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Outline

e Continuous manufacturing (CM) of drug substances and
drug products

* Process modeling and simulation (M&S) for CM at FDA
* CM research highlights
* Opportunities of CM for generic drug products
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CM of Drug Substance and Drug Product FDA

Synthesis Crystallization Blending Granulation Tablet Press

Sensors (PAT) and Active Process
Control Test & Tablet

Benefits:

 Reduced environmental footprint
* Improved efficiency
 Enhanced product quality

e Faster time-to-market

* Cost savings

www.fda.gov



Regulatory Considerations on CM
* Characterization of process dynamics for critical steps and integrated system
— Residence time distribution for a proposed mass flow rate
— Understanding of the system response to transient disturbances

Evaluation of the proposed attributes and specifications of raw materials
— Impact of variations in material properties on the performance of CM and
product quality

* Process monitoring and control strategy

— Monitor and detect transient disturbances and process deviation

— Frequency of PAT measurements

— Active process controls

Material collection and diversion
— Start up and shutdown
— Strategy to identify, isolate and
divert non-conforming materials

Real-time release testing
— PAT tools for assay and content uniformity

— Dissolution models
www.fda.gov
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Modeling and Simulation (M&S) at FDA

Pre-market Post-market
product product FDA policy FDA policy
review assessment development implementation Other

Solid mechanics

Fluid dynamics

Heat transfer
Electromagnetism
Acoustics

Optics

lonizing radiation

Mass transport
Physiological
Quantitative clinical pharmacology
Dose-response modeling
(Q)SAR

Molecular docking

Read across models
Chemometrics / real-time release testing
Quality by design

NIVC

NMIVE

PK/ADME

PK/PD

Population PK analysis

PBPK

Systems biology

Bayesian

Frequentist

Multi-reader multi-case imaging
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Successes and Opportunities in
= % I B Modeling & Simulation for FDA
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Complex innovative design
Disease modeling / trial simulation
Trial design considerations
Knowledge bases

Big data driven models

Al/ machine learning

Risk assessment
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Benefit/risk assessment
Decision analysis

I
Population modeling
Exposure assessment ...- . . K
Epidemiology
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Process M&S for CM at FDA FDA

* Development and assessment of process models by OPQ is not unprecedented but the frequency,
types of models, and applications are evolving

* Advanced manufacturing a potential driving force for utilization of process modeling
o Inherently data rich processes
o Availability of plant wide information systems
o Implementation of advanced control strategy approaches (MPC, RtR, etc.)
e  Office of Pharmaceutical Quality (OPQ) has developed internal process M&S capabilities:
= Continuous API synthesis and crystallization
= Continuous drug product manufacturing

* FDA has established multiple external collaboration in the area of process M&S (e.g., RCPE,
Siemens, Rutgers, Purdue, MIT)

www.fda.gov 6



Regulatory Guidances for Establishing and Assessing

Model Credibility
ICH Points to Consider Document ASME V&V 40

) ASME V&V 40-2018
)(Ilwgolﬂ-lmhou for better health

Assessing Credibility

TICH QUALITY IMPLEMENTATION WORKING GROUP Of Com pUtatiOl'lal
PoINTs TO CONSIDER (R2) MOde“ ng Th rough
ICH-Endorsed Guide for Veriﬂ Cation and

ICH Q8/Q9/Q10 Implementation

Validation: Application
Document date: 6 December 2011 to Med Ical DeVIceS

) s

L
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ASME V&YV 40 Risk-Informed Credibility Assessment

Establish Risk-Informed Credibility V&YV Activities
Define Assess Establish Establish Execute

—> Model >

YES | Documentation
cou : ChREINY V&V Plan V&V Plan and Evidence
Risk Goals
E

* The question of interest describes the specific question, decision or concern that
is being addressed

* Context of use (COU) defines the specific role and scope of the model used to
inform that decision

Assess Credibility

CME&S
Credible for
cou?

Question of
Interest

NO

* Model risk is the possibility that the model may lead to a false/incorrect
conclusion, resulting in adverse outcomes

* Model credibility refers to the trust in the predictive capability of the model for
the COU

www.fda.gov 8



Model Credibility Factors FOUA

Credibility Factors
Model credibility can be established through Verification Validation Applicability
the collection of V&V evidence and by Code | Solution Model = | Comparator | Output
demonstrating the applicability of the V&V Assessment
activities to support the use of the model for
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Level Description
1 Visual comparison concludes good agreement.
2 Comparison by measuring the difference between computational results and
experimental data. Differences are less than 20%.
3 Comparison by measuring the difference between computational results and
experimental data. Differences are less than 10%.
4 Comparison with uncertainty estimated and incorporated from the comparator
or computational model. Differences between computational results and
experimental data are less than 5%. Includes consideration of some
uncertainty, but statistical distributions for uncertainty quantification are
unknown.
5 Comparison with uncertainties estimated and incorporated from both the
comparator and the computational model, including comparison error.
www.fda.gov Differences between computational results and experimental data are less 9

than 5%. Statistical distributions for uncertainty quantifications are known.



Case Study I: CM of Carbamazepine (CBZ)

Developed an experimental platform and process models for continuous synthesis
of CBZ with on-line PAT tools for advanced process monitoring and control

ISB CBzZ
—
N
H 07I\NH2
Carbamoylation of Iminostilbene (ISB) to form

Carbamazepine (CB2).

www.fda.gov https://doi.org/10.1039/D2RE00476C
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Modelling the Continuous Synthesis Process for CBZ
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Modeling Process Disturbances

www.fda.gov
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= CBZ HPLC
CBZ Raman
CBZ Model
= ISBHPLC
----- ISB Raman
ISB Model

o
(3

N
)

Concentration (mg/mL)
o

Time (hour)

Stepwise disturbance in ISB stock:
6 mg/ml to 2 mg/mL from hour 4 to hour 5
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Case Study Il: Continuous Powder Blending

*  Three loss-in-weight feeders
feed APl and excipients into a
continuous blender

— Blender contains configurable
shaft with 28 elements

* Nearinfrared (NIR) spectrometer |
positioned below blender outlet

*  The effects of material
properties and process
parameters on the residence
time distribution (RTD) of API
was investigated

«  Adiscrete element method V., —d == %, NIR'Probe
(DEM) blender model was B ' o N ’
developed and validated using
experimental data

N

o

www.fda.gov https://doi.org/10.1016/j.cherd.2022.12.005 13
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Effect of Process Parameters on RTDs

. . . 10 Mixing Elements 16 Mixing Elements 22 Mixing Elements
* Mean Residence Time: ... sorz ootz
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Assessing RTDs in Continuous Powder Blending using DEM

Initial state Steady state
Time: 0 Time: 202,86 s AR

*EDEM' "EDEM

Videos are obtained from the simulation with 5%API, 15kg/hr, 300rpm, and 16M

AP| — dark magenta, MCC — dark cyan, lactose — dark grey

www.fda.gov 15



DEM Model Validation

Case 5: 10kg/h, 400rpm, 16M Case 6: 15kg/h, 300rpm, 16M Case 7: 20kg/h, 200rpm, 16M Case 9: 20kg/h, 300rpm, 10M
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* Simulations agree well with experiments in most of cases

www.fda.gov 16



Effect of Throughput

 Mean residence time decreases linearly with increasing throughput
* Hold-up mass increases linearly with increasing throughput

0.01 EN. Mean Residence Time and Hold-up Mass
—10kg/h
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Case Study lll: Quality Risk Assessment of Continuous DP A
Process

Excipient 1 Excipient 2 Excipient 3

ARLFeRder Feeder Feeder Feeder

* Developed flowsheet process model for
a continuous direct compression (CDC) line

— Low dose formulation, excipient 1 and 2 '
compose over 90% of the formulation o @ F ) Blender-t
Xcipien xcipien il
* Performed sensitivity analysis in the risk = ==
assessment _
* |dentified potential process parameters and [ I
material attributes that affect critical quality ‘m,_ —
attributes of the drug product —

% Tablet Press

https://doi.org/10.1016/j.compchemeng.2019.06.033

www.fda.gov 18
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Sensitivity Analysis of CDC Process
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Intensity plots representing steady-state
sensitivity analyses that capture the effects
of input factors on the output responses

APl and excipients 1&2 density,
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2,2 50
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Impact of simultaneous disturbance
in the flowrates of excipients 1 & 2
on final product concentration

and their flowrates are

www.fda.gov significant factors impacting drug product quality
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Case Study IV: Quality Risk Control of a Continuous DP
Process

Developed a RTD-based process
modeling framework for a CDC line
— Excipients 1 -4 compose over 65%
of the formulation

The effectiveness of in-process control (IPC)
strategies were evaluated

www.fda.gov
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https://doi.org/10.1208/s12249-020-01913-8
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Establishing IPC Limits for APl Loading

* Two worst-case scenarios are considered to evaluate proposed IPC limits
* APl feeder operates at its upper (Fig. a)/lower limit (Fig. b) and excipients
feeders operate at their lower (Fig. a)/upper limits (Fig. b)

105
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* The feeder IPC limits are set conservatively as the corresponding peak
concentrations at the feed frame are within the feed frame IPC limits

Feeder IPC Limits Feed Frame IPC Limits

API +15% for 20 seconds 5%
Excipient 1,2 +20% for 30 seconds 5%

Excipient 3,4 +30% for 40 seconds +10% 21
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Opportunities of CM for Generic Drug Products

*  90% of medicines used by U.S. patients are generic, but no generic
medicines have been approved to use CM

Insemasional Joumal of Phasmaceatics 622 (2022) 121778

* One of the potential drivers motivating generic companies to be | mmm— i
involved in implementing CM includes complex drug products such == bt et
implants, |0ng-acting micrOSphereS, and |ip0$0me5 An audit of phamaceutical continuos manufacturin regulatory =

Adam C. Fisher, William Liu, Andreas Schick, Mahech Ramanadham , Sharmista Chatterjee,
Raphael Brykman, Sau L. Lee, Steven Kozlowski, Ashley B. Boam, Stelios C. Tsinontides ',
Michael Kopcha

her Spring MD 20953, Uit Setes

e CM applicants had shorter times to approval and marketing
compared to batch applicants
* 3 months faster to approval (median) e .
* 4 months faster to marketing =
e ~S$171-537M in early revenue benefit

* No substantial regulatory barriers for CM related to:
*  Manufacturing process changes https://doi.org/10.1016/j.ijpharm.2022.121778

* Pre-approval inspections

www.fda.gov 22
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Concluding Thoughts

* Regulatory experience for advanced manufacturing is evolving
* Research Case Studies Support Regulatory Decision Making
o OPQ Science and Research

— Knowledge gained from the internal and sponsored research inform policy,
review, and inspection activities, ensuring that FDA regulatory policies reflect
state-of-the-art manufacturing science.

* Shared learning and open communication to accelerate adoption of emerging
technologies to advance product quality

www.fda.gov
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