An Integrated Platform for Continuous RNA Nanoparticle Formulation and Drying

Kurt Ristroph Agricultural and Biological Engineering, Purdue University

Robert Prud'homme, Princeton University

Kurt Ristroph, Purdue University

Mark Kastantin, Serán Bioscience

Part 1: Flash NanoPrecipitation principles and use for lipid nanoparticle preparation

Potential benefits of nanoencapsulation, at a glance

Flash NanoPrecipitation scalability: two mixer geometries

401e-02

Y. Liu, R.K. Prud'homme *et al.*, *Chem. Eng. Sci.* 63 (2008) 2892-2842
B.K. Johnson and R.K. Prud'homme, *AIChE J.* 49(2002) 2264-2282

Flash NanoPrecipitation scalability

Flash NanoPrecipitation scalability

NP size and PDI are the same in 5mL batch, 30L batch, and 3000L batch.

Armstrong et al. (2023) DOI: 10.1016/j.xphs.2023.04.003

Flash NanoPrecipitation for lipid nanoparticles

Overall process design for continuous mRNA LNP manufacture

Pros and cons of different downstream processing operations to explore

Part 2: Selected examples of Flash NanoPrecipitation to formulate small molecules and biopharmaceuticals

Example 1: improving bioavailability of hydrophobic antimalarial lumefantrine

Lumefantrine (LMN)

- Indication: malaria
- LogP: 8.7

Project objective

- Develop process to prepare bioavailable solid oral dosage form
- Formulation process must:
 - Be continuous
 - Be scalable to ~4000 kg API/yr
 - Add no more than \$0.60 per dose (material + processing)
 - Yield a dry, water-dispersible powder, stable in hot/humid climates without protective packaging (powder sachet only)

Formed NPs encapsulating LMN using HPMCAS as stabilizer

Feng *et al.* (2019) DOI: <u>10.1039/c8sm02418a</u> Ristroph *et al.* (2019) DOI: <u>10.3791/58757</u>

Downstream unit operations concentrate and dry NPs; size stable throughout

Armstrong et al. (2023) DOI: 10.1016/j.xphs.2023.04.003

LMF bioavailability improved 4.2x compared to crystalline API, through aging

Example 2: FNP with hydrophobic ion pairing to encapsulate biologics

- Polymyxin B (PMB)
 - Model hydrophilic antibiotic peptide with structural complexity & therapeutic relevance
- Objective
 - Increase encapsulation efficiency (EE) and loading of PMB NCs in FNP by incorporating hydrophobic ion pairing (HIP)
- Specific goals
 - Demonstrate feasibility of FNP with HIP for efficient biologics encapsulation
 - Identify major variables governing drug release; develop controlled-release formulations
 - Develop mechanistic understanding for controlling biologic release from NCs

Hydrophobic ion pairing (HIP) Hydrophilic molecule encapsulation

Preparing NCs of antibacterial peptide polymyxin B

 NCs formed with 120nm in diameter (tunable) at 90-100% EE and 30-40% PMB loading

PMB release in buffer varies with charge ratio

Lu et al., Mol. Pharm. 2018

In vivo efficacy of slow-releasing PMB NC formulations (with Jian Li, Monash)

- Bacterial isolate: *A. baumannii* N16870.213
- 1x10⁵ CFU in 25uL per lung (IT)
- Drug dosing route: intratracheal delivery, 25uL per mouse
- PMB NC formulations reduce *Ab*. CFU by more than 3 log₁₀ units compared to aqueous PMB after 24h.

Example 3: protein encapsulation by FNP with HIP

Lysozyme (Lys): 14.4 kDa, pl = 11.4

- EE: 99% Lys loading: 39-47%
- Release tunable with charge ratio
- Up to 100% enzymatic activity post-release

Ovalbumin (OVA): 43 kDa, pl = 5.2

- EE: 88% OVA loading: 29%
- NC formulation improved immunogenicity *in vivo* in a nasal vaccine mouse model

Example 4: macrophage-targeted antitubercular NCs

Ristroph et al. (2022) DOI: 10.1002/admt.202101748

Active research areas

ristrophlab.com

III. Rapid unit operations for NPs at scale

II. Evolution of API liquid crystal phases

Currently looking to hire 2 postdocs and 2-3 graduate students

IV. Nanoparticle delivery to plants

Acknowledgements

ristrophlab.com

Purdue

- Sophia Dasaro
- Luiza Oliveira
- Mojhdeh Baghbanbashi
- Luke Johnson
- Gabriel Harris
- Rachel Zheng

Princeton

- Robert Prud'homme
- Nick Caggiano
- Maddie Armstrong

BMGF

- Niya Bowers
- Chris Moreton
- Pius Tse
- Ellen Harrington

PRINCETON BILL&MELINDA

School of Engineering and Applied Science

GATES foundation

MMV Medicines for Malaria Venture

MONASH University Institute of Pharmaceutical Sciences

We create chemistry

Duke University School of Medicine

Carnegie Mellon University Civil and Environmental Engineering

Purdue Agricultural & Biological Engineering

- Undergraduate and graduate programs ranked #1 or #2 nationally for 13 years
- State-of-the art building completed in 2021
- College of Agriculture: #3 nationally in 2024
- College of Engineering : #4 nationally in 2024 for graduate engineering
- <u>engineering.purdue.edu/ABE</u>