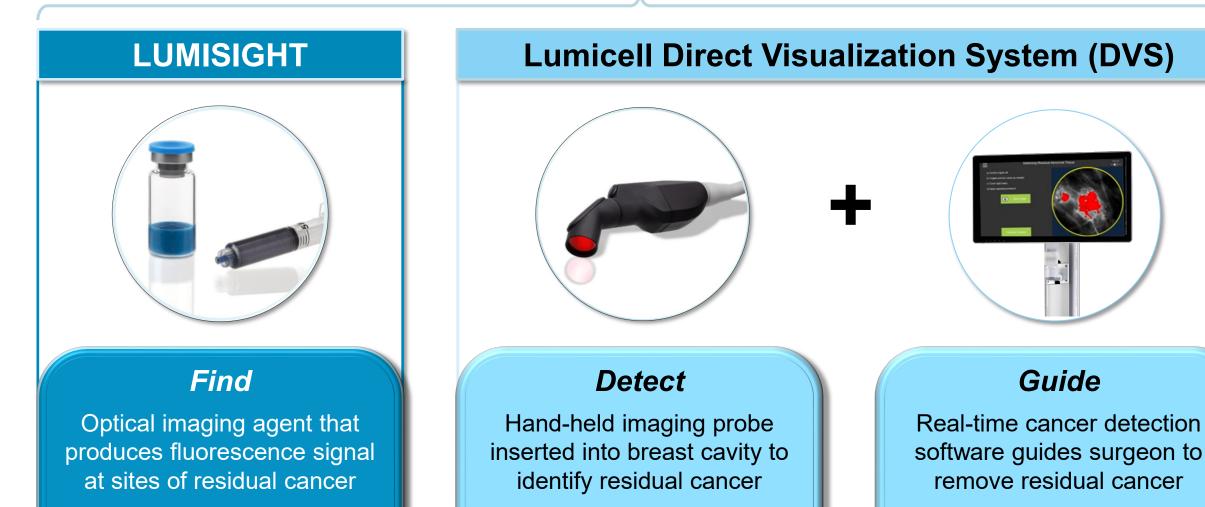
LUMISIGHT[™] and Lumicell[™] Direct Visualization System (DVS) as Adjunct to Standard of Care to Identify Residual Cancer Within the Lumpectomy Cavity

March 5, 2024

Lumicell

Medical Imaging Drugs Advisory Committee (MIDAC)

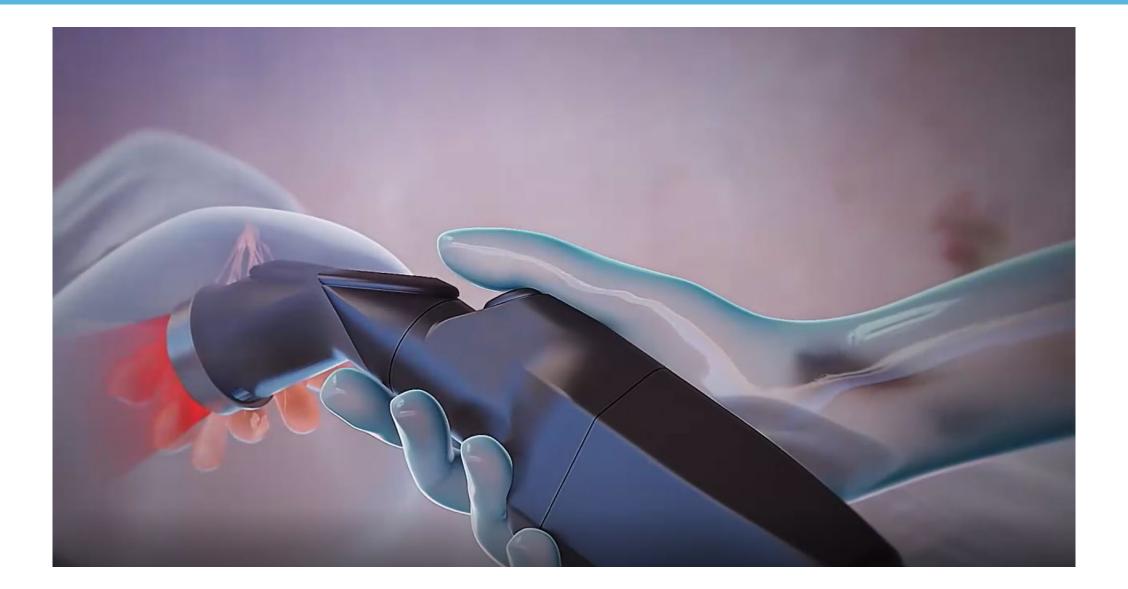

Introduction

Jorge Ferrer, PhD

Chief Scientific Officer Lumicell

LUM System Is Real-Time, Intracavity, Fluorescence-Guided Imaging as Adjunct to Standard of Care (SoC)

LUM System Developed to Fill Important Unmet Clinical Need



Surgeons have no way to see full extent of cancer inside cavity 19% of negative margins have residual cancer remaining¹

> 9% – 36% second surgeries^{2,3}

Clear unmet need for real-time, intracavity assessment to more effectively determine extent of tumor for more complete resection

LUM System in Action

LUM System Clinical Development Program in Breast Cancer and Cardiovascular Safety

Study ID	Phase / Design	Patients Injected with LUMISIGHT
DUK1-12-137	Phase 1 Single site, nonrandomized, open label trial	15 (3 breast, 12 sarcoma) (6 at 0.5 mg/kg; 6 at 1 mg/kg; 3 at 1.5 mg/kg)
CLP00201	Phase 1 Cardiovascular Safety Trial, healthy volunteers Single site, randomized, double-blind, placebo controlled, dose-escalation	24 32 enrolled (8 in placebo-controlled arm)
LUM-015/2.6-001	Feasibility Phase A Single site, nonrandomized, open label trial	10 (5 at 0.5 mg/kg; 5 at 1 mg/kg)
LUM-015/2.6-001	Feasibility Phase B Single site, nonrandomized, open label trial	45 (1 mg/kg)
CL0006	Feasibility Phase C Multicenter, nonrandomized, open label trial	234 (1 mg/kg)
CLP0008	Feasibility in Patients Receiving Neo-Adjuvant Therapy Multicenter, randomized, blinded trial	12 (1 mg/kg)
CL0007	Pivotal Study Multicenter, 2-arm, randomized, blinded trial	406 (1 mg/kg)

Data Supporting Efficacy and Safety of LUM System Published in NEJM Evidence

CO-7

Study ID		th LUMISIGHT
DUK1-12-137	Published April 27, 2023 Evidence DOI: 10.1056/EVIDoa2200333	arcoma) at 1.0 mg/kg; g/kg)
CLP00201	original article Intraoperative Fluorescence Guidance for Breast	led itrolled arm)
LUM-015/2.6-001	Cancer Lumpectomy Surgery	at 1.0 mg/kg)
LUM-015/2.6-001	Barbara L. Smith, M.D., Ph.D., ¹ Kelly K. Hunt, M.D., ² David Carr, M.D., ³ Peter W. Blumencranz, M.D., ⁴ E. Shelley Hwang, M.D., M.P.H., ⁵ Michele A. Gadd, M.D., ¹ Kimberly Stone, M.D., ⁶ Donna L. Dyess, M.D., ⁷ Daleela Dodge, M.D., ⁸ Stephanie Valente, D.O., ⁹ Nayana Dekhne, M.D., ¹⁰ Patricia Clark, M.D., ¹¹ Marie Catherine Lee, M.D., ¹²	g)
CL0006	Laila Samiian, M.D., ¹³ Beth-Anne Lesnikoski, M.D., ¹³ Lynne Clark, M.D., ¹⁴ Kate Porta Smith, M.P.H., C.C.R.P., ¹⁵ Manna Chang, Ph.D., ¹⁵ Daniel K. Harris, Ph.D., ¹⁵ Brian Schlossberg, Ph.D., ¹⁵ Jorge Ferrer, Ph.D., ¹⁵ Irene L. Wapnir, M.D., ⁶ for the INSITE Study Team*	g)
CLP0008	Irene L. Wapnir, M.D., for the INSTE Study ream?	g)
CL0007	Pivotal Study Multicenter, 2-arm, randomized, blinded trial	406 (1 mg/kg)

Proposed Indication and Dosing

Proposed Indication

 LUMISIGHT is indicated for fluorescence imaging in adults with breast cancer as an adjunct for the intraoperative detection of cancerous tissue within the resection cavity following removal of the primary specimen during lumpectomy surgery (also known as breast-conserving surgery)

Proposed Dosing

• For use only as a single dose of 1 mg/kg, 2-6 hours prior to imaging

Benefits of LUM System Outweigh Risks

Benefits

- Enables removal of residual cancer missed by SoC surgery and pathology
- Converts positive margins to negative, sparing potential second surgeries
- Does not appear to worsen cosmesis
- Provides real-time *in vivo* imaging to surgeons
- As adjunct to SoC, improves surgical outcomes

Risks

- False positives can lead to unnecessary tissue removal
- 0.6% serious hypersensitivity or anaphylaxis risk (4 / 726 patients)

Benefits of removing residual cancer left behind by SoC surgery outweigh any identified risks that can be managed in preoperative setting and with labeling

Sponsor-Proposed Risk Mitigation Strategies for LUMISIGHT Administration

CO-10

Clear Labeling

Training Program

Enhanced Pharmacovigilance

Postmarket Study

Agenda

Unmet Need

Efficacy

Safety

Allergic Reactions / Hypersensitivity

Risk Mitigation Strategies

Clinical Perspective

Kelly Hunt, MD, FACS, FSSO

Professor and Chair, Department of Breast Surgical Oncology, Division of Surgery MD Anderson Cancer Center President, Society of Surgical Oncologists

Shelley Hwang, MD, MPH

Mary and Deryl Hart Distinguished Professor of Surgery Vice Chair of Research Department of Surgery Leader, Breast Cancer Disease Group Duke University and Duke Cancer Institute

Peter Blumencranz, MD, FACS

Medical Director, BayCare Oncology Service Line Medical Director, The Comprehensive Breast Care Center of Tampa Bay

Tanya Laidlaw, MD, FAAAAI

Director of Translational Research, Division of Allergy and Clinical Immunology Chief, Section of Clinical and Translational Sciences, Div. of Allergy and Clinical Immunology Brigham and Women's Hospital, Associate Professor, Harvard Medical School

Jorge Ferrer, PhD Chief Scientific Officer

Lumicell

Barbara Smith, MD, PhD

Director, Breast Program, Massachusetts General Hospital Massachusetts General Hospital Trustees Chair in Breast Surgery Professor of Surgery, Harvard Medical School

Additional Experts

Gheorghe Doros, PhD, MBA

Professor of Biostatistics Boston University, School of Public Health Director of Statistical Consulting Baim Institute for Clinical Research

Simona Shaitelman, MD

Professor of Breast Radiation Oncology Director, Division of Radiation Oncology Biomarker Strategic Initiative Laboratory UT MD Anderson Cancer Center Vice-Chair, ASTRO Partial Breast Irradiation Clinical Practice Guideline

Michael Whitworth, MD

American Board of Anesthesiologists Managing Partner, Prn Anesthesia

Dorothy Wong, MD

Chair of Pathology, Reg Med Center of San Jose, CA Medical Director/Staff Pathologist, Dignity Health

Unmet Need Kelly Hunt, MD, FACS, FSSO

Professor and Chair, Department of Breast SurgicalOncology, Division of SurgeryMD Anderson Cancer CenterPresident, Society of Surgical Oncology

Breast Cancer Is Most Common Cancer in Women

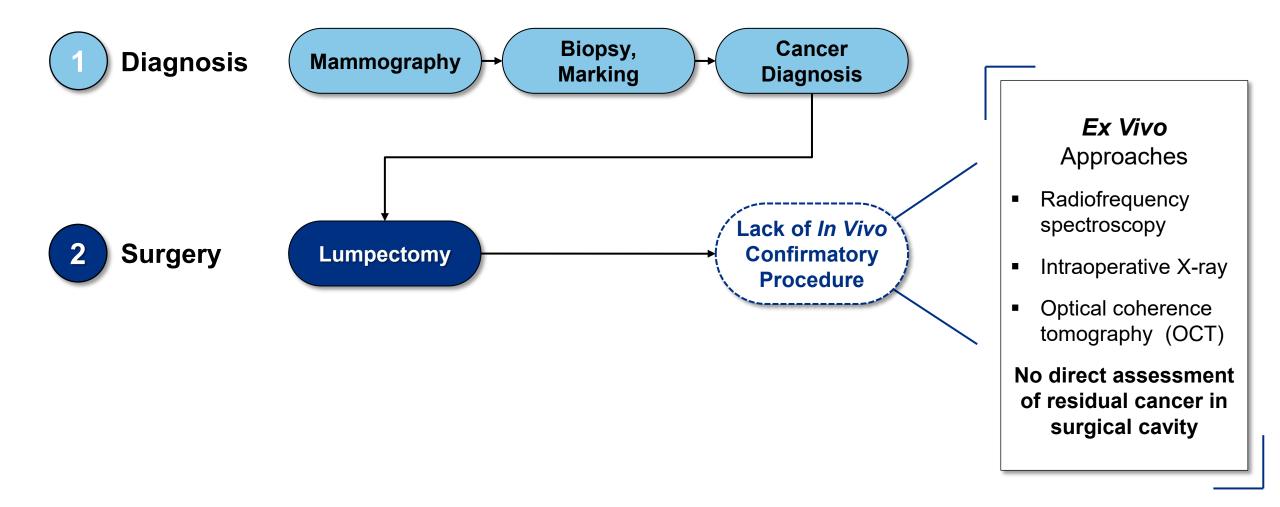
CO-14

1. American Cancer Society, 2023

women estimated to be diagnosed with breast cancer in US in 2023¹

~ 43,000

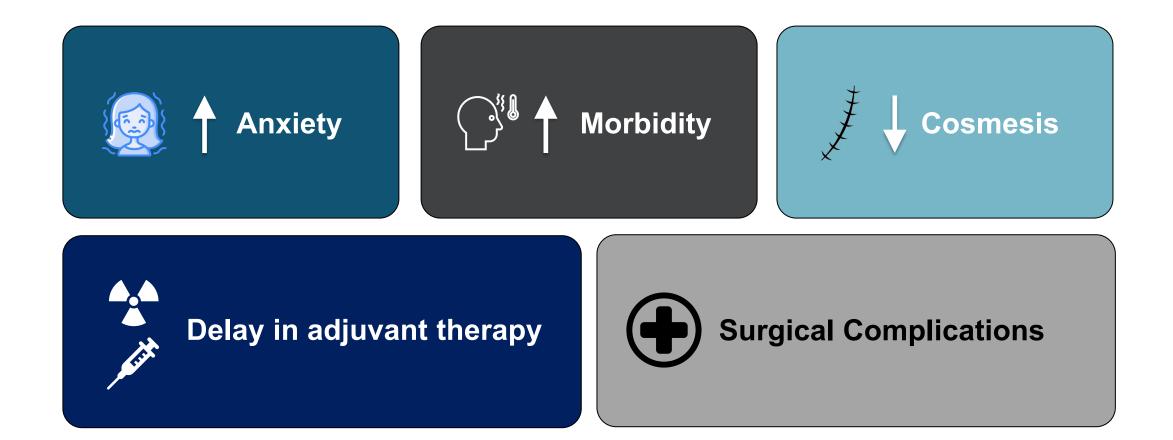
patients will die from breast cancer each year in US¹


leading cause of cancer death in women in US¹

patients undergo lumpectomy each year in US²


1. American Cancer Society, 2023; 2. National Cancer Database - Accessed 2023

Caring for Patients with Breast Cancer Is Complex


CO-16

Standard of Care Can Fail to Achieve Complete Resection

Potential Negative Consequences from Incomplete Resections and Second Surgeries

CO-18

Grant et al. 2018

Limitations of SoC Pathology Margin Assessment

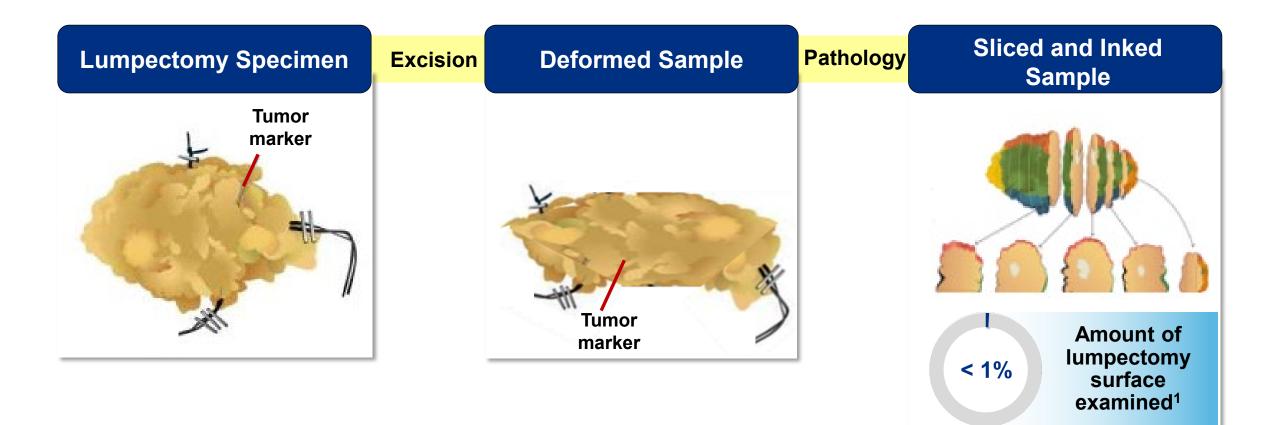


Figure adapted from Royal College of Pathologist, 2016; 1. Carter, 1986

Pathology Assessment of Excised Tissue Can Lead to False Positives and False Negatives

CO-20

Summary of Unmet Need

Current tools limited and do not identify extent of tumor accurately enough, making it challenging to achieve complete tumor resection

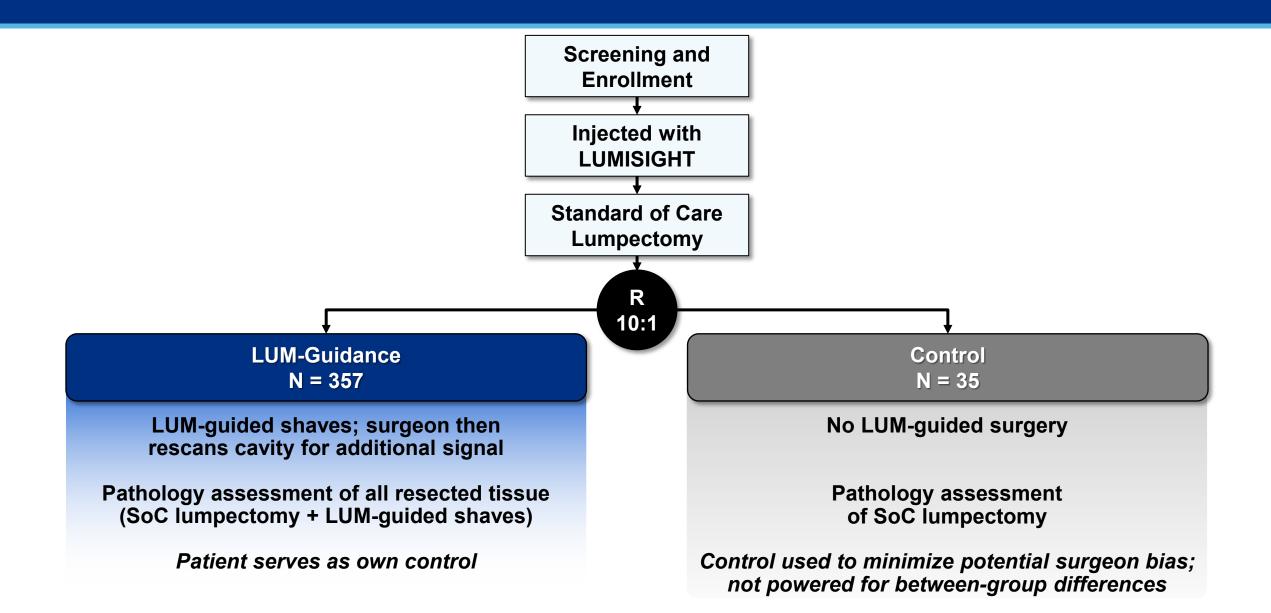
2

Limitations lead to second surgeries

Clear unmet need for visualization tool that looks inside breast cavity for residual cancer during surgery to enable more complete resection

Adjunctive to SoC, LUM System enables *in vivo* cavity assessment in real-time for more effective resection

Pivotal Study CL0007 Efficacy Results


E. Shelley Hwang, MD, MPH

Mary and Deryl Hart Distinguished Professor of Surgery Vice Chair of Research Department of Surgery Leader, Breast Cancer Disease Group Duke University and Duke Cancer Institute

Pivotal Study Included 14 Medical Settings – Academic and Community Hospitals

Study CL0007 Randomized, Blinded Clinical Study

Study Procedures for Patients Randomized to Treatment Arm

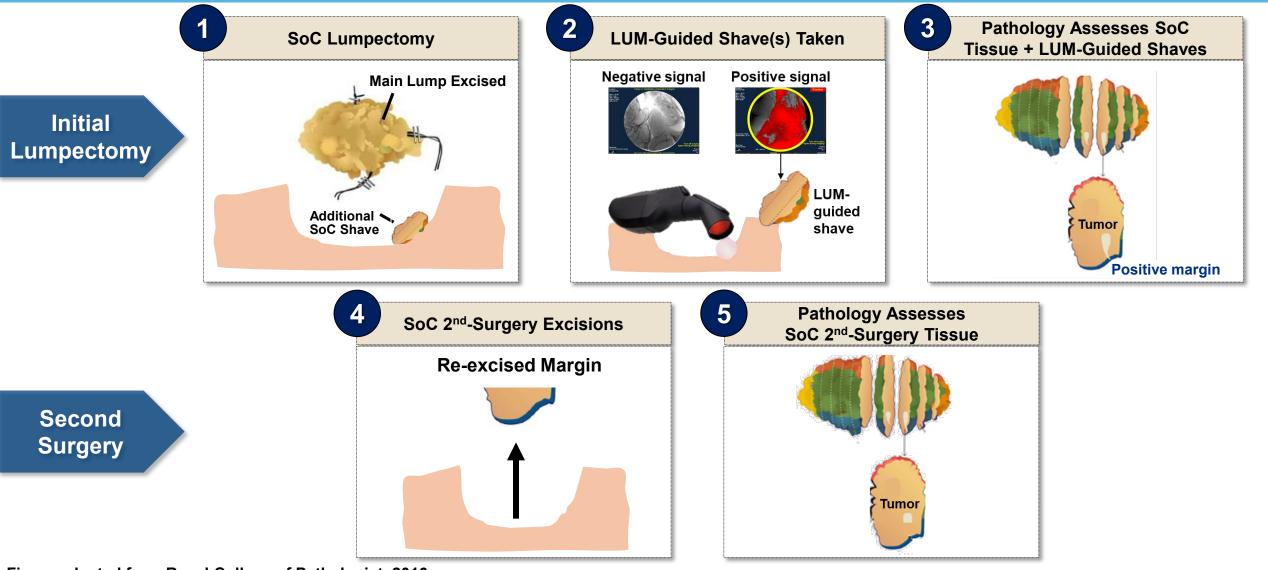
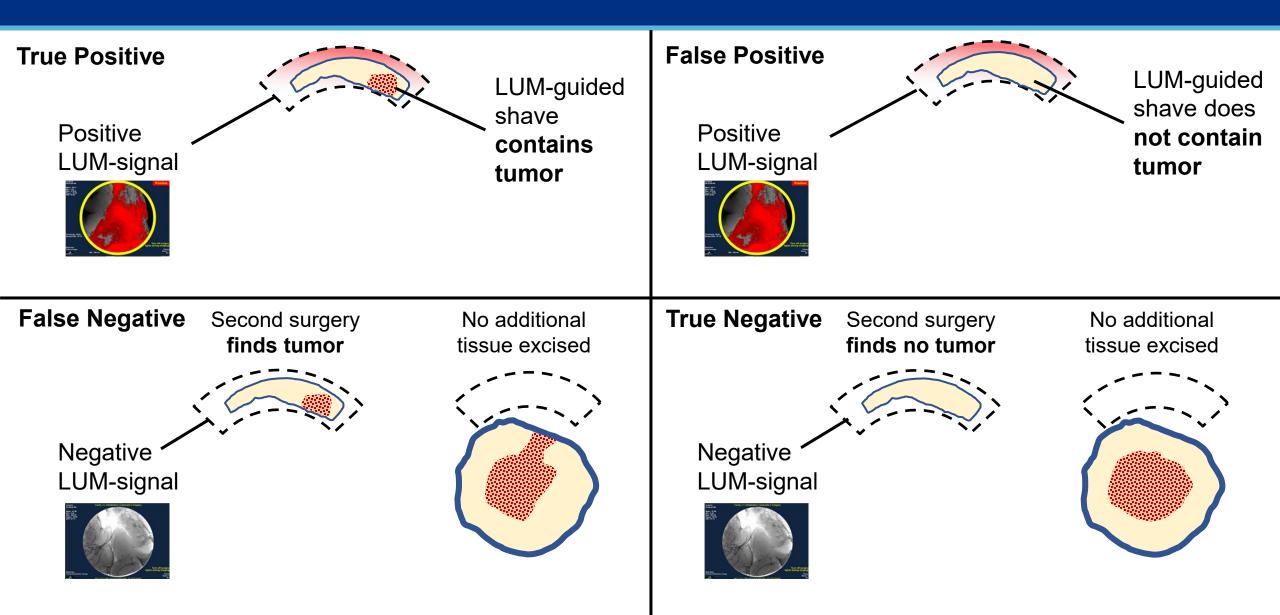



Figure adapted from Royal College of Pathologist, 2016

LUM-Image Results Compared with Pathology Findings

CO-26

Pivotal Study Endpoints

Primary Endpoints	 Removal of Residual Cancer: Tissue-level Sensitivity: Tissue-level Specificity: 	% pts. with residual cancer in LUM-shave true positive rate of LUM-positive signal true negative rate of LUM-negative signal	
Clinically Relevant Secondary Endpoints		margins after SoC to final negative margins shaves; contribution to total excision volume	
Exploratory Endpoint Impact of LUM-guided shave volume on patient perceived cosmesis			

Performance Goals for Co-Primary Endpoints

Removal of Residual Cancer: lower bound of CI > 3%

Based on published estimates of 5.3% local recurrence after whole breast radiation¹

CO-28

Sensitivity: lower bound of CI > 40%

- Based on previous study, SoC margin pathology showed 38% sensitivity

Specificity: lower bound of Cl > 60%

Based on previous study showing ~ 1 LUM-guided shave/patient of 68%

Key Enrollment Criteria

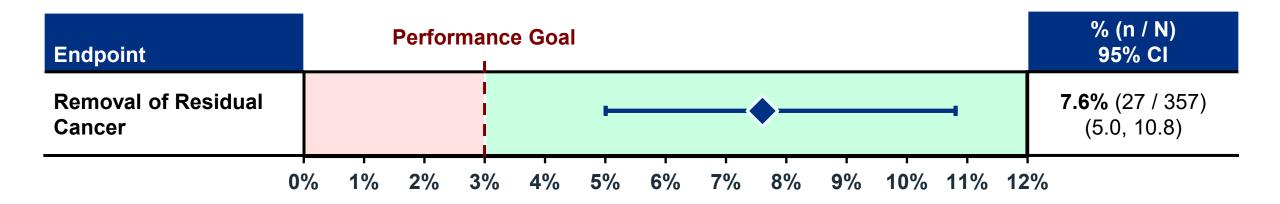
Inclusion Criteria

- Female
- Age ≥ 18 years
- Histologically or cytologically confirmed primary invasive breast cancer, DCIS, or primary invasive breast cancer with DCIS component
- ECOG 0 or 1

Exclusion Criteria

- Bilateral breast cancer and undergoing bilateral resection procedure
- Received neoadjuvant therapies
- Administration of blue dyes for sentinel lymph node mapping prior to LUM imaging
- History of allergic reaction to polyethylene glycol or any oral or IV contrast agent

Baseline Demographic Characteristics


Characteristic, %	LUMISIGHT / Lumicell DVS N = 357
Age, mean (SD)	62.4 (9.6)
Race	
White	83%
Black	6%
Asian	6%
Other, unknown or not reported	5%
Hispanic or Latino	3%
BMI, mean (SD)	29.8 (6.7)
Menopausal status	
Postmenopausal	84%
Pre/perimenopausal	16%

Efficacy Population

Baseline Tumor Histology Characteristics

Characteristic, %	LUMISIGHT / Lumicell DVS N = 357
Largest dimension of tumor in main specimen (cm), mean (SD)	1.7 (1.3)
Tumor histology (preoperative)	
DCIS only	20%
IDC	70%
ILC	10%
IDC + ILC	1%
Node positive disease	15%
No lymph node resection	19%

CO-32 CO-Primary Efficacy Endpoint Met: LUM-Guided Shaves with Residual Cancer Removed in 7.6% of Patients

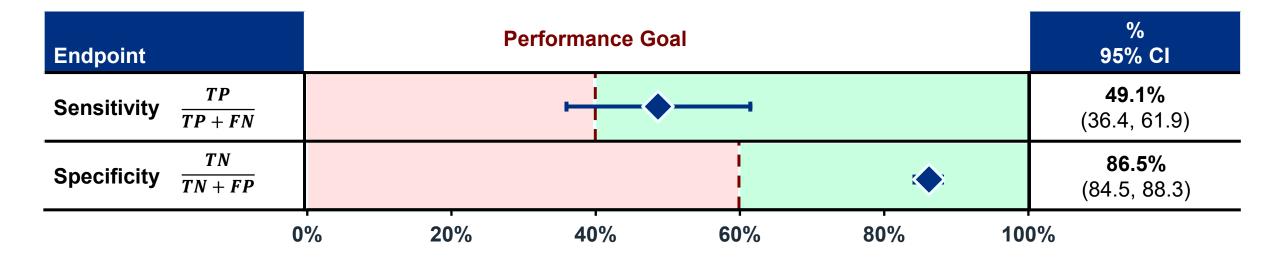
Aggressive and Extensive Residual Cancer Found in LUM-Guided Shaves


Characteristic, n (%)	LUM System N = 27
Tumor grade	
1	2 (7%)
2	12 (44%)
3	13 (48%)
Residual cancer size 1 – 13mm	20 (74%)
Residual cancer removed after negative margin	19 (70%)

LUM System enabled removal of aggressive, sizable, and undetected cancerous tissue

Tissue-Level Sensitivity Not Met Missed Lower Bound of PG by 3.6 Percentage Points

		Hierarchy Truth Standard	
		Positive	Negative
LUM Signal	Positive	TP = 34	FP = 337
	Negative	FN = 35	TN = 1,940

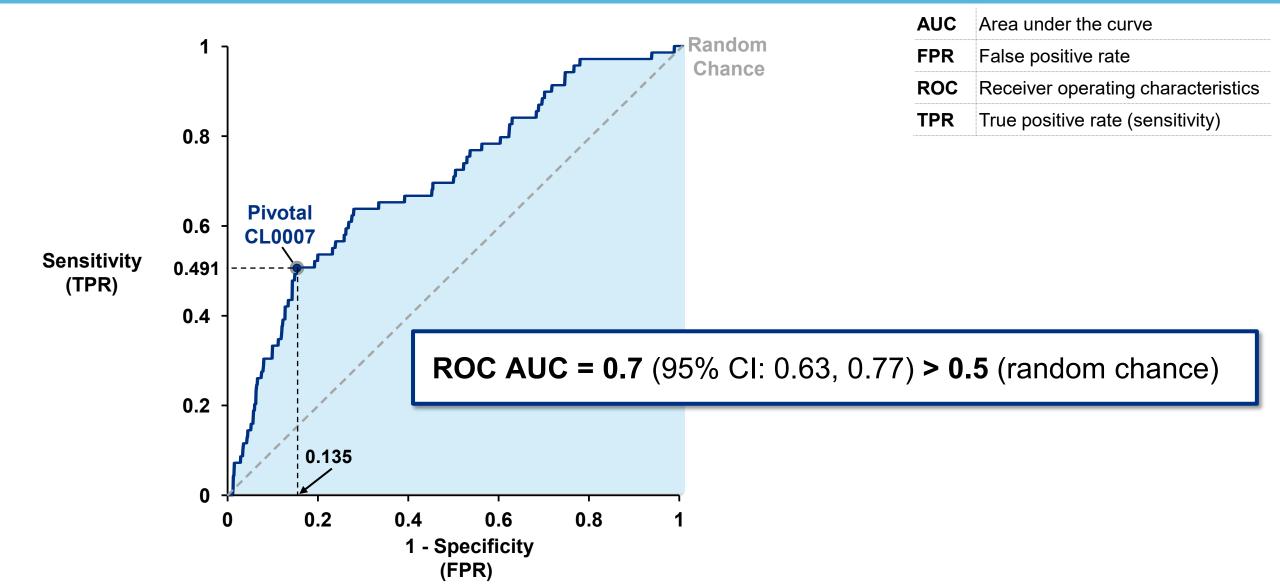

CO-34

Diagnostic performance CIs calculated using GEE approach; TP = true positives; FN = false negatives; TN = true negatives; FP = false positives

Tissue-Level Specificity Co-Primary Endpoint Met Exceeded Lower Bound of PG

		Hierarchy Truth Standard	
		Positive	Negative
LUM Signal	Positive	TP = 34	FP = 337
	Negative	FN = 35	TN = 1,940

Diagnostic performance CIs calculated using GEE approach; TP = true positives; FN = false negatives; TN = true negatives; FP = false positives

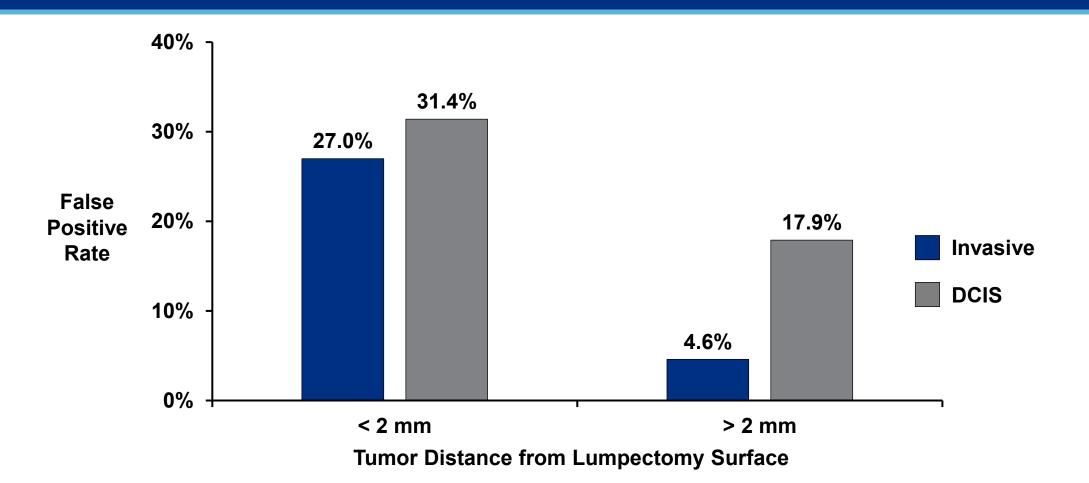

CO-3<u>5</u>

Diagnostic Accuracy of 84% Exceeds 50% Expected for Random Outcome Test

		Hierarchy Truth Standard	
		Positive	Negative
LUM Signal	Positive	TP = 34	FP = 337
	Negative	FN = 35	TN = 1,940

Diagnostic performance CIs calculated using GEE approach; TP = true positives; FN = false negatives; TN = true negatives; FP = false positives

Diagnostic Performance Demonstrates Effectiveness


CO-37

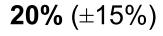
Secondary Endpoint: LUM-Guided Conversion of Positive Margins to Final Negative Margins

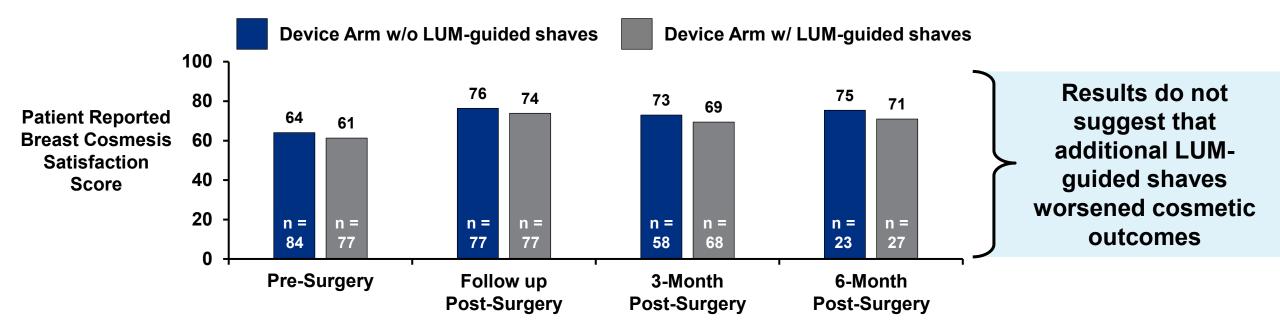
CO-38

linically Relevant Pre-Defined Secondary Endpoint, n (%) (95% Cl)	Efficacy Population N = 357
atients having positive margins after SoC lumpectomy procedure n (%)	62 (17%) (13.6, 21.7)
Percent of patients converted from positive margins after SoC lumpectomy procedure to final negative margins by excising LUM-guided shaves n/n (%)	9/62 (15%)
 8 patients avoided second surgery by removing LUM-guided shaves 1 patient still underwent second surgery despite final negative margins 	(6.9, 25.8)
Of remaining 53 patients with SoC pathology-determined positive margins	28/45 (62%)
 45 patients proceeded to second surgery 28 patients had no residual cancer found 	(48.1, 76.4)

LUMISIGHT Activation in Areas Adjacent to Tumor

LUMISIGHT's MoA generates elevated fluorescence adjacent to tumor; reasonable to attribute conversion to negative margins to drug effect


Lanahan et al. 2021


Secondary Endpoint: Contribution to Excision Volume and (Exploratory) Its Impact to Patient Perceived Cosmesis

Clinically Relevant Secondary Endpoint, % (±SD)

N = 166

Contribution of LUM-guided shaves to total excision volume when ≥ 1 removed

35 Patients Had Improved Surgical Outcomes by Removing LUM-Guided Shaves

Surgical benefits from LUM-guided shaves, n (%)	Efficacy Population N = 357
Patients with improved surgical outcomes	35* (9.8%)
Residual cancer removed	27
Converted to final negative margins	9

CO-41

Summary of Efficacy

- Removal of residual cancer co-primary endpoint met performance goal; LUM System enabled residual cancer removal in 27 (8%) patients
- 2 Tissue-level sensitivity endpoint missed; tissue-level specificity endpoint met; 84% diagnostic accuracy
 - Converted 15% of positive margins to negative, sparing 8 patients second surgeries
 - 4 Results do not suggest that additional tissue resection driven by LUMISIGHT worsened cosmetic outcomes
- 5
- Provided real-time, in vivo examination of lumpectomy cavity

Safety

Peter Blumencranz, MD, FACS

Medical Director, BayCare Oncology Service Line Health System Medical Director, The Comprehensive Breast Care Center of Tampa Bay

LUMISIGHT Safety Profile Well Characterized from 726 Patients

Population	Number of Patients
Overall safety population	726
Breast cancer safety population	703
Other solid tumors	23

CO-44

Pivotal Study CL0007 includes > 50% of safety population (N = 406)

Administration of LUMISIGHT in Preoperative Area Under Medical Supervision

CO-45

Administered 2-6 hours prior to imaging at 1 mg/kg dose by IV injection over 3 minutes

Performed in preoperative area under medical supervision

All serious events were managed immediately with standard interventions

Premedication at discretion of physician

Adverse Events Were Infrequent and Mostly Unrelated Other Than Chromaturia as Expected

Preferred Term, n (%)	Overall Safety Population N = 726
AEs	633 (87%)
AEs related to LUMISIGHT	615 (85%)
Chromaturia (discolored urine)	613 (84%)
Hypersensitivity (includes 4 SAEs in next slide)	9 (1%)
Extravasation	4 (0.6%)
Blood creatinine decreased	4 (0.6%)
AEs not related to LUMISIGHT	151 (21%)
Seroma	31 (4%)
Breast Pain	22 (3%)
Nausea	15 (2%)

Few Patients Experienced Serious Adverse Event

Preferred Term, n (%)	Overall Safety Population N = 726
SAEs	7 (1%)
SAEs related to LUMISIGHT	4 (0.6%)
Anaphylactic reaction	3 (0.4%)
Hypersensitivity	1 (0.1%)
SAEs not related to LUMISIGHT	3 (0.4%)
Breast cellulitis	1 (0.1%)
Vascular pseudoaneurysm	1 (0.1%)
Somnolence	1 (0.1%)
Acute kidney injury	1 (0.1%)
Acute respiratory failure	1 (0.1%)

Related AEs Leading to Study Discontinuation Were Infrequent and All Events Resolved

Preferred Term, n (%)	Overall Safety Population N = 726
AEs leading to discontinuation	8 (1%)
AEs related to LUMISIGHT leading to discontinuation	8 (1%)
Hypersensitivity reaction	3 (0.4%)
Anaphylactic reaction	2 (0.3%)
Extravasation event	2 (0.3%)
Nausea	1 (0.1%)
Skin discoloration	1 (0.1%)

All events resolved, most on same day

	Overall Safety Penulation
Category, n	Overall Safety Population N = 726
Deaths	0

Summary of Safety

LUMISIGHT safety profile at 1 mg/kg characterized in 726 patients; dose well tolerated

All patients with AEs and SAEs recovered and continued to receive SoC lumpectomy procedure

3

Personally enrolled and used LUM System in > 65 patients; comfortable using LUMISIGHT

Allergic Reactions and Hypersensitivity

Tanya Laidlaw, MD, FAAAI

Director of Translational Research, Division of Allergy and Clinical Immunology Chief, Section of Clinical and Translational Sciences, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital Associate Professor, Harvard Medical School

Expert Allergists Involved in Review of Allergic Reaction Events

Tanya Laidlaw, MD, FAAAAI

Director of Translational Research, Division of Allergy and Clinical Immunology Chief, Section of Clinical and Translational Sciences, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital Associate Professor, Harvard Medical School

Jamie Waldron, MD

Allergist and Immunologist, Massachusetts General Hospital Instructor of Medicine, Harvard Medical School

Anna Wolfson, MD, FAAAAI

Chair of Quality and Safety, Allergy and Immunology and Assistant Clinical Director, Allergy and Immunology, Massachusetts General Hospital Assistant Professor, Harvard Medical School CO-52

Trial Reported SAEs of Anaphylaxis or Hypersensitivity

Patient	Reported in Trial
Patient #1	Anaphylaxis Life-threatening
Patient #2	Hypersensitivity Severe
Patient #3	Anaphylaxis Severe
Patient #4	Anaphylaxis Severe

- Goal of post-hoc analysis was to further characterize allergic reactions and suggest appropriate mitigations
- Anaphylaxis guidelines: CTCAE (used in trial), EAACI, NIAID, WAO, USDAR, Ring and Messmer, Brown and NAP6

Patient #1 Summary

- Cefazolin IV given 6 minutes prior to LUMISIGHT
- 1.5-2 minutes into LUMISIGHT administration (received 30mg of 104mg): patient reported chest tightness, dyspnea, upper body pain, noted to have a red face
- Administration of LUMISIGHT stopped
- Anesthesiologist reported patient as nauseous, diaphoretic, dyspneic, appearing cyanotic + apneic, having a weak pulse with generalized rash
- Treatment: 10L oxygen, epinephrine, Pepcid, Solumedrol IV, Benadryl IV; transferred to MICU
- Symptoms resolved in < 12 hours; discharged following day; lumpectomy performed 17 days later

- Probably related, life-threatening, anaphylaxis
- Etiology could have been cefazolin or LUMISIGHT; LUMISIGHT more likely given timing
- Patient had history of hives to iodinated contrast media

Patient #2 Summary

- Nuclear medicine injection and image-guided wire insertion 75 minutes prior to LUMISIGHT
- Tylenol 1000mg and gabapentin 300 mg given 32 minutes prior to LUMISIGHT
- 2 minutes into LUMISIGHT administration (received 27 mg of 61 mg): patient reported nausea, vomiting, headache, and lightheadedness; found to have profuse erythema, heart rate in 50s and BP 60/30 mmHg
- Infusion stopped
- Treatment: reclined; 500mL IV normal saline, Zofran 4 mg IV, Benadryl 25 mg IV
- Symptoms resolved within 13 minutes; lumpectomy occurred next day
- Allergy-related lab work: histamine (52 \rightarrow 22), tryptase (11.5 \rightarrow 12.6)

- Probably related, severe, anaphylaxis
- Tylenol and gabapentin near LUMISIGHT administration \rightarrow uncommon causes of allergic reactions
- Elevated histamine and less-so tryptase suggest mast cell-mediated mechanism of reaction

Patient #3 Summary

- 1.5 minutes into LUMISIGHT administration (received 22 mg of 91 mg): patient reported dyspnea, tingling in tongue / hands / feet, nausea, swollen lip, eye redness, seeing "black spots"
- Vital signs normal with heart rate 88 and BP 110/89 mmHg
- Treatment: Benadryl 50 mg IV, hydrocortisone 100 mg, Zofran 4 mg, Pepcid 20 mg
- Patient recovered within 20 30 minutes; lumpectomy occurred same day
- Allergy-related lab work: histamine (55 \rightarrow 11), tryptase (3.6 \rightarrow 4.3)

- Probably related, moderate, possible allergic reaction
- Lab results reassuring after quick improvement
- Patient symptoms mostly subjective; documentation shows absence of tachypnea / hypoxia
- Briefly elevated histamine suggests mast cell-mediated mechanism of reaction

Patient #4 Summary

- During 3-minute LUMISIGHT administration (full dose at 61 mg completed), patient reported feeling "funny" with itching in hands, feet and lips; BP 125/76 mmHg immediately after injection, 10 minutes later had BP 98/51 mmHg, 5 minutes after that BP 64/38 mmHg
- Treatment: 1L lactated ringers; reverse Trendelenburg
- Blood pressure normalized within 30 minutes; symptoms resolved within 70 minutes
 - Felt well during subsequent needle localization procedure
 - Brought to PACU in wheelchair felt lightheaded: experienced vasovagal event
 - Treated with 10 mg IV ephedrine, symptoms resolved; Lumpectomy occurred same day
- Allergy-related lab work: histamine (< 8 \rightarrow < 8), tryptase (4.2 \rightarrow 4.6)

- Possibly related, moderate, vasovagal reaction
- Heart rate remained stable with subsequent vasovagal reaction ~ 3 hours after LUMISIGHT
- Diagnosis of hypersensitivity reaction unlikely due to symptoms resolving with IV fluids alone, and completely normal blood histamine and tryptase levels

Summary of SAEs of Anaphylaxis or Hypersensitivity

Patient	Reported in Trial	Allergist Review
Patient #1	Anaphylaxis Life-threatening	Anaphylaxis Life-threatening
Patient #2	Hypersensitivity Severe	Anaphylaxis Severe
Patient #3	Anaphylaxis Severe	Possible allergic reaction Moderate
Patient #4	Anaphylaxis Severe	Vasovagal reaction Moderate

All 4 patients had reactions that were well identified, well managed, and did not prevent continuing with SoC lumpectomy

Preoperative Settings Well Equipped to Manage Anaphylaxis Risk

- Rate of preoperative mortality due to anaphylaxis expected to be very low
 - Patient is verbal, monitored for reaction, and skin is visible
 - No deaths in any Lumicell clinical trials due to anaphylaxis or any other AEs

CO-59

- Preoperative and operating rooms already well equipped and well trained to manage anaphylaxis due to commonly used perioperative agents
 - 0.5% of new exposures to cefazolin report an allergic reaction¹
 (50% of Lumicell population administered cefazolin prior to surgery)
 - $\sim 2\%$ of exposures to isosulfan blue report an allergic reaction²

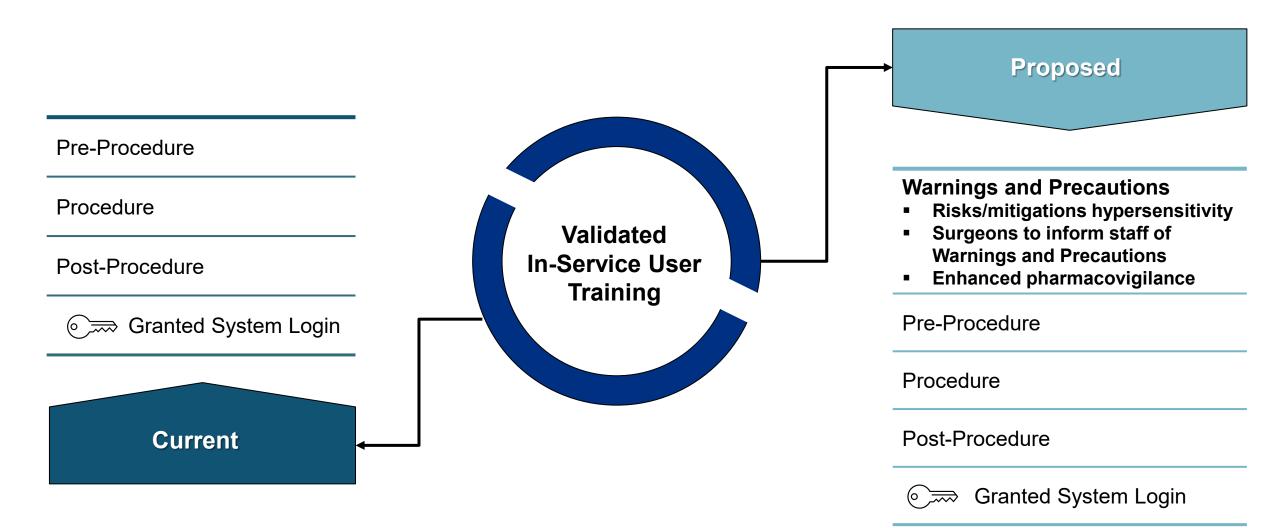
1. Drug allergy: A 2022 practice parameter update 2022; 2. Isosulfan blue prescribing information

Summary of Allergic Reactions and Hypersensitivity

Events infrequent with rate of 0.6% (4 / 726 patients); study protocol updated after first anaphylactic reaction

- All events occurred at healthcare setting, treated by trained personnel, fully recovered, and proceeded to SoC lumpectomy
- 3 Risk of mortality expected to be extremely low in preoperative setting
- 4 Observed rates of anaphylaxis and hypersensitivity infrequent and acceptable in context of perioperative procedures

Mitigations reasonable to manage rate of reactions


Risk Mitigation Strategies Jorge Ferrer, PhD

Chief Scientific Officer Lumicell CO-61

Risk Mitigation Strategies – Labeling

- Proposed additional warnings and details in Prescribing Information
 - Clearly indicate risk of "life-threatening anaphylaxis" in Highlights and Warnings and Precautions section
 - Advise healthcare providers that before LUMISIGHT administration, obtain history of allergy and prior hypersensitivity reactions
 - Indicate that patients with history of multiple food or drug allergies or other hypersensitivities may be at increased risk
 - Specify to always administer LUMISIGHT in healthcare settings and have emergency resuscitation drugs, equipment, and trained personnel available
 - Instruct to interrupt injection if hypersensitivity reaction is suspected
 - Monitor patients for 15 minutes after injection

Risk Mitigation Strategies – Training

CO-63

Risk Mitigation Strategies – Enhanced Pharmacovigilance (PV)

- Partnered with PV vendor with experience in combination products
- Provide clear, accurate, and timely medical information
- Collect, evaluate, and report adverse events
- Implement an Adverse Events of Special Interest (AESI) program
- Train users on Lumicell's PV program
- Standardize collection of additional data to help us learn more about etiology of reactions

Risk Mitigation Strategies – Postmarket Study

Design

Prospective, observational study

Objectives

- Primary objective: evaluate incidence of anaphylactic reactions after administration of LUMISIGHT
- Secondary objective: evaluate incidence of other hypersensitivity symptoms after administration of LUMISIGHT

Data collection

- Baseline and post-injection: vital signs; tryptase and histamine
- Complete medical histories regarding allergies
- Details on patient status and concomitant medications preceding LUMISIGHT injection
- Adverse events or symptoms related to hypersensitivity
- Treatment and outcome

Sponsor-Proposed Risk Mitigation Strategies for LUMISIGHT Administration

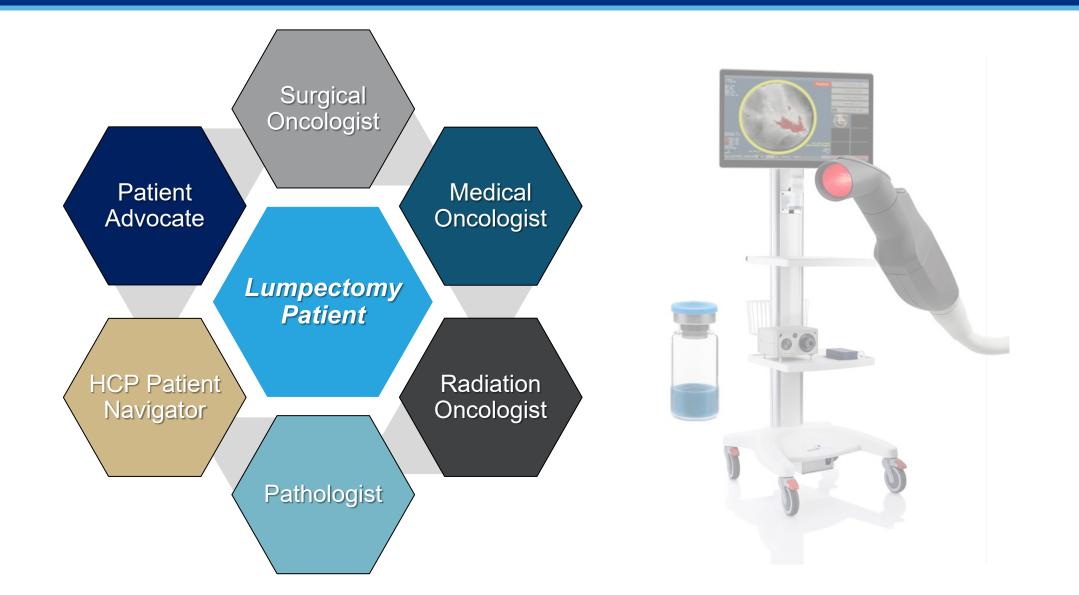
CO-66

Clear Labeling

Training Program

Enhanced Pharmacovigilance

Postmarket Study



Clinical Perspective Barbara Smith, MD, PhD

Director, Breast Program, Massachusetts General Hospital Massachusetts General Hospital Trustees Chair in Breast Surgery

Professor of Surgery, Harvard Medical School

We Believe Change Is Needed Now

Urgent Need for Improved Tool for More Complete Resection

- Limited to ex vivo specimen analysis
- Predict specimen margin status
- Do not directly assess cavity

Pathology Margins

- < 1% of surface¹
- Examines deformed specimen
 - 1 to 2 weeks
 - Positive margins require 2nd surgery

Second Surgeries

- Healing has deformed cavity during 2nd surgeries
- 65% of time no tumor in positive margin patients²

1. Carter, 1986; 2. Tang et al. 2015

Benefits of LUM System Outweigh Risks

Benefits

- Enables removal of residual cancer missed by SoC surgery and pathology
- Converts positive margins to negative, sparing potential second surgeries
- Does not appear to worsen cosmesis
- Provides real-time *in vivo* imaging to surgeons
- As adjunct to SoC, improves surgical outcomes

Risks

- False positives can lead to unnecessary tissue removal
- 0.6% serious hypersensitivity or anaphylaxis risk (4 / 726 patients)

Benefits of removing residual cancer left behind by SoC surgery outweigh any identified risks that can be managed in preoperative setting and with labeling

Moderator for Q&A

Jorge Ferrer, PhD

Chief Scientific Officer Lumicell

CO-72

LUMISIGHT[™] and Lumicell[™] Direct Visualization System (DVS) as Adjunct to Standard of Care to Identify Residual Cancer Within the Lumpectomy Cavity

March 5, 2024

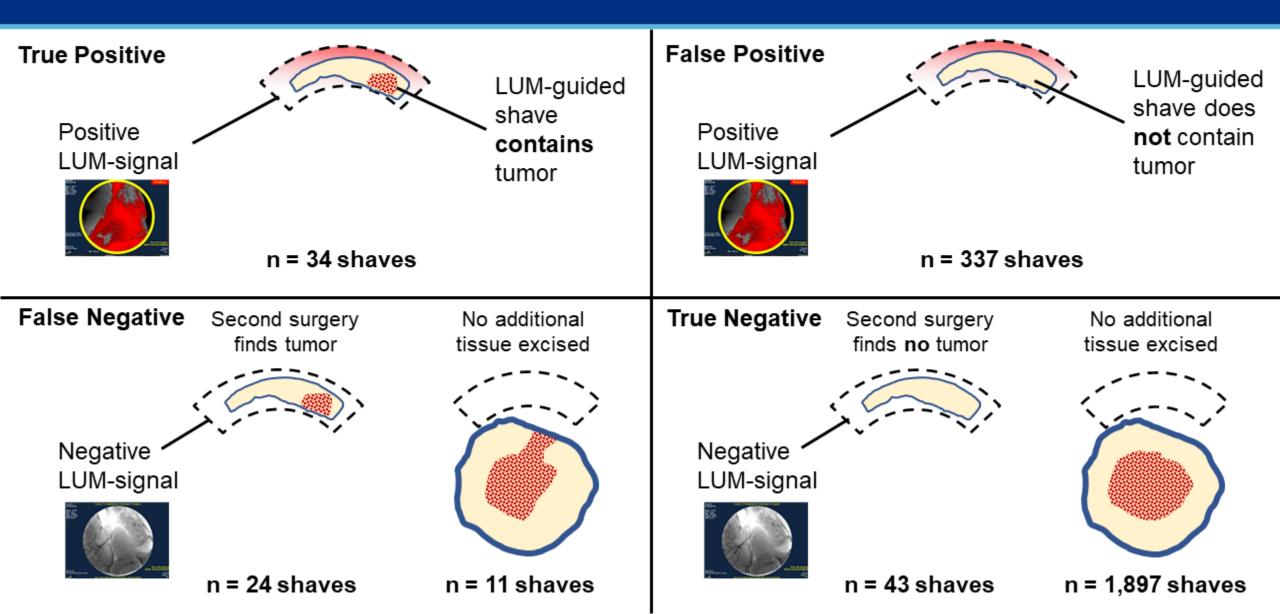
Lumicell

Medical Imaging Drugs Advisory Committee (MIDAC)

Performance by Tumor Histology

Tumor Histology Based on Pre-op Biopsy	Patients	Residual Cancer Removal Rate % (95% Cl)	Sensitivity % (95% Cl)	Specificity % (95% Cl)	Margin Conversion % (95% Cl)
All	357	() 1	⊨ ♦⊣	•	₽♦ =
IDC/ILC ± DCIS	287	:•1	⊢ ♦⊣	•	F\$1
DCIS only	70	⊢♦	⊢ ♦─-	(F \$ I
		0% 25% 50	% 0% 30% 60% 90%	0% 30% 60% 90%	0% 30% 60% 90%

Performance by Tumor Grade


Tumor Grade	Patients n	Residual Cancer % (95% Cl)	Sensitivity % (95% CI)	Specificity % (95% CI)	Margin Conversion % (95% Cl)
AII	357	101	⊢♦⊣	•	⊧♦⊣
Grade 1	59	r 	••	r 🏟	• i
Grade 2	182	I \$- I	⊢ ♦—I	•	•♦—
Grade 3	107	⊢ ♦—I	⊢ •−1	(⊷•
		0% 25% 50%	60% 30% 60% 90%	0% 30% 60% 90%	0% 30% 60% 90%

Performance by SoC Procedure: Comprehensive, Selective, and No Shaves

SoC Procedure	Patients n	Residual Cancer % (95% Cl)	Sensitivity % (95% Cl)	Specificity % (95% Cl)	Margin Conversion % (95% CI)	Median Volume Added by LUM- Shaves for Patients with ≥ 1 Shave % (95% Cl)
All	357	(4)	⊢♦⊣	•	F♦H	•
Comprehensive shaves	71	⊢♦ — 1	⊢	۲	⊦.	٠
Selective shaves	165	t I I	⊢ ♦⊣	٠	⊢ ♦⊣	۲
No SoC shaves	121	II II	⊢	•	•	♦ 4

LUM-Image Results Compared with Pathology Findings

EF-61

