Process Validation Compounding Quality Center of Excellence Annual Conference September 13, 2023

Neda Hamandi

Team Lead, Office of Compounding Quality and Compliance

Disclaimer

The information in this presentation was obtained from several resources, including but not limited to:

- <u>eCFR :: 21 CFR Part 211 -- Current Good Manufacturing Practice for Finished Pharmaceuticals</u>
- FDA Final Guidance for Industry, Process Validation: General Principles and Practices (January 2011)
- FDA Guidance for Industry PAT A Framework for Innovative Pharmaceutical Development, Manufacturing, and Quality Assurance
- FDA Guidance for Industry Q8(R2) Pharmaceutical Development*
- FDA Guidance for Industry Q9 Quality Risk Management*
- FDA Guidance for Industry Q10 Pharmaceutical Quality System*
- FDA Guidance for Industry Quality Systems Approach to Pharmaceutical CGMP regulations
- <u>Current Good Manufacturing Practice—Guidance for Human Drug Compounding Outsourcing Facilities Under Section 503B of the FD&C</u> <u>Act Guidance for Industry | FDA</u> (Draft Guidance)
- PDA TR60: Process Validation

* *Note:* The ICH documents have been adopted by FDA and additional information on ICH documents can be found in FDA guidance for industry documents.

Agenda

➤ Laws, Regulations, and Guidance

FDA

- PV Life Cycle Approach
- Stages of Process Validation
 - □Stage 1
 - □Stage 2
 - □Stage 3
- Change Management

Process Validation

PV is defined as the collection and evaluation of data, from the Process Design stage through commercial production, which establishes scientific evidence that a process is capable of consistently delivering quality products.

PV involves a series of activities taking place over the lifecycle of the product and process.

FDA Final Guidance for Industry, Process Validation: General Principles and Practices (January 2011)

Laws, Regulations, Guidance, and Best Practices

Items	Descriptions
Laws (Statutes)	The Federal Food, Drug and Cosmetic (FD&C) Act is a federal law (statute) enacted by Congress. Federal laws establish the legal framework within which FDA operates . The FD&C Act can be found in the United States Code (U.S.C), which contains all general and permanent U.S. laws, beginning at 21 U.S.C. 301.
Regulations	FDA develops regulations (e.g., current good manufacturing practice (CGMP) requirements) based on the statutes such as the FD&C Act or other laws under which FDA operates. FDA regulations are also federal laws , but they are not part of the FD&C Act. FDA regulations can be found in <u>Title 21 of the Code of Federal Regulations (CFR)</u> .
Guidance	FDA follows the procedures required by its "Good Guidance Practice" regulation to issue FDA guidance. FDA guidance describes the agency's current thinking on a regulatory issue. In general, FDA guidance is not legally binding on the public or FDA.
Standards and Best Practices	Standards are internationally agreed upon principles by experts; best practices are procedures or processes shown by research and experience to produce optimal results and is established or proposed as a standard suitable for widespread adoption. Best practices are recommendations and not legally binding.

Process Validation in the Regulations

§ 211.100 Written procedures; deviations

- a) There shall be written procedures for production and process control designed to assure that the drug products have the identity, strength, quality, and purity they purport or are represented to possess. Such procedures shall include all requirements in this subpart. These written procedures, including any changes, shall be drafted, reviewed, and approved by the appropriate organizational units and reviewed and approved by the quality control unit.
- b) Written production and process control procedures shall be followed in the execution of the various production and process control functions and shall be documented at the time of performance. Any deviation from the written procedures shall be recorded and justified.

Stages of Process Validation

General Elements for Successful PV

- 1. An integrated team approach to PV, as appropriate to the size and scale of your organization, is recommended. Teams are composed of experts from a variety of disciplines.
- 2. All studies should be planned and conducted according to sound scientific principles, appropriately documented, and approved in accordance with the established procedure appropriate for the stage of the lifecycle.
- 3. The degree of control for process operations and process parameters should be commensurate with their risk of impacting the desired product quality attributes or in-process specifications.

Lifecycle Approach to Process Validation

Stages	Parts		
Stage 1 Process Design	Part I: Building and Capturing Process Knowledge and Understanding Part II: Establishing a Strategy for Process Control		
Stage 2 Process Qualification	Part I: Design of a Facility and Qualification of Utilities and Equipment Part II: Process Performance Qualification		
Stage 3 Continued Process Verification (CPV)	Initial CPV Planning Short Term CPV Long Term CPV		

Lifecycle Approach to Process Validation: Stage 1, Process Design

- Part I: Building and Capturing Process Knowledge and Understanding
- Part II: Establishing a Strategy for Process Control

Stage 1, Process Design – Overview

The goal of this stage is **to design a process suitable for commercial production** that **consistently** delivers a product that meets **its predefined quality attributes.** Process Design defines the commercial production process that will be documented in the master production and control records.

It is important to recognize that *quality* <u>cannot be tested into products</u> (i.e., quality is built in by design).

Lifecycle Approach to Process Validation Stage 1, Process Design

Part I: Building and Capturing Process Knowledge and Understanding

Part I of Stage 1: Building and Capturing Process Knowledge and Understanding

Establish Quality Target Product Profile (QTPP), Critical Quality Attributes (CQA), Critical Process Parameters (CPP), Critical Material Attributes (CMA)

- Perform Quality Risk Management
- Define the Manufacturing Process
- Perform Process Characterization

Establish QTPP, CQA, CPP, CMA

Quality Target Product Profile, QTPP, is a summary of the quality characteristics of a finished drug product (like purity, sterility, stability, route of administration, dosage form, and strength) that ideally will be achieved to ensure the desired quality and strength of the drug product.

A Critical Quality Attribute, CQA, is a physical, chemical, biological, or microbiological property or characteristic that must be within an appropriate limit, range, or distribution to ensure the desired product quality (ICH Guidance for Industry Q8(R2) Pharmaceutical Development).

A Critical Process Parameter, CPP, is a **process parameter whose variability has an impact on a CQA**, and therefore should be monitored or controlled to ensure the process produces the desired quality (ICH Guidance for Industry Q8(R2) Pharmaceutical Development).

Critical Materials: Raw materials (e.g., Bulk Drug Substance (BDS) or excipients), finished product containers, and closures are critical materials. Specifications must be established for critical materials. These specifications are referred to as **Critical Material Attributes** (CMAs).

Relationship Between CMAs, CPPs, and CQAs

FDA

Part I of Stage 1: Building and Capturing Process Knowledge and Understanding (1 of 3)

- Establish QTPP, CQA, CPP, CMA
- Perform Quality Risk Management
- Define the Manufacturing Process
- Perform Process Characterization

Quality Risk Management (QRM)

- QRM is a systematic process for the assessment, control, communication, and review of risks to the quality of the drug product across the product lifecycle. The application of risk management principles and approaches is instrumental to effective decision-making in selecting the correct CQAs and CPPs (PDA TR60).
- Risk assessment should occur early in the Design Stage and consciously be assessed, controlled, and communicated throughout the lifecycle of the finished drug product.
- With a lifecycle approach to PV that employs risk-based decision-making throughout the lifecycle, the perception of criticality as a continuum rather than a binary state is useful.
- All attributes and parameters should be evaluated in terms of their roles in the process and impact on the product or in-process material and reevaluated as new information becomes available.
- The degree of control over those attributes or parameters should be commensurate with their risk to the process and process output. In other words, a higher degree of control is appropriate for attributes or parameters that pose a higher risk to the process and process output.

ICH Q9 Risk Management Framework*

FDA

*Figure 1: Overview of a typical quality risk management process from Q9(R1) Guidance

Part I of Stage 1: Building and Capturing Process Knowledge and Understanding (3 of 3)

- Establish QTPP, CQA, CPP, CMA
- Perform Quality Risk Management

> Define the Manufacturing Process

Perform Process Characterization

Define the Manufacturing Process

Level of Detail

- ✓ Process requirements, including raw materials and order of operations
- ✓ Set points and ranges for the process parameters
- ✓ Identification and quantity of all material flows (e.g., additions, wastes, product streams)
- ✓ Testing, sampling, and in-process controls (IPCs)
- ✓ Hold times and hold conditions for product and additional solutions
- ✓ Materials reconciliation
- Estimated step yields and durations
- ✓ Sizing for equipment, including such items as mixers or filtration units (e.g., filter surface area, filter volume, and pore size)
- ✓ Specific identification (i.e., manufacturer, part number) for manufacturing (e.g., filters) and packaging components (e.g., vials, stoppers)
- ✓ Other information necessary to successfully reproduce the process
- Actual and theoretical yields

Part I of Stage 1: Building and Capturing Process Knowledge and Understanding (2 of 3)

- Establish QTPP, CQA, CPP, CMA
- Perform Quality Risk Management
- Define the Manufacturing Process
- Perform Process Characterization

Process Characterization

- Process Characterization is a set of documented studies in which operational parameters are purposely varied to determine their effect on product quality attributes and process performance.
- The output of process design and characterization is a strategy for process control, which is Part II of Stage I of Process Design.
- Process design and characterization should be conducted in accordance with sound scientific methods and principles, including good documentation practices (GDP).
- Process information available from literature sources (e.g., compounding formulations or recipes, United States Pharmacopeia (USP) monographs) or similar production processes already used can be leveraged to design and characterize production processes for new products.

Lifecycle Approach to Process Validation (1 of 3)

Part II: Establishing a Strategy for Process Control

Stage 1 Part II: Establishing a Strategy for Process Control

Categorization of Parameters and Establishment of Control Strategy

System Classifications / Boundaries (Direct vs. Indirect Impact Systems Based on CQAs and CPPs)

A process control strategy is a planned set of controls, derived from product and process understanding, which ensures process performance and product quality.

Elements of a Process Control Strategy

A robust process control strategy encompasses all unit operations in the process. All product quality attributes and process parameters, regardless of whether they are classified as critical, are included in a comprehensive process control strategy, which includes the elements detailed below:

✓ Facility

✓ Personnel

✓ Raw Material Controls

✓ Process Parameters (Set Points and Ranges)

✓ Process Monitoring (Data Review, Sampling, Testing)

✓ In-Process and Release Specifications

✓ Processing Times

✓ Hold Times

✓ Containers and Closures Control

Process Parameters (Set Points and Ranges)

FDA

Stage 1, Part II: Establishing a Strategy for Process Control

- Categorization of Parameters and Establishment of Control Strategy
- System Classifications / Boundaries (Direct vs. Indirect Impact Systems Based on CQAs and CPPs)

System Classification: Direct and Indirect Impact Systems

Direct Impact Systems	Indirect Impact Systems
Directly impact CQAs and / or CPPs, and therefore have direct impact on process and product quality.	 May be referred to as indirect impact, no impact, process non- critical, etc.
Should be commissioned and qualified.	 Systems that do not directly impact any CPPs and CQAs and, therefore, have no direct relationship to process and product quality, and
records such as filling equipment and sterilization equipment (e.g., : blenders mixers filters autoclayes depyrogenation overs)	Require less scrutiny.
	• Will only be commissioned.
	 Based on need, some processes may be commissioned, but not qualified. For example, heating, ventilation, and air conditioning (HVAC) for the office space.
	Their data will not be recorded in the batch / production record; however, a catastrophic failure on their part could impact the Direct Impact Systems they support.
I	L

System Boundaries define at which point the indirect systems end and the direct systems begin.

Computer and Electronic Systems

Computerized and electronic systems used for production applications are qualified per <u>21 CFR part 11</u> and <u>Data Integrity and Compliance with Drug CGMP</u> <u>Questions and Answers Final Guidance for Industry</u> and EU Annex 11.

Qualification criteria include, but are not limited to:

- Specificity
- Accuracy
- Data management
- Sensitivity
- Communication
- Electronic integration requirements of information technology compatibility

Summary of Stage 1 Process Design

The representative list below summarizes the information needed to transition from Stage 1 (Process Design) to Stage 2 (Process Qualification) in the PV lifecycle.

Quality Target Product Profile (QTPP)

- **Process Characterization**
- Process Validation Master Plan

FDA

- Process Control Strategy
- Manufacturing Technology
- **Documentation Development**

Stage 2: Process Qualification

 Part I: Design of a Facility and Qualification of Utilities and Equipment FDA

• Part II: Process Performance Qualification

Stage 2, Part I Design of a Facility and Qualification of Utilities and Equipment

- Commissioning, Factory Acceptance Test (FAT), and Site Acceptance Test (SAT)
- Qualification
 - Installation Qualification (IQ), Operation Qualification (OQ), and Performance Qualification (PQ)

Understanding and Leveraging Commissioning, FAT, and SAT

Commissioning

Commissioning verifies the facility, utility, and equipment (the "system") are installed properly, function properly, have the proper utilities connected correctly, (e.g., are the fans blowing in the right direction?), are accessible (e.g., can I get to sampling points, or can I get the HEPA filter changed if it is installed too close to the wall?), and thus was successfully turned over to the end user. Commissioning, when executed properly, is important to support the success of the subsequent qualification activities.

FAT

FAT provides documented evidence a piece of equipment or system has been adequately tested at the manufacturer's facility and performs to the end user's expectations prior to delivery to the end user. FAT is not mentioned or discussed in the FDA PV guidance, but it **provides an opportunity** to head off problems by finding any issues while it is still in the factory where it can be corrected more easily.

SAT

SAT provides documented evidence a piece of equipment or system has not been affected in the transportation and has been adequately tested at the end user's facility and performs to the end user's expectations. SAT is not mentioned or discussed in the FDA PV guidance, but it **provides an opportunity** to arrange for either factory representatives or supplier service personnel to participate in the first start-up and tests, and for the receiving site's personnel to ask them questions.

Stage 2, Part I : Design of a Facility and Qualification of Utilities and Equipment

- Commissioning, Factory Acceptance Test (FAT), and Site Acceptance Test (SAT)
- > Qualification
 - Installation Qualification (IQ), Operation Qualification (OQ), and Performance Qualification (PQ)

FD/

Qualification (IQ / OQ / PQ) of Equipment and Systems

Installation Qualification (IQ)

IQ provides documented verification all aspects of a facility, utility, or equipment that can affect product quality (i.e., critical) adhere to approved specifications as defined in the URS (e.g., materials of construction) and are correctly installed.

Operational Qualification (OQ)

OQ is the documented verification the facilities, systems, and equipment, as installed or modified, operate as intended throughout the anticipated operating ranges.

Performance Qualification (PQ)

PQ is the documented evidence that provides a high degree of assurance the equipment and systems function accurately and consistently according to predetermined specifications within the operating ranges defined in Stage 1 in its operating environment.

Qualification Throughout the Lifecycle

After the successful qualification of the equipment and systems in the manufacturing facility, it is important to ensure the equipment and systems are maintained in a state of control and operate in a manner consistent with their qualified state throughout the product lifecycle.

This is done by:

Preventive Maintenance

Maintenance is performed routinely according to a defined schedule (e.g., the certification of HEPA filters every six months).

Predictive Maintenance

Individual(s) assigned the responsibility to maintain equipment take advantage of available information, forecast possible failures, and take maintenance action before a failure occurs.

Calibration

A calibration program assures data collected from instruments and devices are both precise and accurate within the acceptable range. Periodic and annual calibration should be incorporated into the calibration program (may also be part of a preventive maintenance program).

Requalification

Requalification may be required whenever qualified systems have been changed or modified. The extent and impact of the change must be evaluated for their impact on the original qualification. Requalification is also routinely performed on a periodic basis to ensure that systems continue to operate in their qualified state throughout the lifecycle of the product. How often a system will need to be requalified will depend on the criticality of that system.

Summary of PV Stage 2: Part I

The typical system qualification sequence is displayed in the figure below.

Lifecycle Approach to Process Validation (2 of 3)

Stage 2: Process Qualification

Part II: Process Performance Qualification

Process Performance Qualification, PPQ

PPQ combines the qualified facility, utilities, and equipment and trained personnel with the commercial manufacturing process, control procedures, and components to produce the PPQ batches. The goal of PPQ is to establish scientific evidence that the commercial production process is reproducible and will consistently deliver quality products.

PV Stage 2, Part II: Process Performance Qualification, PPQ

Analyze PPQ Results Against Acceptance Criteria Sections of the PPQ Report

The PPQ report will typically include the following sections:

FDA

- Summary
- Deviations
- Methods and Materials
- Conclusions
- PPQ Results
- Approvals

Aseptic Process Simulation (Media Fills) Where Does It Fit?

- An aseptic process simulation (APS) is designed to evaluate whether processes may pose a risk to product sterility are adequately controlled.
- The terms "aseptic process simulation" and "media fills" are often used interchangeably.
- APS does not equal process validation; it is a component of process validation.
- APS is narrower in focus than PV in that the goal is primarily microbiological. qualification can product be made that is free from microbial contamination.
- APS can be done before or after PPQ. There are pros and cons to both.
- A media fill has to be completed before a firm releases any aseptically filled products.
- The FDA Compounding Quality Center of Excellence offers a free, self-guided on-line course available here: <u>Aseptic Process Simulations</u>.

Lifecycle Approach to Process Validation (3 of 3)

FDA

Stage 3: Continued Process Verification

- Initial CPV Planning
- Short Term CPV
- Long Term CPV

Stage 3: Continued Process Verification (CPV)

CPV provides ongoing assurance that during routine production the process remains in a state of control.

Source: FDA Final Guidance for Industry, Process Validation: General Principles and Practices (January 2011)

Key Elements of CPV

- Collect data (e.g., process parameters, test results)
- Analyze and review data
- Review trends and evaluate process performance
- Identify problems and determine whether action must be taken to correct undesirable variation in the production, process, deviations, or failures
- Ensure process remains in a state of control throughout the life cycle
- Incorporate process improvements

CPV Overview

Overview of CPV (Stage 3)					
Initial CPV Planning	Short-term CPV 6	Long-term CPV 7			
 Establishes: Data to include for review and analysis (e.g., process parameters, testing results, batch yields) Elements to measure (e.g., critical process parameters (CPPs), in-process controls (IPCs), Critical Quality Attributes (CQAs), yields) Sampling plans Data collection and reporting Reporting frequency Data analysis methods (e.g., statistical tools, trending methods) Action plan to respond to out-of-trend results or observed variation 	 Includes: Data are collected and reported per the plan. Control limits, for any of the parameters or elements defined in the CPV plan, are created and summarized in a short-term CPV report. A report and long-term CPV planning are outputs. 	 Includes: Parameters and product attributes (e.g., CQAs, CPPs) are monitored and trended. Reactions to trends are commensurate with the risk established throughout the PV process. Periodic reporting based upon frequency of manufacturing 			

Quote

Data Collection Plans and Statistical Procedures in the PV Lifecyle

A statistician (or person with adequate training in statistical process control (SPC)) techniques) is recommended to develop the data collection plan and statistical methods / procedures used in measuring and evaluating process stability and process capability.

Commonly Used Statistical Procedures Include:

- Run Charts
- Individual Value Plots
- Tolerance Intervals (TIs)
- Variance Components
- SPC Charts (I Charts) and Capability Analysis

Examples of Data Collection Tools: Run Charts

A run chart is used to study collected data for trends or patterns over a specific time period.

X-axis: Units of time by which measurements are made

Y-axis: Attribute being measured

Centerline: Mean (or average)

A run chart will help you:

- Monitor data over time to detect trends, shifts, or cycles
- Compare / measure data before and after the implementation of a change or corrective action to measure impact
- Focus attention on important changes (i.e., not normal variation)
- Track useful information for predicting trends.

Examples of Data Collection Tools: Individual Value Plot

FDA

An individual value plot displays the individual values in each sample to assess and compare sample data distributions.

Each circle represents one reported value, making it easy to spot outliers and see distribution spread. For example: Batch to batch and sample positions within batch.

X-axis: Inter and intra batches being measured

Y-axis: Attribute being measured

www.fda.gov

Process Capability

Ability of a process to produce a product that will fulfill the requirements of that product. A capability study is used to determine whether a process is capable, which involves collecting samples over a period of time and analyzing the samples. There are both complex and simple methods to assess capability.

Assessing Process Capability in the PV Lifecycle

www.fda.gov

Control Charts - Examples

PV and Change Management

Eighty-five percent of the reasons for failure are deficiencies in the systems and process rather than the employee. The role of management is to change the process rather than badgering individuals to do better.

- W. Edwards Deming —

AZQUOTES

PV and Change Management (cont.)

- Change management is a systematic approach to proposing, evaluating, approving, implementing, and reviewing changes.*
- Before changes are implemented, proposed changes should be evaluated by teams composed of people with a diverse background, including ones familiar with the change at issue (e.g., manufacturing, quality) using pre-established criteria.
- A description of the planned change, a well-justified rationale for the change, an implementation plan, and QU approval must be documented before implementation.
- Depending on how the proposed change might affect product quality and safety, additional process design and process qualification activities may be warranted.
- Quality risk management (QRM) should be utilized to evaluate proposed changes.

*Source: ICH Guidance for Industry Q10 Pharmaceutical Quality System

PV Diagram

FDA

Stage 1: Process Design		Stage 2: Process Qualifi	Stage 3: Continued Process Verification		
Process Design Design Review		Process Qualification	PPQ Protocol Design, Execution, and Report	Continued Process Verification	
Part I: Building and Capturing Process Knowledge and Understanding	Part II: Establishing a Strategy for Process Control	Part I: Design of a Facility and Qualification of Utilities and Equipment	Part II: Process Performance Qualification	Initial CPV Planning	
Establish QTPP, CQA, CPP	 Establish QTPP, CQA, CPP Perform Quality Risk Assessment Define the Manufacturing Process Perform Process Characterization Categorization of Parameters and Establishment of Control Strategy System Classifications / Boundaries (Direct vs. Indirect Impact Systems Based on CQAs and CPPs) PVMP and URS 	Commissioning	Prepare for PPQ		
Perform Quality Risk Assessment		FAT / SAT	Design of PPQ	Short-Term CPV	
Define the Manufacturing Process		Boundaries (Direct vs. Indirect Impact Systems Based on CQAs and	Qualification	Execute the of Secure the Process (PPQ Protocol)	Long-Term CPV
Perform Process Characterization		IQ / OQ / PQ	Analyze PPQ O Results Against Acceptance Criteria	Manage Process Changes	
Risk Management					
Change Management					
Knowledge Management					

www.fda.gov

Regulatory Requirements

Regulatory requirements contained in the CFR include:

Regulatory Requirements	CFR	
Written Procedures; Deviations	<u>21 CFR 211.100,</u> and <u>211.192</u>	
Sampling and Testing of In-process Materials and Drug Products	<u>21 CFR 211.110</u>	
Adequate Facilities, Maintenance, and Calibration	<u>21 CFR 211.42(a), 211.63,</u> and <u>211.68(a)</u>	
Control of Microbial Contamination	<u>21 CFR 211.113</u>	
Annual Product Review	<u>21 CFR 211.180(e)</u>	

ICH Guidance

ICH is the International Council for Harmonization of Technical Requirements for Pharmaceuticals for Human Use. ICH is a joint effort to align regulations in what has become a global environment. The following ICH documents have been adopted in published FDA guidance documents.

• ICH Q8(R2) Pharmaceutical Development

This guidance document on pharmaceutical development defines procedures for linking product and process development planning to the final commercial process control strategy and quality system.

• ICH Q9 Quality Risk Management

This guidance document describes the use of a risk-based approach to pharmaceutical development and manufacturing quality. These approaches identify and prioritize those process parameters and product quality attributes with the greatest potential to affect product quality.

• ICH Q10 Pharmaceutical Quality System

This guidance document is intended to assist pharmaceutical manufacturers by describing a model for an effective quality management system for the pharmaceutical industry, referred to as the Pharmaceutical Quality System (PQS). To achieve the goals outlined in this guidance document, it is essential to integrate the Process Design into the quality system.

Knowledge Management

Knowledge management is a "systematic approach to acquiring, analyzing, storing, and disseminating information related to products, manufacturing processes, and components."

Source: ICH Guidance for Industry Q10 Pharmaceutical Quality System

Why Is It Important?

Knowledge management supports how knowledge is acquired, analyzed, stored, disseminated, and applied across the PV lifecycle. Information should be consistently maintained, either manually or automatically, depending on the system used by each firm.

Introduction to Legacy Products

Legacy products are existing products currently on the market for which some current PV lifecycle concepts may not have been formally established and/or implemented.

Manufacturers of legacy products can take advantage of the knowledge gained from the original process development and qualification work to develop a pathway for validation.

Pathway for Validating Legacy Products

Gap Analysis

A gap analysis helps to reveal what elements are missing (e.g., CQAs, CPPs, control strategy, qualification of a piece of equipment) and needed to complete PV.

Data Analysis and Risk Assessment

Data analysis should show the production process was robust and reliably operating in a state of control.

The extent of the validation activities to perform will be commensurate with the overall risk as determined based on the gap analysis and risk assessment.

Stage 3: CPV

Questions?

