Corn or Tap	bioca Starch			
Nomura et al, 1992 (cited in Hashizume and Okuma, 2009)	5 subjects with non-insulin- dependent diabetes with hyperlipidemia (age, NA)	60 g (Fibersol-2*; Matsutani Chemical Industry; divided into 3 doses)	(Source*, not specified, but probably	No control	12 wk	Serum lipid and plasma glucose concentrations, erythrocytes counts, and liver function indicator enzymes

Table 10. Human Clinical Studies Reporting No adverse Effects of Resistant Dextrins

Hashizume et al.,	30 mildly obese	0 or 27 g dietary	corn or	Tea	12 wk	Blood glucose and insulin;
2012	subjects with	fiber from	tapioca)			satiety/short-term energy
	metabolic	Fibersol-2*;				intake
	disorder (ave.	divided into 3				
	age, 60.6 y)	doses)				
Ukhanova et al,	14 healthy males	0, 25, or 50 g		Maltodextrin	4 wk	Gut microbiota; fecal
2012	(age, NA)	(Matsutani				bacterial counts, in
		Chemical				particular, bifidobacteria
		Industry)				
Burns et al.,	51 healthy adults	0, 15 or 25 g RD		Maltodextrin	3 wk with	Stool weights; fecal
2018	(mean age, 26.3	(Fibersol-2)		in beverage	2 wk	bifidobaterial counts; total
	y)				washout	dietary fiber intakes
Nishimoto et al.,	29 Japanese	0 or 20 g RD		6 g	24 wk	Intestinal microbiome and
2022	subjects whose	(Fibersol-2)		Maltodextrin		metabolome profiles;
	hemoglobin					clinical chemistry related
	A1c (HbA1c)					to glucose metabolism
	levels are larger					
	than 6% (age,					
	NA)					
	Derived from Whea	1	1		-	
Guerin-	120 overweight	0 or 34 g	Corn or	Maltodextrin	12 wk	Body weight and
Deremaux et al.,	Chinese men	NUTRIOSE ^{®,}	wheat	in fruit juice		composition; energy
2011a	(20-35 y)	divided into 2	Starch (not			intake; hunger; adverse
		doses	specified)			events
Guérin-	100 healthy	0, 8, 14, 18, or 24		3 wk		Satiety and hunger feelings
Deremaux et al.,	overweight	g NUTRIOSE				
2011b	adults (35-55 y)					

d=days; GIP=Gastric inhibitory polypeptide; GLP-1= glucagon-like peptide-1; HbA1c =Glycated hemoglobin; hs-CRP =high-sensitivity C-reactive protein; IL-6=interleukin-6; MDA=malondialdehyde; mo=months; RBC=red blood cells; RD=resistant dextrin; TNF- α =tumor necrosis factor alpha; wk=weeks.

*The source of Fibersol-2 was specified as corn- or tapioca- in the book chapter by Hashizume and Okuma, 2009 (page 63).

6.B.5. Potential Adverse Effects

The IOM (2005) has not established an UL for dietary fiber in regards to Americans. The UL is defined as a safe upper level for consumption over a lifetime or the highest level of a daily nutrient intake that will most likely present no risk of adverse health effects in almost all individuals in the general population. The states that "Although occasional adverse gastrointestinal symptoms were observed with the consumption of dietary and functional fibers, serious chronic adverse effects have not been observed."

Also, the American Dietetic Association's position paper addressed no serious health hazards related to dietary fiber intakes in the American population (Slavin, 2008).

In addition, FDA has raised the DRV of dietary fiber from 25 g to 28 g for American children aged 4 years and older, adults, and pregnant women (FDA, 2016a).

Taken together, it is not expected that excessive dietary fiber intake, including resistant dextrins, would result in serious chronic adverse effects.

6.D. Safety Determination

The following safety evaluation fully considers the composition, intake, and nutritional, microbiological, and toxicological properties of resistant dextrins as well as appropriate corroborative data.

- 1. AGG's resistant dextrin (derived from corn) is manufactured under current Good Manufacturing Practice (cGMP) using common food industry materials and processes.
- 2. Analytical data from multiple lots indicate that AGG's resistant dextrin-corn comply reliably with established food-grade product specifications.
- 3. AGG's resistant dextrin is intended to be used in conventional foods and beverages, excluding infant formula, and meat, egg, and poultry products, in a manner similar to many other dietary fiber ingredients. AGG's resistant dextrin (powder) is intended to be used in the following food categories at approximately 1.2 to 10 g/serving: (1) baked goods; (2) beverages liquid non-dairy; (3) cereals and granola bars; (4) condiments and dressings; (5) confections; (6) dairy beverages; (7) dairy non-beverages; (8) frozen desserts; (9) gravies and sauces; (10) meal replacements; (11) pasta and grain products; (12) prepared meals and soups; (13) processed fruits including processed dried fruits; (14) shelf-stable desserts; (15) snacks and crackers; (16) dry beverage powder; and (17) nutrition bars. The intended use levels of syrup will be 30% higher than those described for the powder.

- 4. The U.S. per capita mean intake from all the selected food categories is 14.4 g/day and the corresponding 90th percentile intake is 26.5 g/day. FDA has established a DRV for dietary fiber as 28 g/day. It is not expected that the actual consumption of foods containing resistant dextrin will result or even approach a daily consumption of the DRV for fiber (28 g/person/day). In reality, Americans' mean per capita dietary fiber intake is only 16.2 g per day or 58% of the recommended intakes, indicating that the actual intake levels are far below theoretical, optimistic EDI values estimated in this GRAS determination. It is noteworthy that IOM has not established an UL for dietary fiber.
- 5. The EDI values are based on the assumption that AGG's resistant dextrin will replace currently marketed resistant dextrin and/or dietary fiber ingredients. Thus, cumulative exposures are not expected to change.
- 6. The LD₅₀ value of AGG's resistant dextrin-corn, was determined to be higher than 20 g/kg bw in rats, indicating that the substance belongs to the group that has the lowest toxicity rating. Bacterial reverse mutation assay showed that AGG's resistant dextrin-corn was not mutagenic. In addition, literature searches did not identify safety or toxicity concerns related to resistant dextrins, regardless of their sources. A subchronic study reported that the NOAELs for AGG's resistant dextrin-tapioca was 5,000 mg/kg bw/day in both male and female rats. The NOAEL values for resistant dextrin derived from wheat were 4,360 mg/kg bw/day and 6,500 mg/kg bw/day in male and female rats, respectively. Due to similarity in specifications and composition of resistant dextrin-corn compared to other sources of resistant dextrins, the NOAELs found for wheat- and tapioca-based resistant dextrins are pertinent when evaluating the safety of the resistant dextrin-corn in this GRAS determination.
- 7. In human studies, various resistant dextrin preparations were well tolerated at daily doses up to 50 g.
- 8. In previous GRAS notices (GRNs 000436 and 001045) to the FDA, the safety of resistant dextrins was established in toxicological studies in animals and in mutagenicity studies, and is further supported by clinical studies in humans.

6.E. Conclusions and General Recognition of the Safety of Resistant Dextrin

AGG claims that the use of its resistant dextrin in foods, as described in Parts 2 through 7 of this GRAS document, is not subject to premarket approval requirements of the FD&C Act based on its conclusion that the substance is GRAS under the conditions of its intended use.

AGG intends to market its resistant dextrin ingredient, resistant dextrin-corn or FiberSMART[®]-corn, as a food ingredient in the U.S. for use in selected conventional foods.

Two other sources of resistant dextrin (derived from tapioca and wheat) have been evaluated by the FDA in the past few years for proposed incorporation of resistant dextrin ingredients in foods. Relevant U.S. GRAS notifications include GRN 000436 (FDA, 2013) and GRN 001045 (FDA, 2022). These GRAS notices provided information or clinical study data that supported the safety of the proposed resistant dextrin products for use as a food ingredient. In all the studies summarized in these notifications, there were no significant adverse effects/events or tolerance issues attributable to resistant dextrins. Because this safety evaluation was based on generally available and widely accepted data and information, it satisfies the so-called "common knowledge" element of a GRAS determination.

In addition, the intended uses of AGG's resistant dextrin have been determined to be safe though scientific procedures as set forth in 21 CFR §170.3(b), thus, satisfying the so-called "technical" element of the GRAS determination. The specifications of the proposed GRAS substance, AGG's resistant dextrin, are substantially equivalent to those that have received FDA 'no question' letters.

The AGG's resistant dextrin derived from corn starch, that is the subject of this GRAS determination, contains over 80% and 61% of dietary fiber in the powder and syrup forms, respectively. AGG's resistant dextrin is manufactured consistently with cGMP for food (21 CFR Part 110 and Part 117 Subpart B). The raw materials and processing aids used in the manufacturing process are food grade. Literature searches did not identify safety or toxicity concerns related to resistant dextrins. Toxicity studies of AGG's resistant dextrin-corn include bacterial reverse mutation study and acute toxicity in rats. In these reports, no evidence of toxicity was noted. The publicly available scientific literature on the consumption and the safety of resistant dextrins in human clinical studies is extensive and sufficient to support the safety and GRAS status of the proposed resistant dextrin ingredient. In addition, the IOM recommends that Americans should increase their dietary fiber intakes to 14 g/1,000 kcal intake. In line with the IOM recommendation, the FDA has raised the DRV of dietary fiber from 25 to 28 g person per day.

AGG further concludes that the intended use of its resistant dextrin-corn is GRAS based on scientific procedures, and that experts qualified to assess the safety of foods and food additives would concur with this conclusion.

6.F. Discussion of Information Inconsistent with GRAS Determination

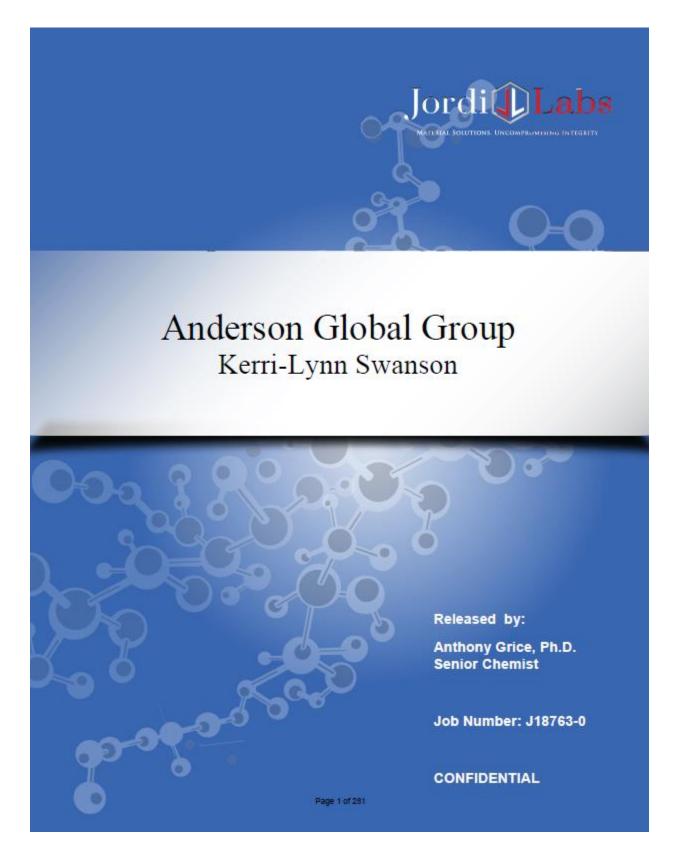
AGG is not aware of information that would be inconsistent with a finding that the proposed use of resistant dextrin, meeting appropriate specifications and used according to cGMP, is GRAS.

PART 7. LIST OF DATA AND SUPPORTING INFORMATION

7.A. References That Are Generally Available

Altug T. 2003. Introduction to Toxicology and Food. Boca Raton, FL: CRC Press.

- Baer DJ, Stote KS, Henderson T, Paul DR, Okuma K, Tagami H, Kanahori S, Gordon DT, Rumpler WV, Ukhanova M, Culpepper T, Wang X, Mai V. The metabolizable energy of dietary resistant maltodextrin is variable and alters fecal microbiota composition in adult men. J Nutr. 2014;144:1023-29.
- Burns AM, Solch RJ, Dennis-Wall JC, Ukhanova M, Nieves C Jr, Mai V, Christman MC, Gordon DT, Langkamp-Henken B. In healthy adults, resistant maltodextrin produces a greater change in fecal bifidobacteria counts and increases stool wet weight: a doubleblind, randomized, controlled crossover study. Nutr Res. 2018;60:33-42.
- Case I, Prancevic S, Seol Y, Knapp D, Gao Y. Toxicological evaluation of resistant dextrin preparations derived from tapioca and corn starch. EC Nutrition. 2021;16:16-26.
- FDA. 2013. GRN 000436. Enzyme modified dextrins. Filed by Roquette. Closure date: January 18, 2013. https://wayback.archiveit.org/7993/20171031024526/https://www.fda.gov/Food/ IngredientsPackagingLabeling/GRAS/NoticeInventory/ucm338915.htm.
- FDA. 2016a. 21 CFR Part 101 Food Labeling: Revision of the Nutrition and Supplement Facts Labels; Serving Sizes of Foods That Can Reasonably Be Consumed at One Eating Occasion; Dual-Column Labeling; Updating, Modifying, and Establishing Certain Reference Amounts Customarily Consumed; Serving Size for Breath Mints; and Technical Amendments; Final Rules. Fed Register 81; pages 33742-33999. Available at: https://www.govinfo.gov/content/pkg/FR-2016-05-27/pdf/FR-2016-05-27.pdf
- FDA. 2016b. GRN 000610. Isomaltodextrin. Filed by Hayashibara Co., Ltd. Closure date: June 6, 2016. https://www.fda.gov/Food/IngredientsPackagingLabeling/GRAS/NoticeInventory/ucm 512619.htm.
- FDA. 2018. Review of the Scientific Evidence on the Physiological Effects of Certain Non-Digestible Carbohydrate. Available at: <u>https://www.fda.gov/media/113659/download</u>.
- FDA. 2022. GRN 001045. Resistant dextrin from tapioca, submitted by Anderson global Group (AGG). Date of closure: August 26, 2022.
- Gholizadeh Shamasbi S, Dehgan P, Mohammad-Alizadeh Charandabi S, Aliasgarzadeh A, Mirghafourvand M. The effect of resistant dextrin as a prebiotic on metabolic parameters and androgen level in women with polycystic ovarian syndrome: A randomized, tripleblind, controlled, clinical trial. Eur J Nutr. 2019;58:629-40.


- Guerin-Deremaux L, Li S, Pochat M, Wils D, Mubasher M, Reifer C, Miller LE. Effects of NUTRIOSE[®] dietary fiber supplementation on body weight, body composition, energy intake, and hunger in overweight men. Int J Food Sci Nutr. 2011a;62:628-35.
- Guérin-Deremaux L, Pochat M, Reifer C, Wils D, Cho S, Miller LE. The soluble fiber NUTRIOSE induces a dose-dependent beneficial impact on satiety over time in humans. Nutr Res. 2011b;31:665-72.
- Hashizume C, Kishto Y, Kanahori S, Yamamoto T, Okuma K, Yamamoto K. Improvement effect of resistant maltodextrin in humans with metabolic syndrome by continuous administration. J Nutr Sci Vitaminol (Tokyo). 2012;58:423-30.
- Hashizume C, Okuma K. 2009. Fibersol[®]-2 resistant maltodextrin: Functional dietary fiber ingredient. In: Fiber Ingredients: Food Applications and Health Benefits. Cho SS and Samuel P (Eds). Ch 5: pp 61-78. CRC Press. Boca Raton, FL.
- Institute of Medicine (IOM). Dietary Reference Intakes for energy, carbohydrates, fiber, fat, fatty acids, cholesterol, protein, and amino acids. National Academy Press, Washington, DC. 2005.
- Jakeman SA, Henry CN, Martin BR, McCabe GP, McCabe LD, Jackson GS, Peacock M, Weaver CM. Soluble corn fiber increases bone calcium retention in postmenopausal women in a dose-dependent manner: A randomized crossover trial. Am J Clin Nutr. 2016;104:837-43.
- King DE, Mainous AG 3rd, Lambourne CA. Trends in dietary fiber intake in the United States, 1999-2008. J Acad Nutr Diet. 2012;112:642-48.
- Leegwater DC, de Groot AP, van Kalmthout-Kuyper M. The aetiology of caecal enlargement in the rat. Food Cosmet Toxicol. 1974;12:687-97.
- Mai V, Burns AM, Solch RJ, Dennis-Wall JC, Ukhanova M, Langkamp-Henken B. Resistant maltodextrin consumption in a double-blind, randomized, crossover clinical trial induces specific changes in potentially beneficial gut bacteria. Nutrients. 2022;14:2192.
- Nishimoto Y, Mizuguchi Y, Mori Y, Ito M, Miyazato S, Kishimoto Y, Yamada T, Fukuda S. Resistant maltodextrin intake reduces virulent metabolites in the gut environment: A rndomized control study in a Japanese cohort. Front Microbiol. 2022;13:644146.
- Nomura M, Nakajima Y, Abe H. Effects of long-term administration of indigestible dextrin as soluble dietary fiber on lipid and glucose metabolism, J Jpn Soc Nutr Food Sci. 1992; 45:21-5 (in Japanese). Cited in Hashizume and Okuma, 2009.
- Pasman W, Wils D, Saniez MH, Kardinaal A. Long-term gastrointestinal tolerance of NUTRIOSE FB in healthy men. Eur J Clin Nutr. 2006;60:1024-34.

- Slavin JL. Position of the American Dietetic Association: Health implications of dietary fiber. J Am Diet Assoc. 2008;108:1716-31. Erratum in: J Am Diet Assoc. 2009;109:350.
- Teo SYM, Fairchild TJ. Evaluation of the gastrointestinal tolerability of FiberSMART[®], a novel dietary fiber, using a randomized controlled trial in healthy men and women. EC Nutr. Manuscript submitted.
- Ukhanova M, Culpepper T, Baer D, Gordon D, Kanahori S, Valentine J, Neu J, Sun Y, Wang X, Mai V. Gut microbiota correlates with energy gain from dietary fibre and appears to be associated with acute and chronic intestinal diseases. Clin Microbiol Infect. 2012;18 Suppl 4:62-66.
- Vermorel M, Coudray C, Wils D, Sinaud S, Tressol JC, Montaurier C, Vernet J, Brandolini M, Bouteloup-Demange C, Rayssiguier Y. Energy value of a low-digestible carbohydrate, NUTRIOSE FB, and its impact on magnesium, calcium and zinc apparent absorption and retention in healthy young men. Eur J Nutr. 2004;43:344-52.
- Wils D, Scheuplein RJ, Deremaux L, Looten PH. Safety profile of a food dextrin: Acute oral, 90day rat feeding and mutagenicity studies. Food Chem Toxicol. 2008;46:3254-61.
- Whisner CM, Martin BR, Nakatsu CH, Story JA, MacDonald-Clarke CJ, McCabe LD, McCabe GP, Weaver CM. Soluble corn fiber increases calcium absorption associated with shifts in the gut microbiome: A randomized dose-response trial in free-living pubertal females. J Nutr. 2016;146:1298-306.
- Zhen Y, Zhang T, Jiang B, Chen J. Purification and characterization of resistant dextrin. Foods. 2021;10:185.

7.B. References That Are Not Generally Available

Not applicable.

Annex A. Molecular Weight Distribution of FiberSMART[®]-Corn

200 Gilbert Street Mansfield, MA 02048 P: (508) 966-1301 jordilabs.com

June 6, 2022

Kerri-Lynn Swanson Anderson Global Group 2030 Main Street, Suite 430 Irvine, CA 92614 P: 949-502-4770 E: kerrilynns@andersonglobalgroup.com

Dear Kerri-Lynn,

Please find enclosed the test results for your polysaccharide syrup sample described as:

- FiberSMART CP90, Resistant Dextrin Powder Lot# 20211006037 (Referred to as Lot# 20211006037)
- FiberSMART CP90, Resistant Dextrin Powder, Lot # 20210412027 (Referred to as Lot# 20210412027)
- FiberSMART CP90, Resistant Dextrin Powder, Lot # 20211101037 (Referred to as Lot# 20211101037)

The following test was performed:

1. Standardized Gel Permeation Chromatography (GPC)

Objective

Three (3) samples were submitted for analysis, similar to J18185-0 using the conditions depicted in Figure 1. It was explained that the samples were derived from starch which have gone through an enzymatic process in order to form dextrin. It was recognized that some of the samples were produced from corn starch, while other samples originated from tapioca starch. It was communicated that you were interested in replicating the results in J18185, which include the molecular weight distribution and degree of polymerization in the sample for FDA GRAS¹ filing. The goal of this analysis was to determine the relative molecular weight distribution and percentage solids of chains with varying degree of polymerization (DP) using the methodology outlined in J18185, for FDA GRAS filing.

Page 2 of 281

¹ Generally Recognized as Safe

SOLVENT	Water (0.1 M NaNO ₃)
FLOW RATE	0.7 mL/min
INJECTION VOLUME	100 µL
COLUMN TEMPERATURE	35 °C
CONCENTRATION	2.5 mg/mL for sample, 0.5 mg/mL for standards
COLUMN	Aquagel-OH Mixed M and Aquagel-OH 20
RUN TIME	40 minutes
SAMPLE PREP CONDITIONS	~5 hours at ambient temperature with orbital shaking
STANDARDS	Poly(saccharide): 642k, 337k, 194k, 47.1k, 21.1k, 9.6k, 6.2k, 667 and 180 Da

Figure 1. J18185 conditions which were replicated in this report

Summary of Results

Samples exhibit similar molecular weight distributions, all with M_w values of approximately 1.4 – 1.6 kDa relative to polysaccharide standards. Molecular weight averages and dispersity values are summarized in Table 1. The weight percentages for consecutive degree of polymerization (DP) integers have been determined for each sample. 97.5% total weight was achieved by DP40, and calculated values have been reported up DP42 (Table 2).

Individual Test Results

A summary of the individual test results is provided below. All accompanying data, including spectra, has been included in the data section of this report.

<u>GPC</u>

GPC Background

A polymer is a large molecule which is formed using a repeating subunit. A polymeric sample does not have a single molecular weight but rather a range of values. Thus, to describe the range of molecular weights of a polymer, a molecular weight distribution curve displaying the fraction of sample with a given molecular weight is commonly used. The molecular weight distribution curve is therefore a graphical representation of the range of the molecular weights of the sample. The width of the distribution curve reflects the polydispersity of the sample, the narrower the distribution, the lower the polydispersity.

To describe the molecular weight distribution of a polymer numerically, three different molecular weight averages are commonly used. These are the number average molecular weight (M_n) , the weight average molecular weight (M_w) , and the Z average molecular weight (M_z) . M_n provides information about the lowest molecular weight portion of the sample. M_w is the average closest to the center of the curve and M_z represents the highest molecular weight portion of the sample. They are calculated according to the equations below, where M_i is the molecular weight, N_i is the fraction of the molecular with a molecular weight of M_i .

Page 3 of 281

$$\begin{split} M_n &= \frac{\sum M_i N_i}{\sum N_i} \quad (\text{Number Average Molecular Weight}) \\ M_w &= \frac{\sum M_i^2 N_i}{\sum M_i N_i} \quad (\text{Weight Average Molecular Weight}) \\ M_z &= \frac{\sum M_i^2 N_i}{\sum M_i^2 N_i} \quad (\text{Z-Average Molecular Weight}) \end{split}$$

Therefore, given all M_i and N_i for a polymer sample, a molecular weight distribution curve can be derived.

Accuracy

Standardized GPC calculates molecular weight values through a comparison between the retention times of samples of *unknown* molecular weight with those of standards of *known* molecular weight. This method assumes that if two molecules are of the same size in solution then they are the same molecular weight. The accuracy of this assumption is directly dependent upon the similarity between the hydrodynamic volume of the standards and that of the sample for a given molecular weight. Factors which are important in determining the hydrodynamic volume of a polymer include the polarity and rigidity of a polymer, as well as the presence of charged functional groups incorporated into the polymer. It is therefore desired to keep the chemistry of the standards (charge, polarity, chain stiffness) as similar as possible to that of the samples.

In addition, it is assumed in standardized GPC that the only separation mechanism present is separation by size. Other factors such as sample-column or sample-sample interactions can result in non-sized based separation effects. Tetra-detection GPC can be used to confirm the absence of these effects and serves as an excellent way to validate a standardized GPC method. The accuracy of standardized GPC is generally expected to be within 10% of the accurate value when a purely sized based separation is obtained and the hydrodynamic volumes of the standards correlate well with those for the sample. In comparison, tetra-detection GPC typically has accuracy on the order of 5% and makes no similar assumptions about sample hydrodynamic volume or separation by size.

Sample Preparation

Samples were dissolved in eluent for approximately 5 hours at room temperature with gentle agitation.

Results

The calculated molecular weight averages for the samples (M_n, M_w, M_z) as well as the dispersity values (PDI) are presented in Table 1. The refractive index chromatograms, cumulative weight fraction curves and the molecular weight distributions for the samples are presented in Figure 3 through Figure 5, respectively. A calibration curve and chromatographic overlay of the standards are included in the data section of this report.

Page 4 of 281

Discussion of Results

The samples exhibited M_w values ranging between approximately 1.4 - 1.6 kDa relative to polysaccharide standards. Samples were integrated until the retention time of the lowest standard (180 Da, see Figure 2). Molecular weight averages and dispersity values are summarized in Table 1.

The weight percentages for consecutive degree of polymerization (DP) integers have been determined for each sample, until a total cumulative sample weight of greater than 97.5% had been achieved. Molecular weight values taken for each degree of polymerization are based on glucose (DP1), with each consecutive DP adding an additional glucose unit (180.16 Da) with the removal of water. For example, for DP3 (maltotriose) 180.16 Da is added onto 342.30 Da (DP2, maltose) and 18.02 Da is subtracted for the removal of water, yielding 504.44 Da (D4).

97.5% total weight was achieved by DP40, and calculated values have been reported up DP42 (**Table 2**). Cumulative weight plots were used in the calculations, and are presented separately in the data section of this report. The equation for average DP of the samples was determined by accounting for the loss of water (18.02 Da) from the terminal glucose for the remaining polymer to be divisible by the repeating monomer unit (162.14 Da). This equation can be verified by using the known molecular weight and DP of any of the glucose polymers presented in **Table 2**.

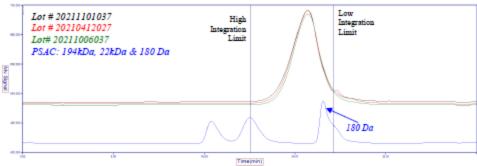


Figure 2. Overlay of the refractive index chromatograms of the samples with standards.

	Table 1 Average Molecular Weight Relative to Poly(saccharide) Standards									
Sample ID Run Mn (Da) Avg. (Da) Mw (Da) Avg. (Da) Mz (Da) Avg. (Da) Mw/Ma Avg. Avg. Avg. I										Avg. DP
Lot# 1	470	486	1,411	1,439	3,102	3,090	3.00	2.96	8.76	
20211006037	2	494	460	1,443	1,459	3,035	5,090	2.92	2.90	8.70
Lot #	1	508	503	1,502	1.012	3,252	3,384 3,580	2.96	3.01	9.22
20210412027	2	502	505	1,541	1,513	3,592		3.07		9.22
Lot #	1	509	501	1,579	1.670	3,545		3.10	2.14	0.50
20211101037	2	504	501	1,571	1,572	3,561		3.12	3.14	9.58
	$Avg. DP = \frac{(Avg. Mw - 18.02 Da)}{162.14 Da}$									

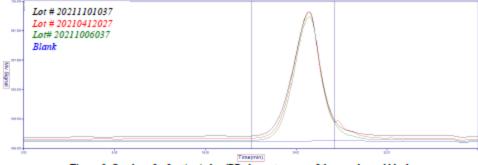


Figure 3. Overlay of refractive index (RI) chromatograms of the samples and blank

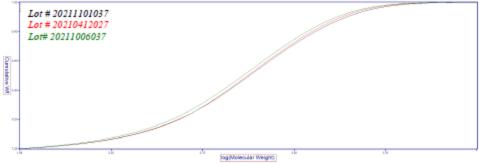


Figure 4. Overlay of cumulative weight fraction curves for the samples

Page 6 of 281

Page 7 of 281

							Table 2							
			Solid	Percent	ages for eac	h DP o	of Samples Rel	ative to l	Pullulan Stan	dards				
			Loi	: 20210	412027		L	ot: 2021	1006037		Lo	t: 20211	101037	
Degree of Polymerization	Run	Mw (g/mol)	Cumulative Wt %	Avg	% Solids for DP	Avg	Cumulative Wt %	Avg	% Solids for DP	Avg	Cumulative Wt %	Avg	% Solids for DP	Avg
DP1	1	181	7.64	7.75	7.64	7.75	8.78	8.43	8.78	8.43	7.77	7.84	7.77	7.84
Glucose	2	101	7.86	1.15	7.86	1.15	8.07	0.45	8.07	0.45	7.90	7.04	7.90	7.04
DP2 Maltose	2	343	17.13	17.30	9.49 9.61	9.55	19.18 17.88	18.53	10.40 9.81	10.11	17.32	17.46	9.55 9.70	9.63
DP3 Maltotriose	1 2	505	26.81 27.19	27.00	9.68 9.72	9.70	29.31 27.59	28.45	10.13	9.92	26.76 27.15	26.96	9.44	9.50
DP4	1 2	667	35.91 36.26	36.09	9.10 9.07	9.09	38.42 36.57	37.50	9.11 8.98	9.05	35.52 35.94	35.73	8.76 8.79	8.78
DP5	1 2	829	43.84	43.98	7.93	7.90	46.25	45.34	7.83	7.84	43.21 43.63	43.42	7.69	7.69
DP6	1 2	991	50.59 50.78	50.69	7.80 6.75 6.66	6.71	52.91 51.17	52.04	6.66 6.75	6.71	49.80 50.20	50.00	6.59 6.57	6.58
DP7	1 2	1153	56.34 56.46	56.40	5.75	5.72	58.61	57.80	5.70	5.76	55.44 55.81	55.63	5.64	5.63
DP8	1 2	1316	61.30 61.36	61.33	4.96	4.93	63.54 62.04	62.79	4.93	4.99	60.31 60.65	60.48	4.87	4.86
DP9	1 2	1478	65.57 65.56	65.57	4.27	4.24	67.76 66.40	67.08	4.22	4.29	64.49 64.80	64.65	4.18	4.17
DP10	1 2	1640	69.28 69.21	69.25	4.20 3.71 3.65	3.68	71.42	70.81	3.66	3.72	68.12 68.41	68.27	3.63	3.62
DP11	1 2	1802	72.52	72.46	3.24	3.22	74.61 73.49	74.05	3.19	3.25	71.30	71.43	3.18	3.17
DP12	1 2	1964	75.37 75.20	75.29	2.85	2.83	77.39 76.39	76.89	2.78	2.84	74.09 74.33	74.21	2.79	2.78
DP13	1 2	2126	77.88 77.67	77.78	2.51 2.47	2.49	79.82 78.93	79.38	2.43	2.49	76.56 76.78	76.67	2.47 2.45	2.46
DP14	1 2	2288	80.10 79.86	79.98	2.22 2.19	2.21	81.96 81.17	81.57	2.14	2.19	78.75 78.95	78.85	2.19 2.17	2.18
DP15	1 2	2451	82.09 81.81	81.95	1.99 1.95	1.97	83.85 83.15	83.50	1.89	1.94	80.72 80.89	80.81	1.97 1.94	1.96
DP16	1 2	2613	83.84 83.54	83.69	1.75 1.73	1.74	85.51 84.90	85.21	1.66 1.75	1.71	82.46 82.62	82.54	1.74 1.73	1.74

Page 8 of 281

							Table 2							
						th DP o	of Samples Rel			dards				
			Loi	: 20210			L	ot: 2021	1006037		Lo	t: 20211	101037	
Degree of Polymerization	Run	Mw (g/mol)	Cumulative Wt %	Avg	% Solids for DP	Avg	Cumulative Wt %	Avg	% Solids for DP	Avg	Cumulative Wt %	Avg	% Solids for DP	Avg
DP17	1 2	2775	85.40 85.07	85.24	1.56 1.53	1.54	86.98 86.44	86.71	1.47 1.54	1.51	84.02 84.17	84.10	1.56 1.55	1.56
DP18	1 2	2937	86.80 86.45	86.63	1.40 1.38	1.39	88.28 87.81	88.05	1.30 1.37	1.34	85.42 85.55	85.49	1.40	1.39
DP19	1 2	3099	88.04 87.67	87.86	1.24 1.22	1.23	89.43 89.02	89.23	1.15 1.21	1.18	86.68 86.80	86.74	1.26	1.26
DP20	1 2	3261	89.16 88.77	88.97	1.12	1.11	90.46 90.11	90.29	1.03	1.06	87.82 87.93	87.88	1.14	1.14
DP21	1 2	3423	90.16 89.76	89.96	1.00 0.99	1.00	91.38 91.07	91.23	0.92	0.94	88.84 88.94	88.89	1.02 1.01	1.02
DP22	1 2	3586	91.07 90.65	90.86	0.91 0.89	0.90	92.20 91.94	92.07	0.82	0.85	89.78 89.87	89.83	0.94	0.94
DP23	1 2	3748	91.88 91.45	91.67	0.81 0.80	0.81	92.93 92.71	92.82	0.73	0.75	90.62 90.70	90.66	0.84	0.84
DP24	1 2	3910	92.60 92.17	92.39	0.72	0.72	93.58 93.40	93.49	0.65	0.67	91.38 91.46	91.42	0.76	0.76
DP25	1 2	4072	93.26 92.82	93.04	0.66	0.66	94.17 94.02	94.10	0.59	0.60	92.08 92.15	92.12	0.70	0.70
DP26	1 2	4234	93.85 93.40	93.63	0.59	0.59	94.70 94.58	94.64	0.53	0.55	92.71 92.77	92.74	0.63	0.63
DP27	1 2	4396	94.38 93.93	94.16	0.53	0.53	95.17 95.08	95.13	0.47	0.48	93.28 93.34	93.31	0.57	0.57
DP28	1 2	4558	94.86 94.41	94.64	0.48	0.48	95.60 95.53	95.57	0.43	0.44	93.81 93.86	93.84	0.53	0.53
DP29	1 2	4721	95.30 94.85	95.08	0.44	0.44	95.98 95.93	95.96	0.38	0.39	94.29 94.34	94.32	0.48	0.48
DP30	1 2	4883	95.69 95.24	95.47	0.39	0.39	96.33 96.30	96.32	0.35	0.36	94.73 94.77	94.75	0.44 0.43	0.44
DP31	1 2	5045	96.05 95.60	95.83	0.36	0.36	96.64 96.62	96.63	0.31 0.32	0.32	95.13 95.17	95.15	0.40	0.40
DP32	1 2	5207	96.37 95.92	96.15	0.32	0.32	96.92 96.92	96.92	0.28	0.29	95.50 95.53	95.52	0.37	0.37
DP33	1	5369	96.67	96.45	0.30	0.30	97.18	97.19	0.26	0.27	95.83	95.85	0.33	0.33

Page 9 of 281

			C -114	Deres		.h. D.D. a	Table 2 of Samples Rel		Dullulan Car	danda				
				t: 20210					1006037	dards	Lo	t: 20211	101037	
Degree of Polymerization	Run	Mw (g/mol)	Cumulative Wt %	Avg	% Solids for DP	Avg	Cumulative Wt %	Avg	% Solids for DP	Avg	Cumulative Wt %	Avg	% Solids for DP	Avg
	2		96.22		0.30		97.19		0.27		95.86		0.33	
DP34	1	5531	96.93	96.71	0.26	0.27	97.41	97.42	0.23	0.23	96.14	96.16	0.31	0.31
2	2		96.49	20.72	0.27	0.27	97.43	21.12	0.24	0.20	96.17	20.10	0.31	0.01
DP35	1	5693	97.18	96.96	0.25	0.25	97.62	97.64	0.21	0.22	96.43	96.44	0.29	0.29
DESS	2	5055	96.73	50.50	0.24	0.20	97.65	57.04	0.22	0.22	96.45	30.44	0.28	0.25
DP36	2	5856	97.40 96.96	97.18	0.22	0.22	97.81 97.85	97.83	0.19	0.19	96.69 96.71	96.70	0.26	0.26
DP37	1 2	6018	97.60	97.39	0.20	0.20	97.99	98.01	0.18	0.18	96.93	96.94	0.24	0.24
			97.17 97.79		0.21		98.03 98.15		0.18		96.94 97.15	<u> </u>	0.23	
DP38	1 2	6180	97.36	97.58	0.19	0.19	98.15	98.18	0.16	0.17	97.15	97.16	0.22	0.22
DP39	1 2	6342	97.96 97.53	97.75	0.17 0.17	0.17	98.29 98.35	98.32	0.14 0.15	0.14	97.35 97.36	97.36	0.20	0.20
DP40	1 2	6504	98.11 97.69	97.90	0.15 0.16	0.16	98.42 98.48	98.45	0.13	0.13	97.54 97.54	97.54	0.19 0.18	0.19
DP41	1 2	6666	98.25 97.84	98.05	0.14	0.15	98.54 98.61	98.58	0.12	0.13	97.71 97.71	97.71	0.17	0.17
DP42	1 2	6828	98.38 97.97	98.18	0.13 0.13	0.13	98.65 98.72	98.69	0.11 0.11	0.11	97.87 97.87	97.87	0.16	0.16
	$\frac{2}{97.97} = \frac{0.13}{98.72} = \frac{0.11}{97.87} = \frac{97.87}{0.16}$ % Solids for DP = Cumulative Wt % at DP _{n-1}													

Page 10 of 281

Analysis Conditions

GPC

Samples were monitored using an Agilent 1260 refractive index detector. Data acquisition and handling was made with Jordi GPC software.

Data was obtained under the following conditions:

Solvent	Water (0.1 M NaNO ₃)
FLOWRATE	0.7 mL/min
INJECTION VOLUME	100 µL
Column Temperature	35 °C
CONCENTRATION	2.5 mg/mL for sample, 0.5 mg/mL for standards
COLUMN	Aquagel-OH Mixed M and Aquagel-OH 20
RUN TIME	40 minutes
SAMPLE PREP CONDITIONS	~5 hours at ambient temperature with orbital shaking
STANDARDS	Poly(saccharide): 642k, 334k, 194k, 107k, 47.1k, 22k,
	6.3k, 667 and 180 Da

Closing Comments

Jordi Labs' reports are issued solely for the use of the clients to whom they are addressed. No quotations from reports or use of the Jordi name is permitted except as authorized in writing. The liability of Jordi Labs with respect to the services rendered shall be limited to the amount of consideration paid for such services and do not include any consequential damages.

Jordi Labs specializes in polymer testing and has 30 years' experience doing complete polymer deformulations. We are one of the few labs in the country specialized in this type of testing. We will work closely with you to help explain your test results and <u>solve your problem</u>. We appreciate your business and are looking forward to speaking with you concerning these results.

Sincerely,

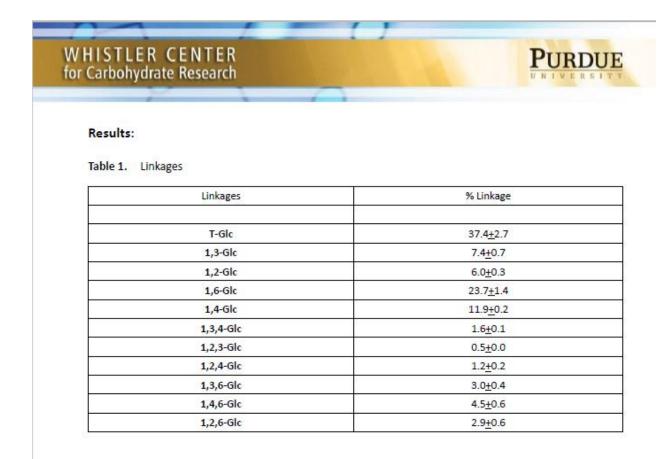
Jeel Worthington

Joel Worthington, B.Sc. Chemist Jordi Labs LLC

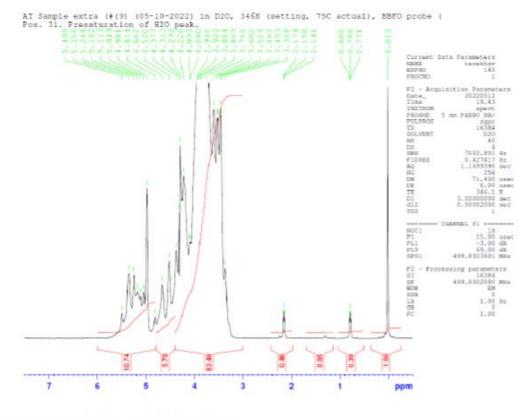
Anthony Grice

Anthony Grice, Ph.D. Investigative Group Leader Jordi Labs LLC

Page 11 of 281


Pages 12-281, GPL raw data are available upon request.

Annex B. Glycosidic Linkage Characterization of FiberSMART[®]-Corn


Final Report

TO :	Steve Prancevic, Anderson Advanced Ingredients	
cc:		
FROM :	Anton Terekhov	
DATE :	May 31, 2022	
SUBJECT :	Linkage and anomeric configuration analysis	

Chromatogram 1. NMR

α-Glc (5.6 - 4.9 ppm) β-Glc (4.9 - 4.4 ppm)

Table 2. NMR – anomeric configuration

% α-Glc	%β-Glc	
65.0	35.0	

Annex C. Certificate of Analysis (COAs) for Pesticides

🔅 euro		Eurofins Mi	crobiology Lal	boratories (Los	Angeles)	
				Eurofins Microbiology	Laboratories (Los A	ngeles)
				11390 Knott Ave Garden Grove, CA 92 +1 714 892 0208 Micro-LosAngeles@E		
ANDERSON GLOBAL G	ROUP, LLC			c	Client Code: QR000	0052
KERRI-LYNN SWANSO	N	ANALYTI	CAL REPORT			
2030 Main Street Suite 150 Irvine, CA 92614		AR-22-	QR-019913-01		Received On: 10Jun Reported On: 22Jun	
Eurofins Sample Code: Client Sample Code: Sample Description:	111-2022-061001 20211101037 FiberSMART CP		Sample Registratio Condition Upon Re Sample Reference:	eceipt: acceptable, 2		
QA01P - Pesticides Que	chers GC-MSMS	Reference AOAC 2007.01		Accreditation	Completed 22Jun2022	Sub 1
Parameter Screened pesticides		Result Not Detected	at LOQ			
QA01R - Pesticides Que	chers-LC-MS/MS	Reference AOAC 2007.01		Accreditation	Completed 22Jun2022	Sub 1
Parameter Screened pesticides Subcontracting partners: 1 - Eurofins Central Analytical Li	aboratories, Louisiana	Result Not Detected a	at LOQ			
Respectfully Submitted,						
Viridiana Castro Assistant Laboratory Man	ager					
Results shown in this report rel laboratory's scope of accreditar without written permission of Er <u>www.eurofinsus.com/terms</u> the performing labs please con	tion. All results are rep urofins Scientific, Inc. / d_conditions.pdf √ Indi	orted on an "As Recei All work done in accor icates a subcontract te	ved" basis unless otherwis dance with Eurofins Gener est to a different lab. Lab(s)	se stated. Reports shall not ral Terms and Conditions of) are listed at end of the repo	be reproduced except in Sale: ort. For further details abo	full

Page 1 of 1

🔅 eurofin		rofins Micro	biology Labo	oratories (Lo	s Angeles)	
			Eu	urofins Microbiolog	gy Laboratories (Los A	Angeles)
			G: +1	390 Knott Ave arden Grove, CA 1714 892 0208 icro-LosAngeles@		
ANDERSON GLOBAL GROUP, I	LC				Client Code: QR000	0052
KERRI-LYNN SWANSON		ANALYTICA	L REPORT			
2030 Main Street Suite 150 Irvine, CA 92614		AR-22-QR-	019915-01		Received On: 10Jun Reported On: 22Jun	
Eurofins Sample Code:111-20Client Sample Code:202010Sample Description:FiberSi		Co	mple Registration I ndition Upon Rece mple Reference:			
QA01P - Pesticides Quechers G		eference DAC 2007.01		Accreditation	Completed 22Jun2022	Sub 1
Parameter Screened pesticides	-	Result Not Detected at L0	DQ			
QA01R - Pesticides Quechers-L		eference DAC 2007.01		Accreditation	Completed 22Jun2022	Sub 1
Parameter Screened pesticides Subcontracting partners: 1 - Eurofins Central Analytical Laboratories Respectfully Submitted,	I	Result Not Detected at L0	Q			
Viridiana Castro Assistant Laboratory Manager						
Results shown in this report relate solely t laboratory's scope of accreditation. I All re without written permission of Eurofins Sci <u>www.eurofinsus.com/terms and condition</u> the performing labs please contact your of	sults are reported entific, Inc. All we <u>1s.pdf</u> √ Indicate	d on an "As Received" ork done in accordance is a subcontract test to	basis unless otherwise st e with Eurofins General T a different lab. Lab(s) are	tated. Reports shall n erms and Conditions o e listed at end of the re	not be reproduced except in of Sale: eport. For further details abo	full
		Page 1	of 1		6/22/22 3:	22 pm

Eurofins Microbiology Laboratories (Los Angeles)

Eurofins Microbiology Laboratories (Los Angeles)

11390 Knott Ave Garden Grove, CA 92841 +1 714 892 0208 Micro-LosAngeles@EurofinsUS.com

ANDERSON GLOBAL GROUP, LLC

KERRI-LYNN SWANSON

2030 Main Street

Irvine, CA 92614

Suite 150

ANALYTICAL REPORT

AR-22-QR-019914-01

Received On: 10Jun2022 Reported On: 22Jun2022

Client Code: QR0000052

Eurofins Sample Code: Client Sample Code: Sample Description:	111-2022-061001 20201202024 FiberSMART CPS		Sample Registration Da Condition Upon Receip Sample Reference:			
QA01P - Pesticides Que	chers GC-MSMS	Reference AOAC 2007.01		Accreditation	Completed 22Jun2022	Sub 1
Parameter Screened pesticides		Result Not Detected a	at LOQ			
QA01R - Pesticides Que	chers-LC-MS/MS	Reference AOAC 2007.01		Accreditation	Completed 22Jun2022	Sub 1
Parameter Screened pesticides		Result Not Detected a	at LOQ			

Subcontracting partners:

1 - Eurofins Central Analytical Laboratories, Louisiana

Respectfully Submitted,

Viridiana Castro Assistant Laboratory Manager

Results shown in this report relate solely to the item submitted for analysis. | Any opinions/interpretations expressed on this report are given independent of the laboratory's scope of accreditation. | All results are reported on an "As Received" basis unless otherwise stated. | Reports shall not be reporduced except in full without written permission of Eurofins Scientific, Inc. | All work done in accordance with Eurofins General Terms and Conditions of Sale: www.eurofinsus.com/terms and conditions. JP indicates a subcontract test to a different lab. Lab(s) are listed at end of the report. For further details about the performing labs please contact your customer service contact at Eurofins. Measurement of uncertainty can be obtained upon request.

Page 1 of 1

6/22/22 3:22 pm

Annex D. Certificates of Analysis

Order Number:	2022-005900	Completed Date: Submitted Date:	01-Jul-2022 10-Jun-2022
Submitter:	Kerri-Lynn Swanson		
Company:	Anderson Global Group		
Company Address:	2030 Main St		
	Suite 430		
	Irvine, CA 92614 USA		
Results Email:	kerrilynns@andersonglobalgroup.com		
Invoice Email:	kerrilynns@andersonglobalgroup.com		
Purchase Order:	сс		

Medailion Labs maintains A2LA accreditation to ISO/IEC 17025 for the specific tests listed in certificates # 2769.01 and 2769.02. Medailion Labs' services, including this report, are provided subject to all provisions of Medailion's Standard Terms and Conditions, a copy of which appears at <u>www.medailioniabs.com</u>. Unless otherwise noted above, samples were received in acceptable condition and analyzed as received.

Date Issued: July 01, 2022 Medallion Labs 9000 Plymouth Ave. N., Minneapolis, MN 55427 Report #: 60614

Page 1 of 9

Order # Sample ID:	2022-005900-01	Company:	
Customer Sample ID:	20211101037		
Sample Description:	FiberSMART CP90 (Resistant De	extrin)	
Analytical Testing			
Method:	Component:	Result:	Test Date:
¹ ² Aflatoxin LCMS	Aflatoxin B1	<1.3 ppb	23-Jun-2022
	Aflatoxin B2	<1.2 ppb	23-Jun-2022
	Aflatoxin G1	<1.1 ppb	23-Jun-2022
	Aflatoxin G2	<1.6 ppb	23-Jun-2022
Fiber (AOAC 2011.25)	Insoluble Dietary Fiber	<0.1 %	17-Jun-2022
	Soluble Dietary Fiber Gravimetric	24.1 %	17-Jun-2022
	Soluble Dietary Fiber HPL	C 63.9 %	17-Jun-2022
	Soluble Dietary Fiber Tota	I 88.0 %	17-Jun-2022
	Total Dietary Fiber	88.0 %	17-Jun-2022
^{1 2} Fumonisin LCMS	Fumonisin B1	<0.1 ppm	23-Jun-2022
	Fumonisin B2	<0.1 ppm	23-Jun-2022
	Fumonisin B3	<0.1 ppm	23-Jun-2022
Metals (DMA)	Mercury	<4.00 ppb	16-Jun-2022
Metals (ICP-MS)	Arsenic	<10 ppb	21-Jun-2022
Metals (ICP-MS)	Cadmium	<10 ppb	21-Jun-2022
Metals (ICP-MS)	Lead	<10 ppb	21-Jun-2022
¹ ² Reducing Sugars	Reducing Sugars	7.2 %	24-Jun-2022
¹ ² T2/HT2 Toxin	T-2 Toxin	<25.0 ppb	23-Jun-2022
	HT-2 Toxin	<25.0 ppb	23-Jun-2022
¹ ² Vomitoxin LCMS	Deoxynivalenol (Vomitoxin	n) <0.1 ppm	23-Jun-2022
	Acetyldeoxynivalenol	<0.1 ppm	23-Jun-2022
¹ ² Zearalenone LCMS	Zearalenone	<51.7 ppb	23-Jun-2022

Medailion Labs maintains A2LA accreditation to ISO/IEC 17025 for the specific tests listed in certificates # 2769.01 and 2769.02. Medailion Labs' services, including this report, are provided subject to all provisions of Medailion's Standard Terms and Conditions, a copy of which appears at <u>www.medailionlabs.com</u>. Unless otherwise noted above, samples were received in acceptable condition and analyzed as received.

¹ This analysis is performed by a partner lab.

² This test is not considered in scope of our current A2LA accreditation. For a listing of in-scope tests, please visit <u>www.medailloniabs.com</u>.

Date Issued: July 01, 2022

Medallion Labs 9000 Plymouth Ave. N., Minneapolis, MN 55427 Report #: 60614

Page 2 of 9

Order # Sample ID: 2	2022-005900-01	Company:	
	20211101037	company.	
Sample Description: F	iberSMART CP90 (Resistant [)extrin)	
Micro Testing			
Method:	Component:	Result:	Test Date:
Aerobic Plate Count using PCA	Aerobic Plate Count	<10 CFU / g	15-Jun-2022
Coliform using Petrifilm	Coliform count	<10 CFU / g	14-Jun-2022
E. coli using Petrifilm	E. coli	<10 CFU / g	15-Jun-2022
Mold using DRBC	Mold	<10 CFU / g	20-Jun-2022
Salmonella	Salmonella	Negative / 25 grams	01-Jul-2022
Yeast using DRBC	Yeast	<10 CFU / g	20-Jun-2022
Physical Testing			
Method:	Component:	Result:	Test Date:
² Particle Size Distribution (Rotap)	Pan Thru Total	86.183 %	15-Jun-2022
	Sieve 1 Retained	0.037 %	15-Jun-2022
	Sieve 1 Size	10	15-Jun-202
	Sieve 2 Retained	0.403 %	15-Jun-2022
	Sieve 2 Size	20	15-Jun-2022
	Sieve 3 Retained	1.374 %	15-Jun-2022
	Sieve 3 Size	40	15-Jun-2022
	Sieve 4 Retained	0.715 %	15-Jun-2022
	Sieve 4 Size	60	15-Jun-202
	Sieve 5 Retained	3.683 %	15-Jun-2022
	Sieve 5 Size	80	15-Jun-2022
	Sieve 6 Retained	7.605 %	15-Jun-202
	Sieve 6 Size	100	15-Jun-202

Medailion Labs maintains A2LA accreditation to ISO/IEC 17025 for the specific tests listed in certificates # 2769.01 and 2769.02. Medailion Labs' services, including this report, are provided subject to all provisions of Medailion's Standard Terms and Conditions, a copy of which appears at <u>www.medailionlabs.com</u>. Unless otherwise noted above, samples were received in acceptable condition and analyzed as received.

¹ This analysis is performed by a partner lab.

² This test is not considered in-scope of our current A2LA accreditation. For a listing of in-scope tests, piease visit www.medailionlabs.com.

Date Issued: July 01, 2022

Medallion Labs 9000 Plymouth Ave. N., Minneapolis, MN 55427 Report #: 60614

Page 3 of 9

Medallion Labs

www.medallionlabs.com 800-245-5615 info@medlabs.com

Order # Sample ID:	2022-005900-02	Company:	
Customer Sample ID:	20201002034		
Sample Description:	FiberSMART CP90 (Resistant I	Dextrin)	
Analytical Testing			
Method:	Component:	Result:	Test Date:
¹ ² Aflatoxin LCMS	Aflatoxin B1	<1.3 ppb	23-Jun-2022
	Aflatoxin B2	<1.2 ppb	23-Jun-2022
	Aflatoxin G1	<1.1 ppb	23-Jun-2022
	Aflatoxin G2	<1.6 ppb	23-Jun-2022
Fiber (AOAC 2011.25)	Insoluble Dietary Fiber	<0.1 %	22-Jun-2022
	Soluble Dietary Fiber Gravimetric	21.6 %	22-Jun-2022
	Soluble Dietary Fiber HF	LC 65.9 %	22-Jun-2022
	Soluble Dietary Fiber To	al 87.5 %	22-Jun-2022
	Total Dietary Fiber	87.5 %	22-Jun-2022
^{1 2} Fumonisin LCMS	Fumonisin B1	<0.1 ppm	23-Jun-2022
	Fumonisin B2	<0.1 ppm	23-Jun-2022
	Fumonisin B3	<0.1 ppm	23-Jun-2022
Metals (DMA)	Mercury	<4.00 ppb	16-Jun-2022
Metals (ICP-MS)	Arsenic	<10 ppb	21-Jun-2022
Metals (ICP-MS)	Cadmium	<10 ppb	21-Jun-2022
Metals (ICP-MS)	Lead	<10 ppb	21-Jun-2022
1 ² Reducing Sugars	Reducing Sugars	9.5 %	24-Jun-2022
1 2 T2/HT2 Toxin	T-2 Toxin	<25.0 ppb	23-Jun-2022
	HT-2 Toxin	<25.0 ppb	23-Jun-2022
^{1 2} Vomitoxin LCMS	Deoxynivalenol (Vomitox	in) <0.6 ppm	23-Jun-2022
	Acetyldeoxynivalenol	<0.8 ppm	23-Jun-2022
1 2 Zearalenone LCMS	Zearalenone	<51.7 ppb	23-Jun-2022

Medailion Labs maintains A2LA accreditation to ISO/IEC 17025 for the specific tests listed in certificates # 2769.01 and 2769.02. Medailion Labs' services, including this report, are provided subject to all provisions of Medailion's Standard Terms and Conditions, a copy of which appears at <u>www.medailionlabs.com</u>. Unless otherwise noted above, samples were received in acceptable condition and analyzed as received.

¹ This analysis is performed by a partner lab.

² This test is not considered in-scope of our current A2LA accreditation. For a listing of in-scope tests, please visit <u>www.medailionlabs.com</u>.

Date Issued: July 01, 2022

Medallion Labs 9000 Plymouth Ave. N., Minneapolis, MN 55427 Report #: 60614

Page 4 of 9

Order # Sample ID:	2022-005900-02	Company:	
Customer Sample ID:	20201002034		
Sample Description:	FiberSMART CP90 (Resistant	Dextrin)	
Micro Testing			
Method:	Component:	Result:	Test Date:
Aerobic Plate Count using PC	A Aerobic Plate Count	<10 CFU / g	15-Jun-2022
Coliform using Petrifilm	Coliform count	<10 CFU / g	14-Jun-2022
E. coli using Petrifilm	E. coli	<10 CFU / g	15-Jun-2022
Mold using DRBC	Mold	<10 CFU / g	20-Jun-2022
Salmonella	Salmonella	Negative / 25 grams	01-Jul-2022
Yeast using DRBC	Yeast	<10 CFU / g	20-Jun-2022
Physical Testing			
Method:	Component:	Result:	Test Date:
² Particle Size Distribution (Rotap)	Pan Thru Total	88.719 %	15-Jun-2022
,	Sieve 1 Retained	0.179 %	15-Jun-2022
	Sieve 1 Size	10	15-Jun-2022
	Sieve 2 Retained	0.794 %	15-Jun-2022
	Sieve 2 Size	20	15-Jun-2022
	Sieve 3 Retained	1.986 %	15-Jun-2022
	Sieve 3 Size	40	15-Jun-2022
	Sieve 4 Retained	1.053 %	15-Jun-2022
	Sieve 4 Size	60	15-Jun-2022
	Sieve 5 Retained	2.999 %	15-Jun-2022
	Sieve 5 Size	80	15-Jun-2022
	Sieve 6 Retained	4.191 %	15-Jun-2022
	Sieve 6 Size	100	15-Jun-2022

Medailion Labs maintains A2LA accreditation to ISO/IEC 17025 for the specific tests listed in certificates # 2769.01 and 2769.02. Medailion Labs' services, including this report, are provided subject to all provisions of Medailion's Standard Terms and Conditions, a copy of which appears at <u>www.medailionlabs.com</u>. Unless otherwise noted above, samples were received in acceptable condition and analyzed as received.

¹ This analysis is performed by a partner lab.

² This test is not considered in-scope of our current A2LA accreditation. For a listing of in-scope tests, please visit www.medailionlabs.com.

Date Issued: July 01, 2022

Medallion Labs 9000 Plymouth Ave. N., Minneapolis, MN 55427 Report #: 60614

Page 5 of 9

Order # Sample ID:	2022-005900-03	Company:	
Customer Sample ID:	20201002024		
Sample Description:	FiberSMART CP90 (Resistant I	Dextrin)	
Analytical Testing			
Method:	Component:	Result:	Test Date:
² Aflatoxin LCMS	Aflatoxin B1	<1.3 ppb	23-Jun-2022
	Aflatoxin B2	<1.2 ppb	23-Jun-2022
	Aflatoxin G1	<1.1 ppb	23-Jun-2022
	Aflatoxin G2	<1.6 ppb	23-Jun-2022
Fiber (AOAC 2011.25)	Insoluble Dietary Fiber	0.3 %	22-Jun-2022
	Soluble Dietary Fiber Gravimetric	19.2 %	22-Jun-2022
	Soluble Dietary Fiber HF	PLC 64.7 %	22-Jun-2022
	Soluble Dietary Fiber To	tal 83.9 %	22-Jun-2022
	Total Dietary Fiber	84.2 %	22-Jun-2022
^{1 2} Fumonisin LCMS	Fumonisin B1	<0.1 ppm	23-Jun-2022
	Fumonisin B2	<0.1 ppm	23-Jun-2022
	Fumonisin B3	<0.1 ppm	23-Jun-2022
Metals (DMA)	Mercury	<4.00 ppb	16-Jun-2022
Metals (ICP-MS)	Arsenic	<10 ppb	21-Jun-2022
Metals (ICP-MS)	Cadmium	<10 ppb	21-Jun-2022
Metals (ICP-MS)	Lead	<10 ppb	21-Jun-2022
¹ ² Reducing Sugars	Reducing Sugars	10.8 %	24-Jun-2022
² T2/HT2 Toxin	T-2 Toxin	<25.0 ppb	23-Jun-2022
	HT-2 Toxin	<25.0 ppb	23-Jun-2022
¹ ² Vomitoxin LCMS	Deoxynivalenol (Vomitox	kin) <0.6 ppm	23-Jun-2022
	Acetyldeoxynivalenol	<0.8 ppm	23-Jun-2022
^{1 2} Zearalenone LCMS	Zearalenone	<51.7 ppb	23-Jun-2022

Medailion Labs maintains A2LA accreditation to ISO/IEC 17025 for the specific tests listed in certificates # 2769.01 and 2769.02. Medailion Labs' services, including this report, are provided subject to all provisions of Medailion's Standard Terms and Conditions, a copy of which appears at <u>www.medailionlabs.com</u>. Unless otherwise noted above, samples were received in acceptable condition and analyzed as received.

¹ This analysis is performed by a partner lab.

² This test is not considered in scope of our current A2LA accreditation. For a listing of in-scope tests, please visit <u>www.medailloniabs.com</u>.

Date Issued: July 01, 2022

Medallion Labs 9000 Plymouth Ave. N., Minneapolis, MN 55427 Report #: 60614

Page 6 of 9

Order # Sample ID:	2022-005900-03	Company:	
Customer Sample ID:	20201002024		
Sample Description:	FiberSMART CP90 (Resistant I	Dextrin)	
Micro Testing			
Method:	Component:	Result:	Test Date:
Aerobic Plate Count using PCA	Aerobic Plate Count	<10 CFU / g	15-Jun-2022
Coliform using Petrifilm	Coliform count	<10 CFU / g	14-Jun-2022
E. coli using Petrifilm	E. coli	<10 CFU / g	15-Jun-2022
Mold using DRBC	Mold	<10 CFU / g	20-Jun-2022
Salmonella	Salmonella	Negative / 25 grams	01-Jul-2022
Yeast using DRBC	Yeast	<10 CFU / g	20-Jun-2022
Physical Testing			
Method:	Component:	Result:	Test Date:
² Particle Size Distribution (Rotap)	Pan Thru Total	87.100 %	15-Jun-2022
	Sieve 1 Retained	0.137 %	15-Jun-2022
	Sieve 1 Size	10	15-Jun-2022
	Sieve 2 Retained	0.648 %	15-Jun-2022
	Sieve 2 Size	20	15-Jun-2022
	Sieve 3 Retained	1.630 %	15-Jun-2022
	Sieve 3 Size	40	15-Jun-2022
	Sieve 4 Retained	0.785 %	15-Jun-2022
	Sieve 4 Size	60	15-Jun-2022
	Sieve 5 Retained	3.279 %	15-Jun-2022
	Sieve 5 Size	80	15-Jun-2022
	Sieve 6 Retained	6.578 %	15-Jun-2022
	Sieve 6 Size	100	15-Jun-2022

Medailion Labs maintains A2LA accreditation to ISO/IEC 17025 for the specific tests listed in certificates # 2769.01 and 2769.02. Medailion Labs' services, including this report, are provided subject to all provisions of Medailion's Standard Terms and Conditions, a copy of which appears at www.medallionlabs.com. Unless otherwise noted above, samples were received in acceptable condition and analyzed as received.

¹ This analysis is performed by a partner lab.

² This test is not considered in-scope of our current A2LA accreditation. For a listing of in-scope tests, please visit <u>www.medallioniabs.com</u>.

Date Issued: July 01, 2022 Medallion Labs 9000 Plymouth Ave. N., Minneapolis, MN 55427 Report #: 60614

Page 7 of 9

Results Approved By: Elliot McSherry (Authorized Reviewer)

Medailion Labs maintains A2LA accreditation to ISO/IEC 17025 for the specific tests listed in certificates # 2769.01 and 2769.02. Medailion Labs' services, including this report, are provided subject to all provisions of Medailion's Standard Terms and Conditions, a copy of which appears at <u>www.medailionlabs.com</u>. Unless otherwise noted above, samples were received in acceptable condition and analyzed as received.

¹ This analysis is performed by a partner lab.
² This test is not considered in-scope of our current A2LA accreditation. For a listing of in-scope tests, please visit <u>www.medaillonlabs.com</u>.

Date Issued: July 01, 2022

Medallion Labs 9000 Plymouth Ave. N., Minneapolis, MN 55427

Report #: 60614

Page 8 of 9

Analytical Method References:	
Method Name	Method Reference
Aflatoxin LCMS	Please contact for Method Details
Fiber (AOAC 2011.25)	AOAC 2011.25*
Fumonisin LCMS	Please contact for Method Details
Metals (DMA)	EPA 7473
Metals (ICP-MS)	AOAC: 993.14*, AOAC: 2015.06*
Reducing Sugars	Please contact for Method Details
T2/HT2 Toxin	Please contact for Method Details
Vomitoxin LCMS	Please contact for Method Details
Zearalenone LCMS	Please contact for Method Details
Micro Method References:	
Method Name	Method Reference
Aerobic Plate Count using PCA	FDA BAM CH 3*
Coliform using Petrifilm	AOAC 991.14
E. coli using Petrifilm	AOAC 991.14
Mold using DRBC	FDA BAM CH 18*, Compendium*
Salmonella	AOAC 2013.01*
Yeast using DRBC	FDA BAM CH 18*, Compendium*
Physical Testing Method	
Method Name	Method Reference
Particle Size Distribution (Rotap)	Please Contact for Method Details
I This mailed has been medified	

* This method has been modified.

Medailion Labs maintains A2LA accreditation to ISO/IEC 17025 for the specific tests listed in certificates # 2769.01 and 2769.02. Medailion Labs' services, including this report, are provided subject to all provisions of Medailion's Standard Terms and Conditions, a copy of which appears at <u>www.medailionlabs.com</u>. Unless otherwise noted above, samples were received in acceptable condition and analyzed as received.

¹ This analysis is performed by a partner lab.

² This test is not considered in-scope of our current A2LA accreditation. For a listing of in-scope tests, please visit <u>www.medailloniabs.com</u>.

Date Issued: July 01, 2022

Medallion Labs 9000 Plymouth Ave. N., Minneapolis, MN 55427 Report #: 60614

Page 9 of 9

Order Number:	2022-008494	Completed Date: Submitted Date:	13-Sep-2022 25-Aug-2022
Submitter:	Kerri-Lynn Swanson		
Company:	Anderson Global Group		
Company Address:	2030 Main St		
	Suite 430		
	Irvine, CA 92614 USA		
Results Email:	kerrilynns@andersonglobalgroup.com		
Invoice Email:	kerrilynns@andersonglobalgroup.com		
Purchase Order:	сс		

Medailion Labs maintains A2LA accreditation to ISO/IEC 17025 for the specific tests listed in certificates # 2769.01 and 2769.02. Medailion Labs' services, including this report, are provided subject to all provisions of Medailion's Standard Terms and Conditions, a copy of which appears at <u>www.medailionlabs.com</u>. Unless otherwise noted above, samples were received in acceptable condition and analyzed as received.

Date Issued: September 13, 2022 Medallion Labs 9000 Plymouth Ave. N., Minneapolis, MN 55427 Report #: 63294

Page 1 of 6

Order # Sample ID:	2022-008494-01	Company: Anderson Global Group	
Customer Sample ID:	Lot# 20200701023		
Sample Description:	FiberSMART CS90 - Resistant Dex	trin	
Analytical Testing			
Method:	Component:	Result:	Test Date:
^{1 2} Aflatoxin	Aflatoxin B1	<1.3 ppb	12-Sep-2022
	Aflatoxin B2	<1.2 ppb	12-Sep-2022
	Aflatoxin G1	<1.1 ppb	12-Sep-2022
	Aflatoxin G2	<1.6 ppb	12-Sep-2022
Fiber (AOAC 2011.25)	Insoluble Dietary Fiber	<0.1 %	13-Sep-2022
	Soluble Dietary Fiber Gravimetric	3.7 %	13-Sep-2022
	Soluble Dietary Fiber HPLC	63.6 %	13-Sep-2022
	Soluble Dietary Fiber Total	67.3 %	13-Sep-2022
	Total Dietary Fiber	67.3 %	13-Sep-2022
Metals (DMA)	Mercury	<2.00 ppb	31-Aug-2022
Metals (ICP-MS)	Arsenic	<10 ppb	09-Sep-2022
Metals (ICP-MS)	Cadmium	<10 ppb	09-Sep-2022
Metals (ICP-MS)	Lead	<10 ppb	09-Sep-2022
1 2 Reducing Sugars	Reducing Sugars	14.0 %	08-Sep-2022
Micro Testing			
Method:	Component:	Result:	Test Date:
Aerobic Plate Count using PC	A Aerobic Plate Count	<10 CFU / g	29-Aug-2022
E. coli using Petrifilm	E. coli	<10 CFU / g	29-Aug-2022
Mold using DRBC	Mold	<10 CFU / g	01-Sep-2022
Salmonella	Salmonella	Negative / 25 grams	30-Aug-2022
Yeast using DRBC	Yeast	<10 CFU / g	01-Sep-2022

Medailon Labs maintains A2LA accreditation to ISO/IEC 17025 for the specific tests listed in certificates # 2769.01 and 2769.02. Medailion Labs' services, including this report, are provided subject to all provisions of Medailion's Standard Terms and Conditions, a copy of which appears at <u>www.medailionlabs.com</u>. Unless otherwise noted above, samples were received in acceptable condition and analyzed as received.

¹ This analysis is performed by a partner lab.

² This test is not considered in-scope of our current A2LA accreditation. For a listing of in-scope tests, please visit <u>www.medailioniabs.com</u>.

Date Issued: September 13, 2022

Medallion Labs 9000 Plymouth Ave. N., Minneapolis, MN 55427 Report #: 63294

Page 2 of 6

Medallion Labs

www.medallionlabs.com 800-245-5615 info@medlabs.com

Order # Sample ID:	2022-008494-02	Company: Anderson Global Group	
Customer Sample ID:	Lot# 20210801029		
Sample Description:	FiberSMART CS90 - Resistant Dex	trin	
Analytical Testing			
Method:	Component:	Result:	Test Date:
¹ ² Aflatoxin	Aflatoxin B1	<1.3 ppb	12-Sep-2022
	Aflatoxin B2	<1.2 ppb	12-Sep-2022
	Aflatoxin G1	<1.1 ppb	12-Sep-2022
	Aflatoxin G2	<1.6 ppb	12-Sep-2022
Fiber (AOAC 2011.25)	Insoluble Dietary Fiber	0.2 %	13-Sep-2022
	Soluble Dietary Fiber Gravimetric	10.0 %	13-Sep-2022
	Soluble Dietary Fiber HPLC	61.2 %	13-Sep-2022
	Soluble Dietary Fiber Total	71.2 %	13-Sep-2022
	Total Dietary Fiber	71.4 %	13-Sep-2022
Metals (DMA)	Mercury	<2.00 ppb	31-Aug-2022
Metals (ICP-MS)	Arsenic	<10 ppb	09-Sep-2022
Metals (ICP-MS)	Cadmium	<10 ppb	09-Sep-2022
Metals (ICP-MS)	Lead	<10 ppb	09-Sep-2022
1 2 Reducing Sugars	Reducing Sugars	10.6 %	08-Sep-2022
Micro Testing			
Method:	Component:	Result:	Test Date:
Aerobic Plate Count using PC	A Aerobic Plate Count	<10 CFU / g	29-Aug-2022
E. coli using Petrifilm	E. coli	<10 CFU / g	29-Aug-2022
Mold using DRBC	Mold	<10 CFU / g	01-Sep-2022
Salmonella	Salmonella	Negative / 25 grams	30-Aug-2022
Yeast using DRBC	Yeast	<10 CFU / g	01-Sep-2022

Medailion Labs maintains A2LA accreditation to ISO/IEC 17025 for the specific tests listed in certificates # 2769.01 and 2769.02. Medailion Labs' services, including this report, are provided subject to all provisions of Medailion's Standard Terms and Conditions, a copy of which appears at <u>www.medailioniabs.com</u>. Unless otherwise noted above, samples were received in acceptable condition and analyzed as received.

¹ This analysis is performed by a partner lab.

² This test is not considered in-scope of our current A2LA accreditation. For a listing of in-scope tests, please visit www.medallionlabs.com.

Date Issued: September 13, 2022 Medallion Labs 9000 Plymouth Ave. N., Minneapolis, MN 55427 Report #: 63294 Page 3 of 6

Order # Sample ID:	2022-008494-03	Company: Anderson Global Group	
Customer Sample ID:	Lot# 20200810013		
Sample Description:	FiberSMART CS90 - Resistant Dex	trin	
Analytical Testing			
Method:	Component:	Result:	Test Date:
¹ ² Aflatoxin	Aflatoxin B1	<1.3 ppb	12-Sep-2022
	Aflatoxin B2	<1.2 ppb	12-Sep-2022
	Aflatoxin G1	<1.1 ppb	12-Sep-2022
	Aflatoxin G2	<1.6 ppb	12-Sep-2022
Fiber (AOAC 2011.25)	Insoluble Dietary Fiber	<0.1 %	13-Sep-2022
	Soluble Dietary Fiber Gravimetric	20.0 %	13-Sep-2022
	Soluble Dietary Fiber HPLC	49.3 %	13-Sep-2022
	Soluble Dietary Fiber Total	69.3 %	13-Sep-2022
	Total Dietary Fiber	69.3 %	13-Sep-2022
Metals (DMA)	Mercury	<2.00 ppb	31-Aug-2022
Metals (ICP-MS)	Arsenic	<10 ppb	09-Sep-2022
Metals (ICP-MS)	Cadmium	<10 ppb	09-Sep-2022
Metals (ICP-MS)	Lead	<10 ppb	09-Sep-2022
1 2 Reducing Sugars	Reducing Sugars	6.8 %	08-Sep-2022
Micro Testing			
Method:	Component:	Result:	Test Date:
Aerobic Plate Count using PC	A Aerobic Plate Count	<10 CFU / g	29-Aug-2022
E. coli using Petrifilm	E. coli	<10 CFU / g	29-Aug-2022
Mold using DRBC	Mold	<10 CFU / g	01-Sep-2022
Salmonella	Salmonella	Negative / 25 grams	30-Aug-2022
Yeast using DRBC	Yeast	<10 CFU / g	01-Sep-2022

Medailion Labs maintains A2LA accreditation to ISO/IEC 17025 for the specific tests listed in certificates # 2769.01 and 2769.02. Medailion Labs' services, including this report, are provided subject to all provisions of Medailion's Standard Terms and Conditions, a copy of which appears at <u>www.medailioniabs.com</u>. Unless otherwise noted above, samples were received in acceptable condition and analyzed as received.

¹ This analysis is performed by a partner lab.

² This test is not considered in-scope of our current A2LA accreditation. For a listing of in-scope tests, please visit <u>www.medalloniabs.com</u>.

Date Issued: September 13. 2022 Medallion Labs 9000 Plymouth Ave. N.. Minneapolis. MN 55427 Report #: 63294 Page 4 of 6

AGG's Resistant Dextrin from Corn

Results Approved By: Randy Vados (Authorized Reviewer)

Medailion Labs maintains A2LA accreditation to ISO/IEC 17025 for the specific tests listed in certificates # 2769.01 and 2769.02. Medailion Labs' services, including this report, are provided subject to all provisions of Medailion's Standard Terms and Conditions, a copy of which appears at <u>www.medailioniabs.com</u>. Unless otherwise noted above, samples were received in acceptable condition and analyzed as received.

¹ This analysis is performed by a partner lab.
² This test is not considered in-scope of our current A2LA accreditation. For a listing of in-scope tests, please visit <u>www.medallionlabs.com</u>.

Date Issued: September 13, 2022 Medallion Labs 9000 Plymouth Ave. N., Minneapolis, MN 55427 Report #: 63294

Page 5 of 6

Analytical Method References:	
Method Name	Method Reference
Aflatoxin	Please contact for Method Details
Fiber (AOAC 2011.25)	AOAC 2011.25*
Metals (DMA)	EPA 7473
Metals (ICP-MS)	AOAC: 993.14*, AOAC: 2015.06*
Reducing Sugars	Please contact for Method Details
Micro Method References:	
Method Name	Method Reference
Aerobic Plate Count using PCA	FDA BAM CH 3*
E. coli using Petrifilm	AOAC 991.14
Mold using DRBC	FDA BAM CH 18*, Compendium*
Salmonella	AOAC 2013.01*
Yeast using DRBC	FDA BAM CH 18*, Compendium*
* This method has been modified.	

Medailion Labs maintains A2LA accreditation to ISO/IEC 17025 for the specific tests listed in certificates # 2769.01 and 2769.02. Medailion Labs' services, including this report, are provided subject to all provisions of Medailion's Standard Terms and Conditions, a copy of which appears at <u>www.medailionlabs.com</u>. Unless otherwise noted above, samples were received in acceptable condition and analyzed as received.

¹ This analysis is performed by a partner lab.

² This test is not considered in-scope of our current A2LA accreditation. For a listing of in-scope tests, please visit <u>www.medaliloniabs.com</u>.

Date Issued: September 13, 2022 Medallion Labs 9000 Plymouth Ave. N., Minneapolis, MN 55427 Report #: 63294

Page 6 of 6

ADAC

Annex E. Protein Residue Levels of FiberSMART[®]-Corn

			Received Date: 7/27/2021 Report Date: 8/4/2021
	Botanical Consu		
Anderson Global Group	ATTN:	Kerri-Lynn Swanso	on/Steve Prancevic
2030 Main Street, Suite 430	TEL#	(949) 502-4770	
Irvine, CA 92614	FAX#	(949) 502-4775	
Sample Name: FiberSMART CP90			
ltem#	Lot#	20211006027	
Lab# 396205	PO#		
Analysis: Protein	Method: Bradford Protein Assay	Result: / -0.12%	Spec: < 1.0%
	·	·	

ABC Testing is an ISO accredited laboratory that specializes in the testing of botanical ingredients, dietary supplements, and foods. ABC is not an FDA drug registered facility, therefore any data or results provided by ABC are not intended to fulfill any requirements under the drug cGMPs dictated in 21 CFR Parts 210 and 211

Approved by:

Katerina Baldwin, Lab Director

Cannabis Analytical Science Program

Advanced Botanical Consulting & Testing Inc.

1169 Warner Ave, Tustin, CA 92780, Phone:(714)259-0384 Fax: (714)259-0385

Bradford Protein Assay	Bradford Protein <0.1%	Less Than 1%
Analysis: Protein	LECO- combustion N.D.	Spec: N/A
Lab# 393012	PO# Method: Result:	Enco
Lab# 202042	DO#	
ltem#	Lot# 202111080027	
Sample Name: Fiber Smart TP90		
Irvine, CA 52014	FAX# (949) 502-4775	
2030 Main Street, Suite 430 Irvine, CA 92614	TEL# (949) 502-4770	
2020 Main Street, Suite 420		1
Anderson Global Group	ATTN: Kerri-Lynn Swansor	

*This is an amended report with the following updates: Result.

Approved by:

Peter Heiman, Lab Director

Received Date: 5/26/2022 Report Date: 6/3/2022 Amendment date: 7/01/2022

ABC Testing is an ISO accredited laboratory that specializes in the testing of botanical ingredients, dietary supplements, and foods. ABC is not an FDA drug registered facility, therefore any data or results provided by ABC are not intended to fulfill any requirements under the drug cGMPs dictated in 21 CFR Parts 210 and 211

Received Date: 7/27/2022 Report Date: 8/4/2022

Advanced Botanical Consulting & Testing Inc.

1169 Warner Ave, Tustin, CA 92780, Phone:(714)259-0384 Fax: (714)259-0385

Anderson (Global Group	ATTN:	Kerri-Lynn Swanson	/Steve Prancevic
	Street, Suite 430	TEL#	(949) 502-4770	
Irvine, CA 9		FAX#	(949) 502-4775	
	me: FiberSMART CP90			
ltem#		Lot#	20211006037	
	396204	PO#		
Analysis: Protein		Method: Bradford Protein Assay	Result: / -0.11 %	Spec: < 1.0%

/: _____

Katerina Baldwin, Lab Director

ABC Testing is an ISO accredited laboratory that specializes in the testing of botanical ingredients, dietary supplements, and foods. ABC is not an FDA drug registered facility, therefore any data or results provided by ABC are not intended to fulfill any requirements under the drug cGMPs dictated in 21 CFR Parts 210 and 211

				Form	Approved: OMB No. (910-0342; Expiration Date: 07/31/2022 (See last page for OMB Statement)
			FDA USE ONLY			
				GRN NUMBER 000133		DATE OF RECEIPT Oct 28, 2022
DEPART	MENT OF HEALTH AN Food and Drug Adm			ESTIMATED DAI	LY INTAKE	INTENDED USE FOR INTERNET
	RALLY RECOG			NAME FOR INTE	ERNET	
			-	KEYWORDS		
completed form	and attachments in p	ар		edia to: Office	of Food Additive S	<i>e Instructions)</i> ; OR Transmit afety <i>(HFS-200)</i> , Center for k, MD 20740-3835.
	SECTION	A -	- INTRODUCTORY INFO		BOUT THE SUBN	NISSION
1. Type of Subm	ission (Check one)					
New	Amendment	to (GRN No	Supple	ement to GRN No	
2. XII electi	ronic files included in th	is :	submission have been chec	ked and found t	to be virus free. (Ch	eck box to verify)
	presubmission meeting ubject substance (уууу					
	ents or Supplements: I or supplement submitte			enter the date of	f	
response to a	a communication from I	=D/	A? No commu	nication (yyyy//	mm/dd):	
		SI	ECTION B – INFORMAT	ION ABOUT 1	THE NOTIFIER	
	Name of Contact Per	soi	ı		Position or Title	
	Steve Prancevic				Vice President	
1a. Notifier	Organization <i>(if applied)</i> Anderson Global Gro					
	Mailing Address (nun	nbe	er and street)			
	: 2030 Main Street		,			
City			State or Province	Zip Code/Po	ostal Code	Country
Irvine			California	92614		United States of America
Telephone Numb (949) 502-4770	er	Fa	ax Number	E-Mail Address stevep@andersonglobalgroup.com		p.com
	Name of Contact Pe	rso	n	Position or Title		
	Susan Cho, Ph.D.				Chief Science Off	icer
1b. Agent or Attorney (if applicable)Organization (if applicable)AceOne RS, Inc.						
	Mailing Address (nur	nbe	er and street)			
	5903 Hampton Fore	st١	Way			
City	-		State or Province	Zip Code/Po	ostal Code	Country
Fairfax			Virginia	22030		United States of America
Telephone Numb 301-875-6454	er	Fa	ax Number	E-Mail Addr	ess	
		_				

SECTION C – GENERAL ADMINISTRATIVE INFO	DRMATION
1. Name of notified substance, using an appropriately descriptive term Resistant dextrin from corn	
2. Submission Format: (Check appropriate box(es))	3. For paper submissions only:
Electronic Submission Gateway	
Paper Electronic files on physical media	Number of volumes
If applicable give number and type of physical media	Total number of pages
 4. Does this submission incorporate any information in CFSAN's files? (Check one) ☑ Yes (Proceed to Item 5) ☑ No (Proceed to Item 6) 	L
5. The submission incorporates information from a previous submission to FDA as indicated	below (Check all that apply)
🔀 a) GRAS Notice No. GRN 001045	
b) GRAS Affirmation Petition No. GRP	
c) Food Additive Petition No. FAP	
d) Food Master File No. FMF	
e) Other or Additional <i>(describe or enter information as above)</i>	
	a use in food (21 CER 170 $30(a)$ and (c))
 Scientific procedures (21 CFR 170.30(a) and (b)) Experience based on common 7. Does the submission (including information that you are incorporating) contain information 	
or as confidential commercial or financial information? (see 21 CFR 170.225(c)(8))	T that you view as trade secret
Yes (Proceed to Item 8	
No (Proceed to Section D)	
8. Have you designated information in your submission that you view as trade secret or as co (Check all that apply)	onfidential commercial or financial information
Yes, information is designated at the place where it occurs in the submission No	
9. Have you attached a redacted copy of some or all of the submission? (Check one)	
Yes, a redacted copy of the complete submission	
Yes, a redacted copy of part(s) of the submission	
No	
SECTION D – INTENDED USE	
1. Describe the intended conditions of use of the notified substance, including the foods in w	nich the substance will be used, the levels of use
in such foods, and the purposes for which the substance will be used, including, when appro- to consume the notified substance.	
The intended use is same as those described in GRN 001045, resistant dextrin-tapioca; i	ranging from 1.2 to 10 g powders per serving:
(1) baked goods; (2) beverages liquid non-dairy; (3) cereals and granola bars; (4) condin	
beverages; (7) dairy non-beverages; (8) frozen desserts; (9) gravies and sauces; (10) mea	
(12) prepared meals and soups; (13) processed fruits; (14) shelf-stable desserts; (15) sna	
and (17) nutrition bars. AGG does not intend to use resistant dextrin as a component of States Department of Agriculture (USDA)'s jurisdiction, such as meat, poultry, or egg pr	of infant formula or in foods under the United
States Department of Agriculture (OSDA)'s Jurisdiction, such as meat, pounty, or egg pr	
2. Does the intended use of the notified substance include any use in $product(s)$ subject to reg	gulation by the Food Safety and Inspection
Service (FSIS) of the U.S. Department of Agriculture?	
(Check one)	
Yes 🔀 No	
 If your submission contains trade secrets, do you authorize FDA to provide this informatio U.S. Department of Agriculture? (Check one) 	n to the Food Safety and Inspection Service of the
Yes No , you ask us to exclude trade secrets from the information FDA will	send to FSIS.

	E – PARTS 2 -7 OF YOUR GRAS NOTICE hission is complete – PART 1 is addressed in other sections	s of this form)			
PART 4 of a GRAS notice: Self-limiting levels of					
PART 5 of a GRAS notice: Experience based o					
PART 6 of a GRAS notice: Narrative (170.250)					
PART 7 of a GRAS notice: List of supporting da	ata and information in your GRAS notice (170.255)				
Other Information Did you include any other information that you want Yes No Did you include this other information in the list of at Yes No	ttachments?				
	GNATURE AND CERTIFICATION STATEMENTS				
1. The undersigned is informing FDA that Anders	son Global Group (AGG) (name of notifier)				
has concluded that the intended use(s) of Resistar	nt dextrin from corn				
	(name of notified substance)				
	d notice, is (are) not subject to the premarket approval requirements the substance is generally recognized as				
2. Steve Prancevic	agrees to make the data and information that are th	ne basis for the			
	conclusion of GRAS status available to FDA if FDA ese data and information during customary business hours at the nd information to FDA if FDA asks to do so.	,			
2030 Main Street, Irvine, CA 92614	(address of notifier or other location)				
as well as favorable information, pertinent	6 notice is a complete, representative, and balanced submission th to the evaluation of the safety and GRAS status of the use of the d herein is accurate and complete to the best or his/her knowledge alty pursuant to 18 U.S.C. 1001. Printed Name and Title Steve Prancevic	substance.The notifying			
		10/20/2022			

SECTION G – LIST OF ATTACHMENTS

List your attached files or documents containing your submission, forms, amendments or supplements, and other pertinent information. Clearly identify the attachment with appropriate descriptive file names (or titles for paper documents), preferably as suggested in the guidance associated with this form. Number your attachments consecutively. When submitting paper documents, enter the inclusive page numbers of each portion of the document below.

Attachment Number	Attachment Name	Folder Location (select from menu) (Page Number(s) for paper Copy Only)
	Form3667.pdf	Administrative
	COSM_Form3667_AndersonGlobalGroupAGG_10-28-2022.pdf	Administrative
	AGGResistantdextrinfromcornGRAScoverletter10-28-22r.pdf	Administrative
	FiberSmart-cornGRAS10-28-22submittedtoFDA.pdf	Administrative

OMB Statement: Public reporting burden for this collection of information is estimated to average 170 hours per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to: Department of Health and Human Services,Food and Drug Administration, Office of Chief Information Officer, <u>PRAStaff@fda.hhs.gov</u>. (Please do NOT return the form to this address.). An agency may not conduct or sponsor, and a person is not required to respond to, a collection of information unless it displays a currently valid OMB control number.