

Advanced Separations and Detection in Assessment of Quality for Drug Products Containing Nanomaterials

William C. Smith, Ph.D.

Research Scientist Division of Product Quality Research, Office of Testing and Research CDER | US FDA

 – [2023 NanoDay Symposium: Continuous Manufacturing of Nanomaterials] – October 11, 2023

Complexities of Products Containing Nanomaterials

"Determining average *properties* may <u>not be sufficient</u> for products with <u>multiple concurrent distributions</u> of *properties*"

When Simple is Complicated...

"As nanomaterials become more complex, how do we address the *simple* questions"

Complementary Size Measurement (Cyclosporine Ophthalmic Emulsions)

Research results provided pivotal support to the development of PSG and approval of first generics!

1000

10000

P. Petrochenko, N. Pavurala, Y. Wu, S. Y Wong, H. Parhiz, K. Chen, S.M. Patil, H. Qu, P. Buoniconti, A. Mohammad, S. Choi, D. Kozak, M. Ashraf, C.N. Cruz, J. Zheng, X. Xu. Analytical Considerations for Measuring the Globule Size Distribution of Cyclosporine Ophthalmic Emulsions, International Journal of Pharmaceutics (2018), 550(1-2), 229-239.

10000 — RI signal LS signa 1000 below tecto radius (nm) 0 Hvdrodvnamic 400 nn 300 nm radius ĝ 53 nm a 10 8 nm '40 nm 1.2 20 30 40 50 60 0 10 70 Time (min)

1st: 30 - 80 nm (87.8%); 2^{nd:} 100 - 600 nm (5.3%)

GSD for Cyclosporin Ophthalmic Emulsions

Fig. 4. AF4-MALS fractogram of Restasis[®] and the hydrodynamic (D_h) and geometric size (D_g) information. MALS signal at 90° and RI signal are shown. D_g and D_h were plotted using the same scale.

H. Qu, J. Wang, Y. Wu, J. Zheng, Y.S.R. Krishnaiah, M. Absar, S. Choi, M. Ashraf, C.N. Cruz and X. Xu. Asymmetric Flow Field Flow Fractionation for the Characterization of Globule Size Distribution in Complex Formulations: A Cyclosporine Ophthalmic Emulsion Case. International Journal of Pharmaceutics. (2018). 538(1-2), 215-222.

FDA

Separation and Characterization of Complex Products

Field-Flow Fractionation (FFF)

Different "**Fields**" give rise to different FFF separation mechanisms based on a force interacting with an analyte's physicochemical properties:

FFF System Assembled with Ancillary Equipment

FDA

Field-Flow Fractionation Separation Basics

Advantages of FFF Open Channel

Assessing morphological variability in liposomal drug products using field-flow fractionation

UCONN Liposome CM Platform

12

> Control of particle size distribution, drug loading, and shape

Image Credit: A. Costa, UConn

A. Costa, et al. Liposome formation using a coaxial turbulent jet in co-flow. Pharm Res. 2016, 33(4):404-416

Doxorubicin Liposome Polydispersity

Determining Liposomal Particle Size Distribution

*Particle Size as hydrodynamic radius (R_h) from online DLS

ID	Zavg (r.nm)	PDI (DLS)	rh(Q)n (nm)	rh(Q)w (nm)	PDI _n	PDI _w
b10t	43.4	0.061	36.8	45.7	0.101	0.064
i16t	43.7	0.017	41.4	42.9	0.016	0.015

Controlled Doxorubicin Liposome Morphology

FDA

Light Scattering for Particle Size and Shape

method

Debye

Zimm

Berry

					"true" <i>r</i> _{rms} of sphere			
		25 50		1	00	1	50	
					% rela	tive error i	n measure	ed quantity
order of polynome fit	Mm	r _{rms,m}	Mm	<i>I</i> _{rms,m}	M _m	ſ _{rms,m}	$M_{ m m}$	ſ _{rms,m}
\rightarrow $\begin{array}{c}1\\2\\3\end{array}$	$0.0 \\ 0.0 \\ 0.0$	-1.7 0.0 0.0	$-0.6 \\ 0.0 \\ 0.0$	-4.8 -0.3 0.0	$-7.0 \\ -0.7 \\ 0.0$	$-21.1 \\ -3.5 \\ -0.4$	$-8.6 \\ -0.9 \\ -0.1$	$-21.8 \\ -3.9 \\ -0.4$
1 2 3	0.1 0.0 0.0	2.4 0.0 0.0	$1.0 \\ 0.0 \\ 0.0$	$ \begin{array}{r} 10.7 \\ -1.0 \\ 0.1 \end{array} $	$44.1 \\ -5.7 \\ 1.0$	$86.6 \\ -38.1 \\ 8.1$		$108.0 \\ -47.6 \\ 10.6$
1 2 3	0.0 0.0 0.0	$1.4 \\ 0.0 \\ 0.0$	0.5 0.0 0.0	5.7 - 0.3 = 0.0	$13.8 \\ -1.5 \\ 0.2$	$31.3 \\ -8.6 \\ 1.5$	$ \begin{array}{r} 18.5 \\ -2.1 \\ 0.3 \end{array} $	$34.9 \\ -10.2 \\ 1.9$

^a The scattering species is assumed to be a compact sphere. Extrapolation based on 16 points in the angular interval 14-163°

Figures brought to you by Wyatt Technology!

Andersson, M., et al., Analytical Chemistry 75.16 (2003): 4279-4291. DOI: 10.1021/ac030128+

Shape Factor (p) from Light Scattering

Table 1. Some representative shape factor values

Structure	R _g	R _h	Shape factor
Uniform sphere with radius R	$R\sqrt{\frac{3}{5}}$	R	0.77
Hollow sphere with radius R	R	R	1
Spherical shell, p = ratio of inner radius r _i to outer radius <i>R</i>	$R\sqrt{\frac{3}{5}}\sqrt{\frac{1-p^5}{1-p^3}}$ 20	R	$p = 0.5 \rightarrow \rho = 0.82$ $p = 0.9 \rightarrow \rho = 0.95$
Uniform rod, p = length / diameter = L/d	$\frac{L}{2}\sqrt{\frac{1}{3}+\frac{1}{2p^2}}$ ²¹	$\frac{L/2}{\ln(p)+0.312+\frac{0.565}{p}-\frac{0.1}{p^2}}^{21}$	$p = 2 \rightarrow \rho = 0.85$ $p = 10 \rightarrow \rho = 1.55$
Uniform prolate ellipsoid, p = axial ratio <i>b:a</i>	$b\sqrt{\frac{1+2/p^2}{5}}$ 22	$\frac{b\sqrt{1-\frac{1}{p^2}}}{\ln\left(p+\sqrt{p^2-1}\right)}^{23}$	$p = 2 \rightarrow \rho = 0.83$ $p = 10 \rightarrow \rho = 1.36$

Doxorubicin Liposomes R_h and R_{σ}

LS Model: Berry 2nd Order

> Slight variation in R_g values at equivalent retention times for elongated/spherical mixtures 19

Doxorubicin Liposomes Shape Factors

LS Model: Berry 2nd Order

Doxorubicin Liposomes Shape Factors

> When is elongation elongated enough?

Liposomal Analysis Take-Aways

Continuous manufacturing provides the ability to produce liposomal samples of *controlled* size, shape, and polydispersity

Future directions: Orthogonal methodologies for fractionated samples to assess morphological polydispersity: RMM, Cryo-TEM, etc.

Further studies are essential to evaluate appropriateness of shape factor analysis as a rapid screening method
 Comparisons of LS Models

Field-Flow Fractionation Protocols and Methods

NCL Method PCC-19

Asymmetric-Flow Field-Flow Fractionation

Nanotechnology Characterization Laboratory

Frederick National Laboratory for Cancer Research Leidos Biomedical Research, Inc. Frederick, MD 21702 (301) 846-6939 ncl@mail.nih.gov https://ncl.cancer.gov

Analysis of Nano-Objects using Field Flow Fractionation

Interlaboratory Comparison Protocol – Asymmetrical-Flow Field Flow Fractionation

This document contains information necessary to perform measurements and report results as a participant in the interlaboratory comparison for ISO Technical Specification 21362. It is designed to generate data necessary to establish baseline precision and reproducibility for asymmetrical-flow field flow fractionation with multiple detectors. This study is conducted under the auspices of VAMAS Technical Working Area 34.

EUNCL-PCC-022

FFF-MALS method development and measurements of size and molecular weight

Measurement of particle size distribution of protein binding, of mean molecular weight of polymeric NP components, study of batch to batch reproducibility, and study of release of free coating from NP surface by FFF-MALS

Standardization Efforts for Nanomaterial Analysis

- FFF: Addressing the Nano-Challenge
- Asymmetric Flow Field Flow Fractionation for the Characterization of Globule Size Distribution in Complex Formulations: A Cyclosporine Ophthalmic Emulsion Case
- <u>Nanoparticle Manufacturing Heterogeneity through Processes to Products</u>
- Liposome formation using a coaxial turbulent jet in co-flow
- Orthogonal and complementary measurements of properties of drug products containing nanomaterials
- Physical characterization of liposomal drug formulations using multipdetector asysmetrical-flow field flow fractionation
- Improved multidetector asymmetrical –flow field flow fractionation method for particle sizing and concentration measurements of lipid-based nanocarriers for RNA delivery
- ISO TS21362 Nanotechnologies Analysis of nano-objects using asymmetrical-flow and centrifugal field-flow fractionation
- <u>NCL Method PCC-19: Asymmetric-Flow Field-Flow Fractionation</u>
- EUNCL-PCC-022 FFF-MALS method development and measurement of size and molecular weight
- <u>ASTM E3323-22: Standard Test Method for Lipid Quantitation in Liposomal Formulations Using High Performance Liquid Chromatography (HPLC) with</u> an Evaporative Light-Scattering Detector (ELSD)
- ASTM E3324-22: Standard Test Method for Lipid Quantitation in Liposomal Formulations Using Ultra-High-Performance Liquid Chromatography (UHPLC) with Triple Quadrupole Mass Spectrometry (TQMS)
- <u>ASTM E3297-21: Standard Test Method for Lipid Quantitation in Liposomal Formulations Using High Performance Liquid Chromatography (HPLC) with a Charged Aerosol Detector (CAD)</u>

www.fda.gov

Acknowledgements

FDA Collaborators:

Jiwen Zheng

Hailing Zhang

Anil Patri

Sanghamitra Majumdar

Goutam Pauli

UCONN SCHOOL OF PHARMACY

Dr. Antonio Costa

FDA

Haiou Qu

Xiaoming Xu

Funding sources:

- ORISE
- Critical Path
- Regulatory Science Research
- NanoCORES
- GDUFA

Dr. Gowtham Yenduri

Questions?

William C. Smith, Ph.D.

Research Scientist Division of Product Quality Research, Office of Testing and Research CDER | US FDA