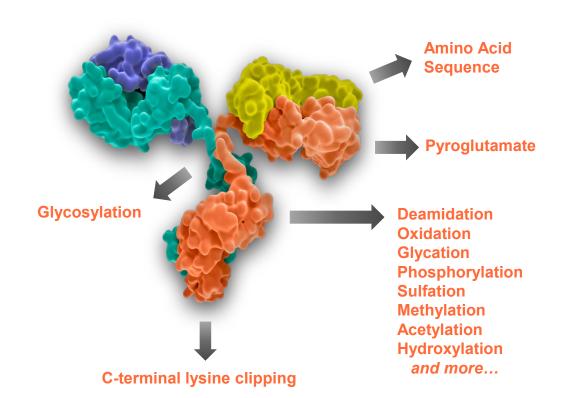
Assessment of the performance of the multiattribute method (MAM) vs conventional QC methods for evaluation of Product Quality Attributes of adalimumab and etanercept


Diane McCarthy, PhD October 16, 2023

\* Award FAIN No.# U01FD007762 is fully funded by the Food and Drug Administration (FDA) in the amount of \$1,530,721

## Introduction to Multi-attribute Methods

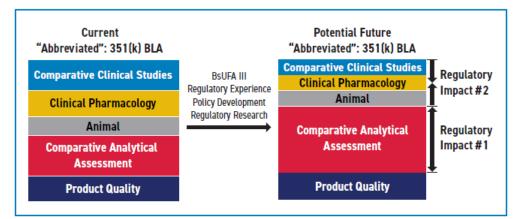


- Monoclonal antibodies and other protein therapeutics are susceptible to many modifications during and after production
  - Some modifications impact function
  - Others are stability indicating
- A multi-attribute method could use any technology that allows a scientist to investigate multiple quality attributes at the same time
  - Mass spectrometry has emerged as the most mature and widely used platform for MAM



#### **Comparison of MAM to Conventional Methods**




| Product Quality Attribute             |                               | MAM Conventional Method |     |          |         |          |                    |                                                                         |  |
|---------------------------------------|-------------------------------|-------------------------|-----|----------|---------|----------|--------------------|-------------------------------------------------------------------------|--|
|                                       |                               | Pep Map LC-<br>MS       | SEC | IEX/cIEF | rCE-SDS | nrCE-SDS | Glycan by<br>HILIC |                                                                         |  |
| Identity                              |                               | +                       | -   | +/-      | -       | -        | -                  | Key                                                                     |  |
| Soluble aggregates                    |                               | -                       | +   | -        | -       | +/-      | -                  | "+" application can be used                                             |  |
| Fragments/Clips                       |                               | +                       | +/- | -        | +       | +        | -                  | "-" application not commonly used                                       |  |
| Amino Acid Mutation/Mis-incorporation |                               | +                       | -   | -        | -       | -        | -                  | "+/-" application may be used                                           |  |
| Cys related modifications             | <b>Unpaired Cys</b>           | +                       | -   | +/-      | -       | -        | -                  | +/- application may be used                                             |  |
|                                       | Disulfide Isoform             | +                       | -   | -        | -       | -        | -                  |                                                                         |  |
|                                       | Thioether                     | +                       | -   | -        | -       | -        | -                  |                                                                         |  |
| Glycosylation                         | <b>N-linked Glycosylation</b> | +                       | -   | +/-      | -       | -        | +                  |                                                                         |  |
|                                       | Non-Glycosylated              | +                       | -   | -        | +       | -        | -                  | MAM offers several                                                      |  |
|                                       | O-Linked Glycan (Ser,<br>Thr) | +                       | -   | +/-      | -       | -        | -                  | potential advantages                                                    |  |
| Isomerization (Asp)                   |                               | +                       | -   | +/-      | -       | -        | -                  | – Improved efficiency by                                                |  |
| Oxidation (Met, Trp, Cys)             |                               | +                       | -   | -        | -       | -        | -                  | replacing multiple                                                      |  |
| Hydroxylysine                         |                               | +                       | -   | -        | -       | -        | -                  | technologies                                                            |  |
| Charge variants                       | Deamidation (Asn, Gln)        | +                       | -   | +        | -       | -        | -                  | – More specific information on                                          |  |
|                                       | Glycation                     | +                       | -   | +        | -       | -        | -                  | site of modification                                                    |  |
| N-Terminal<br>modifications           | Signal peptide                | +                       | -   | -        | -       | -        | -                  | Alignment with Quelity by                                               |  |
|                                       | N-Terminal pyroGlutamate      | +                       | -   | +        | -       | -        | -                  | <ul> <li>Alignment with Quality by<br/>Design (QbD) concepts</li> </ul> |  |
| C-Terminal<br>modifications           | Lys deletion                  | +                       | -   | +        | -       | -        | -                  |                                                                         |  |
|                                       | Amidation                     | +                       | -   | +        | -       | -        | -                  | 3                                                                       |  |

Adapted from USP Proposed General Chapter <1060> Mass Spectrometry Based Multi-Attribute Method for Therapeutic Proteins

# Relevance to BsUFA Regulatory Research Pilot Program



- While some large biopharma companies are implementing MAM in QC, MAM is not as commonly used in biosimilar companies
- Although MAM has been most commonly applied to mAbs, it is applicable to other therapeutics modalities, including therapeutic proteins, vaccines, and gene therapies
- Addresses goals of the BsUFA Regulatory Research Pilot Program by improving on new analytical techniques (goal 1c)
  - More widespread and consistent implementation of MAM would support the Potential Future "Abbreviated" pathway
  - MAM can provide more comprehensive comparative analytical assessment
  - Implementation of MAM can support more efficient analysis of product quality attributes (PQAs)



from BsUFA III Regulatory Research Pilot Program: Research Roadmap

## **Project Background and Objectives**



► A 2019 publication by FDA staff\* outlined 4 considerations for adoption of MAM in QC:

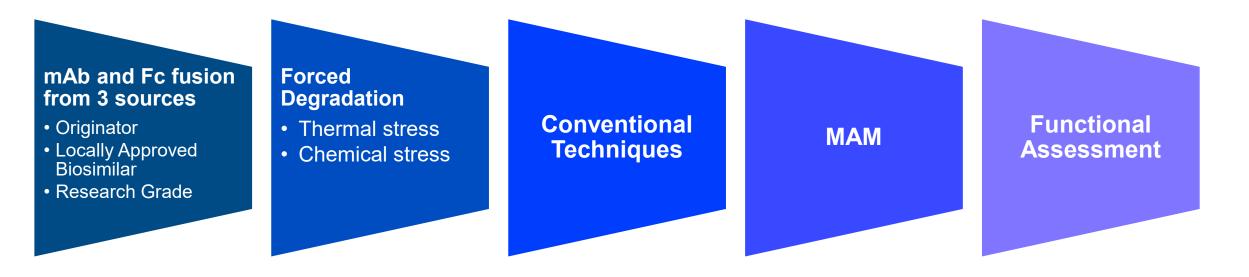
- 1) risk assessment
- 2) method validation

3) new peak detection capability and specificity

4) performance vs. conventional methods

This project addresses #4: the performance of MAM vs conventional methods

 Collecting data to support bridging from traditional techniques to MAM is a significant investment that can prevent or delay development of biosimilars


#### Objectives

 Support transitioning from conventional techniques to MAM by creating a knowledge base that can lower the barrier of entry to enable wider adoption of MAM by biosimilar manufacturers

\* S Rogstad et al Analytical Chemistry 2019 91 (22), 14170-14177 DOI: 10.1021/acs.analchem.9b03808

### **Overall Study Design**





- Selected Adalimumab and Etanercept as model systems for mAbs and Fc fusion proteins due to availability of biosimilar and research grade products
- Assess and compare the ability of conventional QC methods and MAM-based methods to identify product quality attributes (PQAs)
- Correlate changes in those PQAs upon forced degradation with function (bioactivity, binding affinity, and structure)

#### **Comparison of Conventional and MAM Methods: Charge Variants**

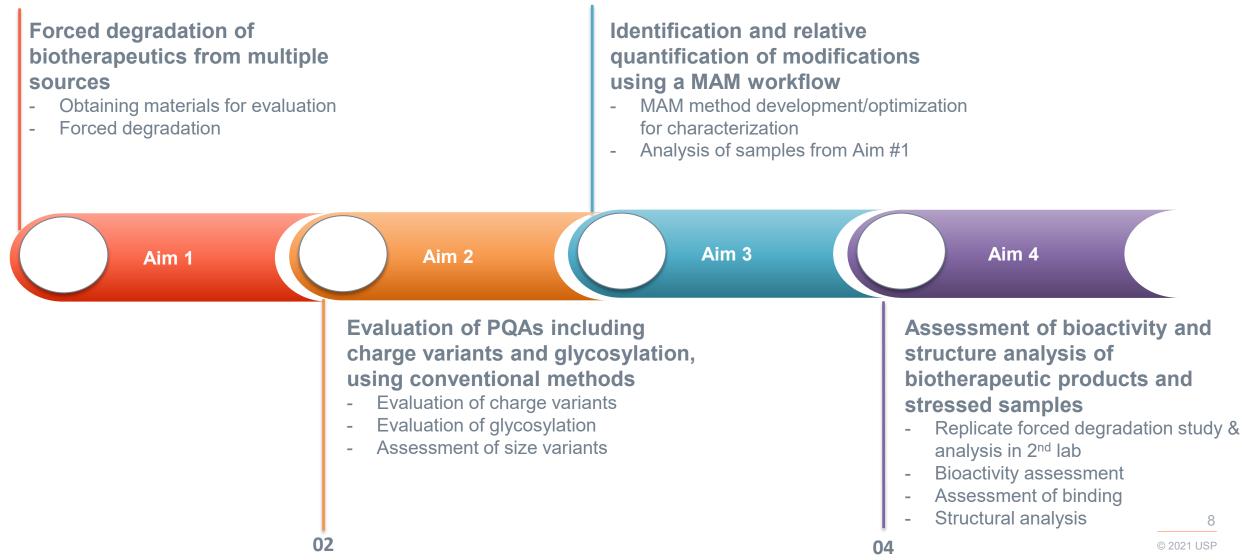


Used USP mAb 001 Reference Standards as a model system and for establishing System Suitability

**Multi-attribute Method** 

#### **Conventional Methods**

| Conventional Methods |                       |                 |                                                                                                         | Multi-attribut                                                        |                                         |                     |                |               |  |
|----------------------|-----------------------|-----------------|---------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------|---------------------|----------------|---------------|--|
|                      |                       |                 |                                                                                                         |                                                                       |                                         | x 8 sites 🦯         | Amino Acid     | % Deamidation |  |
| CEX-HPLC             | Charge Variants %     |                 |                                                                                                         | CASVKM SCKASCATE                                                      |                                         | RGLEWIGA IYPGNGDTSY | HC N55         | 8.7%          |  |
|                      | Acidic 20.0           |                 |                                                                                                         |                                                                       | 1 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( | DWYFNV WGAGTTVTVS   | HC N61         | 2.0%          |  |
|                      | Main 61.9             |                 |                                                                                                         | SSKSTS GGTAALGCLV                                                     |                                         |                     | HC N319        | 10.4%         |  |
|                      | Basic 18.1            |                 |                                                                                                         | SSLGTQ TYICNVNHKP \$<br>L <b>M</b> ISRT PEVTCVVVDV \$                 |                                         |                     | HC N365        | 1.8%          |  |
| Acidic               | Basic                 |                 |                                                                                                         | 2DWLNG KEYKCKVSNH                                                     |                                         |                     | HC N388        | 2.7%          |  |
|                      |                       | ETKN            | ELTKNQVSLT CLVKGFYPSD IAVEWESNGQ PENNYKTTPP VLDSDGSFFL YSKLTVDKSR<br>WQQGNVFSCS VMHEALHNHY TQKSLSLSPG K |                                                                       |                                         |                     |                |               |  |
|                      |                       | LC N136         | 0.9%                                                                                                    |                                                                       |                                         |                     |                |               |  |
|                      |                       | - Lighto        | chain:                                                                                                  |                                                                       | LC Q198                                 | 0.7%                |                |               |  |
| Location and sr      | pecific modifications | QIVLS           | SPAI LSASP                                                                                              | GEKVT MTORASSSVS N                                                    | (IHWFQQKPG SSPKP)                       | WIYAT SNLASGVPVR    |                |               |  |
| cannot be ident      |                       |                 |                                                                                                         | RVEAE DAATYYCQQW                                                      |                                         | Chain               | % Lys Clipping |               |  |
|                      |                       |                 |                                                                                                         | L <mark>N</mark> NFYP REAKVQWR <b>W</b><br>VTH <b>Q</b> GL SSPVTKSFNR | Heavy Chain                             | 93.3%               |                |               |  |
|                      |                       | SKADY           | ENNN TACE                                                                                               | VINQGL SSPVIKSFIK                                                     |                                         |                     |                |               |  |
|                      |                       |                 |                                                                                                         |                                                                       |                                         |                     |                |               |  |
|                      | Chain                 | % Pyroglutamate | Glycan                                                                                                  | % of Total Glycan                                                     | Amino A                                 | cid % Oxidation     |                |               |  |
|                      | Heavy Chain           | 96.9%           | A2G2F                                                                                                   | 5.9%                                                                  | HC M3                                   | 4 2.6%              |                |               |  |
|                      | Light Chain           | 96.4%           | A2G1F                                                                                                   | 41.0%                                                                 | HC M25                                  | 56 6.4%             |                |               |  |
|                      |                       |                 | A1G0F                                                                                                   | 9.0%                                                                  | HC M43                                  | 32 2.9%             |                | _             |  |
|                      |                       |                 |                                                                                                         |                                                                       |                                         |                     |                | /             |  |


44.1%

A2G0F

## **Timeline and Project Progress**



#### 



### **Expected Outcome**



- Comparison of conventional methods vs. MAM
  - Sensitivity of detection and quantification of variants that impact Product Quality Attributes
  - Correlation of MAM results vs. conventional techniques
  - Association of modifications with differences in structure and biological function
- Roadmap for implementation of MAM
  - Relevant method comparisons
  - Sources of variability across labs
  - Approaches for establishing system suitability
- Publicly available dataset