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Part 1: Flash NanoPrecipitation principles and use for 
lipid nanoparticle preparation
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Potential benefits of nanoencapsulation, at a glance

Combinations of the above

Rapid dissolution in GI tract 
(hydrophobic API; oral)

Ability to penetrate physiological 
mucus (oral, parenteral)

Improved circulation time in blood, 
residence time in body (parenteral)

Targeting to macrophages,
tumors, etc. (parenteral)

 

Co-delivery of multiple payloads 
for multimodal therapy and/or drug 
synergism (oral, parenteral) 

Controlled or stimulus-responsive release 
(hydrophilic API; parenteral): 
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strongly 
hydrophobic 
drug

block copolymer 
stabilizer

Organic stream
 solvent

Water stream
 antisolvent

kinetically-
trapped core, 
usually 
amorphous

turbulent 
mixing core-shell 

nanocarrier, 
tunable within
60-400nm

Nanoparticle formulation technique: Flash NanoPrecipitation

mixing begins  homogeneity  nucleation   stabilization
Flash NanoPrecipitation (FNP) 
Hydrophobic molecule encapsulation

100 nm

homogeneous

T = 0 ms T = ~1.5 ms T = 20-30 ms       T = 50-60 ms

“Bulk nanoprecipitation” poor mixing:

10,000 nm

T = 5-10sT = 0 ms T = ~1.5 ms T = 20-30 ms       T = 50-60 ms
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Key points for nanoprecipitation:

- Mixing must occur on a shorter time scale than particle assembly.

- All compounds must precipitate on a similar time scale (i.e. must 
be strongly hydrophobic or must be made strongly hydrophobic).
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Flash NanoPrecipitation (FNP) 
Hydrophobic molecule encapsulation

100 nm
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T = 0 ms  T = ~1.5 ms T = 20-30 ms       T = 50-60 ms

Nanoparticles made by FNP:
- Dense polymer surface layer (~2 chains / nm2); brush conformation
- Mixtures of surface polymers possible
- Core and shell chemistries are independent; modular formulations
- For hydrophobic cores with logP > ~4.5:
     - >95% encapsulation efficiency
     - 50-70% drug loading (recently up to 90%)
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100 nm
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For hydrophobic cores with logP > ~4:
- 100% encapsulation efficiency
- 50-70% mass loading
- Dense polymer surface layer

T = 0 ms  T = ~1.5 ms T = 20-30 ms       T = 50-60 ms

Key process advantages:
- scalability and reproducibility
- continuous operation
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For hydrophobic cores with logP > ~4:
- 100% encapsulation efficiency
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Key process advantages:
- scalability and reproducibility
- continuous operation

Key challenges: 
- APIs with low or intermediate hydrophobicity
- cost of excipients (global health, agchem applications)
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Flash NanoPrecipitation scalability: two mixer geometries
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Flash NanoPrecipitation scalability

FNP mixers scaled up to 5L/min and down to 5mL batches Turbulent flow 
mixing (FNP):

Laminar flow mixing 
(microfluidics):

𝝆𝝆 𝒗𝒗 𝒅𝒅
𝝁𝝁

= 𝑹𝑹𝑹𝑹 =
𝝆𝝆 𝒗𝒗 𝒅𝒅
𝝁𝝁

High velocities
Large channels

Low velocities
Small channels

 𝝅𝝅 𝒗𝒗 𝒅𝒅𝟐𝟐

𝟒𝟒
= 𝑸𝑸 =

𝝅𝝅 𝒗𝒗 𝒅𝒅𝟐𝟐

𝟒𝟒
High throughput
Fast mixing

Low throughput
Slower mixing
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Flash NanoPrecipitation scalability

FNP mixers scaled up to 5L/min and down to 5mL batches

NP size and PDI are the same in 5mL 
batch, 30L batch, and 3000L batch.

Armstrong et al. (2023) DOI: 10.1016/j.xphs.2023.04.003

https://doi.org/10.1016/j.xphs.2023.04.003
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Flash NanoPrecipitation for lipid nanoparticles

PEG lipid

anionic 
mRNA

Organic stream
  EtOH

Water stream
 buffer

turbulent 
mixing

lipid nanoparticle 
encapsulating 
mRNA

zwitterionic 
phospholipid

cationizable 
lipid

cholesterol
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Overall process design for continuous mRNA LNP manufacture

MIVM

Stream 1 (EtOH)

Lipid components 
or block copolymer

60 mL/min
mRNA LNPs

600 mL/min
90% water 
10% EtOHStream 2 (buffer)

mRNA
180 mL/min

Stream 3 (buffer)
180 mL/min

Stream 4 (buffer)
180 mL/min

Fill; freeze

- Add cryoprotectant
- Aseptic vial filling
- Rapid freezing

Freeze dry

- Remove water to 
improve stability and 
storage

Dynamic light 
scattering (DLS)

- Monitor NP size

Other drying 
operations

Final dosage form

Flash NanoPrecipitation
- Flexible, scalable nanocarrier formulation

Tangential flow 
filtration (TFF)

- Spray drying
- Spray freeze drying
- Electrostatic spray 
  drying

- Buffer exchange
- Remove EtOH
- Improve NP stability
- Concentrate NPs

Ribogreen assay
- Measure mRNA 
encapsulation

Electrophoresis
- Measure mRNA 
chemical stability

Analytical (in-line in some places; offline in others)
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Pros and cons of different downstream processing operations to explore

MIVM

Stream 1 (EtOH)

Lipid components 
or block copolymer

60 mL/min
mRNA LNPs

600 mL/min
90% water 
10% EtOHStream 2 (buffer)

mRNA
180 mL/min

Stream 3 (buffer)
180 mL/min

Stream 4 (buffer)
180 mL/min

Fill; freeze

- Add cryoprotectant
- Aseptic vial filling
- Rapid freezing

Freeze dry

- Remove water to 
improve stability and 
storage

Dynamic light 
scattering (DLS)

- Monitor NP size

Other drying 
operations

Final dosage form

Flash NanoPrecipitation
- Flexible, scalable nanocarrier formulation

Tangential flow 
filtration (TFF)

- Spray drying
- Spray freeze drying
- Electrostatic spray 
  drying

- Buffer exchange
- Remove EtOH
- Improve NP stability
- Concentrate NPs

Ribogreen assay
- Measure mRNA 
encapsulation

Electrophoresis
- Measure mRNA 
chemical stability

Analytical (in-line in some places; offline in others)

Spray drying
Pros:
- Continuous, large-scale
- Medium energy intensity
- Yields flowable powder

Cons:
- Elevated temperature at 
  outlet may degrade mRNA
- Low yields at low batch 
   size
- Materially intensive

Spray freeze drying
Pros:
- Low process temperature 
  good for mRNA stability
- Yields flowable powder

Cons:
- High energy intensity
- Batchwise process

Lyophilization / freeze drying
Pros:
- Low process temperature 
- Well-established pharma unit operation

Cons:
- High energy intensity    - Yields non-flowable powder
- Batchwise process    - Requires freezing
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Part 2: Selected examples of Flash NanoPrecipitation to 
formulate small molecules and biopharmaceuticals
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Adaptations extend traditional FNP platform to low-cost stabilizers, hydrophilic payloads 

strongly 
hydrophobic 
drug

block copolymer 
stabilizer
$50,000/kg

Organic stream
 solvent

Water stream
 antisolvent

Flash NanoPrecipitation (FNP) 
Hydrophobic molecule encapsulation

kinetically-
trapped core, 
usually 
amorphous

turbulent 
mixing

block 
copolymer 
stabilizer

Organic streamWater stream

Hydrophobic ion pairing (HIP)
Hydrophilic molecule encapsulation

+
+

hydrophobic 
counterion

-
-

core-shell 
nanocarrier, 
tunable within
60-400nm

hydrophobic ion 
paired complex

Low-cost stabilizer
Amphiphilic modified cellulosic

Organic streamWater stream

Hydroxypropyl 
methylcellulose 
acetate succinate 
(HPMCAS)
$50/kg

strongly 
hydrophobic 
drug
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Example 1: improving bioavailability of hydrophobic antimalarial lumefantrine

Lumefantrine

Organic streamWater stream

Hydroxypropyl 
methylcellulose 
acetate succinate 
(HPMCAS)
$50/kg

0.5 eq. 
NaOH

~220 nm

90 wt% LMN

-20mV zeta

Feng et al. (2019) DOI: 10.1039/c8sm02418a
Ristroph et al. (2019) DOI: 10.3791/58757

Lumefantrine (LMN)
- Indication: malaria
- LogP: 8.7

Project objective
- Develop process to prepare 

bioavailable solid oral dosage form
- Formulation process must:

• Be continuous
• Be scalable to ~4000 kg API/yr
• Add no more than $0.60 per dose (material + processing)
• Yield a dry, water-dispersible powder, stable in hot/humid 

climates without protective packaging (powder sachet only)

Formed NPs encapsulating LMN using HPMCAS as stabilizer

https://doi.org/10.1039/c8sm02418a
https://doi.org/10.3791/58757
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Downstream unit operations concentrate and dry NPs; size stable throughout

spray 
drying

THFwater

FNP

HPMCAS

lumefantrine

water dilution; TFF 
concentration

50% water, 
50% THF
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Armstrong et al. (2023) DOI: 10.1016/j.xphs.2023.04.003

https://doi.org/10.1016/j.xphs.2023.04.003
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LMF bioavailability improved 4.2x compared to crystalline API, through aging
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LMN spray dried powder t0

LMN spray dried powder aged 1 wk in 50C, 75% RH open
vial

Armstrong et al. (2023) DOI: 10.1016/j.xphs.2023.04.003

spray 
drying

THFwater

FNP

HPMCAS

lumefantrine

water dilution; TFF 
concentration

50% water, 
50% THF

https://doi.org/10.1016/j.xphs.2023.04.003
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• Polymyxin B (PMB)
- Model hydrophilic antibiotic peptide with structural

complexity & therapeutic relevance

• Objective
- Increase encapsulation efficiency (EE) and loading

of PMB NCs in FNP by incorporating hydrophobic
ion pairing (HIP)

• Specific goals
- Demonstrate feasibility of FNP with HIP for

efficient biologics encapsulation
- Identify major variables governing drug release;

develop controlled-release formulations
- Develop mechanistic understanding for controlling

biologic release from NCs

Example 2: FNP with hydrophobic ion pairing to encapsulate biologics
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Preparing NCs of antibacterial peptide polymyxin B

Model biologic: polymyxin B (PMB)

Counterion: oleate (OL)

Results:
- NCs formed with 120nm in diameter (tunable) at

90-100% EE and 30-40% PMB loading

PMB release in buffer varies with charge ratio

Lu et al., Mol. Pharm. 2018 

Stabilizer: PCL-b-PEG
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In vivo efficacy of slow-releasing PMB NC formulations (with Jian Li, Monash)

• Bacterial isolate: A. baumannii 
N16870.213

• 1x105 CFU in 25uL per lung (IT)

• Drug dosing route: intratracheal 
delivery, 25uL per mouse

• PMB NC formulations reduce Ab. 
CFU by more than 3 log10 units 
compared to aqueous PMB after 24h.

Markwalter et al., J. Con. Rel. 2021
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Example 3: protein encapsulation by FNP with HIP

Ristroph et al., Int. J. Pharm. 2021 

Lysozyme (Lys): 14.4 kDa, pI = 11.4

• EE: 99%  Lys loading: 39-47%
• Release tunable with charge ratio
• Up to 100% enzymatic activity post-release

Ovalbumin (OVA): 43 kDa, pI = 5.2

• EE: 88%  OVA loading: 29%
• NC formulation improved immunogenicity in

vivo in a nasal vaccine mouse model

(molar ratio)

(molar ratio)

(molar ratio)
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B.

p < 0.01

p < 0.01

Ecumicin core

Hexamannose 
targeting moiety for 
macrophages

Ecumicin 
(antitubercular peptide)

Example 4: macrophage-targeted antitubercular NCs

Ristroph et al. (2022) DOI: 10.1002/admt.202101748

https://doi.org/10.1002/admt.202101748
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I. Combined biologic/small molecule delivery II. Evolution of API liquid crystal phases

IV. Nanoparticle delivery to plantsIII. Rapid unit operations for NPs at scale

Active research areas ristrophlab.com 

Currently looking 
to hire 2 postdocs 
and 2-3 graduate 
students

http://www.ristrophlab.com/
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Purdue Agricultural & Biological Engineering
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